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Abstract. In this work numerical simulations by finite elements are performed for a fully de-
veloped turbulent and three-dimensional channel flow. This flow case represents a standard
benchmark for validations in turbulent flow research. The computations are carried out by Di-
rect Numerical Simulation (DNS). Structured grids are used for the channel geometry while the
flow solver is the PETSc-FEM code. DNS is a time-dependent and three-dimensional numerical
solution of the flow equations which are computed as accurately as possible without any turbu-
lence model introduced. Homogeneous turbulence and wall turbulence are the most frequently
cases considered in DNS literature. Some turbulence statistics such as friction coefficients,
production and viscous dissipation rates, Taylor and Kolmogorov microscales are shown. We
compare our results for the flow patterns both with those previously published and with the
numerical ones.
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Figure 1: Flow domain for the channel flow, where the channel width isH = Ly.

1 INTRODUCTION

Turbulence in fluid flows is a natural phenomenon that cannot be easily defined1. However, from
a physical point of view there are many common properties of turbulent flows which can be rec-
ognized: time and space irregularity, strong mixing, high diffusivity and high vorticity, viscous
dissipation, flow structures with continuous spectra of length and time scales, large Reynolds
numbers and a three dimensional character, among others. Moreover, there are frequently large
scale motions that are organized with some coherent character (e.g. coherent flow structures in
a mixing layer or in the wake behind a bluff body), which are flow-dependent and geometry-
dependent (e.g. a plane or round jet) and sensitive to inviscid-like instability mechanisms. On
the other hand, there are small scale motions that are statistically independent from flow and
geometry, but sensitive to the fluid viscosity and with a random and near isotropic behavior.

From a mathematical point of view it is generally accepted that turbulent flows are described
by the unsteady Navier-Stokes equations for a viscous fluid. For instance, its applicability has
been inferred from the von Ḱarmán-Howarth (VKH) equation that appears in the statistical
theories of isotropic turbulence based on correlation methods2. In these theories, the unsteady
VKH equation is a direct consequence of the Navier-Stokes one when isotropy is assumed, it
has been validated in laboratory experiments3,4 and, it formally describes a diffusion process
in a five-dimensional space5. Nevertheless, there is not a complete mathematical theory of
turbulence as described by the unsteady Navier-Stokes equations, so methods for numerical
modeling are often based on heuristics, empiricism and assumptions6,7.

From a computational point of view, predictive methods in turbulence can be roughly sorted
acording to the degree of statistics involved before a numerical solution of the chosen equations
is performed8:

(i) Direct Numerical Simulation9 (DNS) of turbulence: where any fluctuating motion in the
flow fields is computed from the exact unsteady Navier-Stokes equations, that is, a DNS
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Figure 2: Non-dimensional mean velocityu+ = U/Uτ as a function of the non-dimensional wall-normal coordi-
natey+ = yUτ/ν, when the DNS solution is adimensionalized with: the friction stressτw (curve 1) and the limit
friction stress̃τw (curve 2) obtained from Eq. (12).

of turbulence is a time-dependent and three-dimensional numerical solution in which the
flow equations are computed as accurately as possible without any turbulence model in-
troduced. Mean flow parameters are later obtained from statistics over a broad set of
numerical solutions. DNS considers all degrees of freedom appearing in the flow with-
out using any approximating assumption. However, as the required grid points number
increases faster than the square of the Reynolds number, DNS of turbulence is at present
feasible only at low or moderate Reynolds numbers;

(ii) Large Eddy Simulations (LES): the large scale motions are computed from the filtered
unsteady Navier-Stokes equations while the small-scale ones are modeled with ratherad
hoc procedures. Then, mean flow parameters are obtained from statistics over a set of
solved large-scale motions and small-scale ones (sub-grid modeling);

(iii) Statistical Turbulence Modelling (STM): the whole turbulent motion is assessed through
a finite number of statistical parameters, for instance, statistical single-point or two-
point moments in the physical or in the Fourier spaces and Probability Density Functions
(PDF). However, exact equations governing such statistical parameters are open (the “clo-
sure problem”) due to the non-linearity of the Navier-Stokes equations. Then, additional
assumptions are added yielding approximate closed sets of modeled equations, for in-
stance, Reynolds Averaged Navier Stokes equations (RANS), PDF and spectral-closure
ones.

The DNS turbulence of channel flow has often been performed in the literature because of
its simple geometry, e.g. see Kimet al.10 and Abeet al.11. The fully developed turbulent
channel flow is an example of wall turbulence, that is, turbulence whose structure is mostly
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Figure 3: Plot of the friction Reynolds numberReτ = Uτδ/ν as a function of the time numbern, whereδ = H/2
is the channel half-width whileR̃eτ is its limit value.
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Figure 4: Plot of the bulk Reynolds numberReb = Ubδ/ν as a function of the time numbern, whereδ = H/2 is
the channel half-width.

influenced by the presence of a solid boundary in a shear flow. Many DNS of turbulence refer
to wall bounded flows and have provide useful databases for analysing near-wall effects (see
the review article of Friedrich1 et al.).

In this work numerical simulations by finite elements are performed for a fully developed
turbulence in a three-dimensional channel. The computations are carried out by Direct Numer-
ical Simulation (DNS) with a structured grid. A main objective is to calibrate a LES model in
the PETSc-FEM flow solver19,20.
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Figure 5: Plot of the friction coefficientCf as a function of the time numbern compared with the correlations of
Dean for channel flow, Blasius for pipe flow, and the limit friction valueC̃f .

2 FLOW DOMAIN

A fully developed turbulent flow in a three dimensional channel of rigid and smooth walls
is assumed, see Fig. 1, wherex(x1), y(x2) and z(x3) are the streamwise, wall-normal and
spanwise directions, respectively, andx = (x, y, z). The mean flow is in thex-direction and
is driven by a body forceγx, while thex streamwise andz spanwise directions are assumed
as infinites. A fully developed turbulent regime is assumed, with flow velocityu = u(x, t),
with u = (ux, uy, uz), which is homogeneous in its time-mean structure in the streamwise
direction, where a viscous and incompressible fluid of Newtonian type is employed whose
physical properties are taken as constants. The assumed symmetry in thez spanwise direction
means only the off-diagonal terms〈uxuy〉Ω,T in the Reynolds stress will be nonzero and it
depends only on they wall-normal direction, where〈...〉 denotes average in the flow domainΩ
until some final timeT .

3 ROUGH ESTIMATES

As it is well known12, the Kolmogorov scales of length, time and velocity are given by

ηK = (ν3/ε)1/4 ; ΘK = (ν3/ε)1/2 ; uk = (νε)1/4 ; (1)

respectively, and

ε = 2νd ; d = 〈sijsij〉ΩT ; sij =
1

2
(uij + uji) ; uij = ∂ui/∂xj ; (2)

whereε andsij are the dissipation and strain rates per unit mass13, respectively,d is the average
of the strain rate square contraction andν is the fluid kinematic viscosity. On the other hand, two
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Figure 6: Plot of the ratio of the centerline velocity to the bulk one,Uc/Ub, compared with the Dean correlation
1.28 Reb

−0.0116, as a function of the time numbern.

conditions must meet a DNS of turbulence in order to ensure an adequacy of the results: (i) the
lengthL of the computational domain must be long enough to accommodate the largest eddies,
whose typical length isΛe, and (ii) the typical grid spacingh must be fine enough to resolve
the smallest eddies whose length scale is in the order of the Kolmogorov one. For instance, the
grid points numberNDNS and the total computational timeTDNS in a DNS of homogeneous and
isotropic turbulence in a box increase with the Reynolds number as

NDNS ∼ Reτ
9/4 and TDNS ∼ Reτ

11/4 . (3)

Assuming that at least 4 nodes in each direction are needed to resolve the smallest eddy, then
the grid points number for an uniform spacinghx can be estimated as

Nuniform ≈
[

Λe

ηK/4

]3

; (4)

and replacing the Kolmogorov length scaleηK given by Eq. (1),

Nuniform ≈
[
4Λe

(εK

ν3

)1/4
]3

. (5)

It is also known14 that in a channel of widthH, the eddies of a fully developed turbulent flow are
elongated in the streamwise direction with a scale lengthΛe ≈ 2H. Also, the typical velocity
ratio isUb/Uτ ≈ 20 while its dissipation rate isε ≈ 2Uτ

2Ub/H, where

Ub = lim
T,Ω→∞

1

TΩ

∫
Ω,T

u(x, t) dΩ dt ; (6)
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Figure 7: Plot of the ratio of the distance of the first node layer to the Kolmogorov length,∆0y/ηK , as a function
of the time numbern, where∆0y = y1 − y0.

is the bulk velocity across the flow domain,

Uτ =

√
τw

ρ
; (7)

is the shear velocity,

τw = ν
∂u

∂y

∣∣∣∣
wall

; (8)

is the friction stress computed from the DNS results, whileν andρ are the kinematic viscosity
and density of the fluid, respectively. Substituting these estimates into Eq. (5) we have in an
uniform mesh of mesh-stephx thatNDNS ≈ (110 Reτ )

9/4, where

Reτ =
Uτδ

ν
; δ =

H

2
; (9)

are the friction Reynolds number and the hydraulic radius for the channel flow case, respec-
tively. From a practical point of view, it is wasteful to use a uniformly-spaced mesh since far
wall regions have fairly small dissipation ratesε, and then the Kolmogorov length scaleηK is
larger there than very near the walls (where the dissipation rate is the bigest). Thus, Kim10 et
al. have shown by numerical experiments that with mesh refinement at the walls the factor 110
in Eq. 4 can be replaced by about 3. Thus, a more feasible grid points number order in a DNS
of turbulence in channel flow can be estimated as

hx 6= const → NDNS ≈ (3Reτ )
9/4 . (10)
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Figure 8: Plot of the ratio of the time-step to the Kolmogorov time scale,∆t/ΘK , as a function of the time number
n.

Regarding the time discretization, DNS mostly use explict or semi-implicit methods to over-
come severe time-step restrictions due to locally fine grids. Such fine grids arise when the
wall-normal velocity gradients must be resolved. Linear stability criteria of explicit schemes
lead time steps much lower than the Kolmogorov time scaleΘK . Another time scale often used
as an upper bound in near-wall turbulence is the friction time scaletν = ν/U2

τ . For instance, it
has been reported that to sustain turbulence is necessary a time step of

∆t = 0.2
ν

U2
τ

. (11)

When a constant body borcegx is imposed in the streamwisex-direction of a channel of span-
wise widthH. A momentum balance on a control volume shows that the limit friction stress is
given by

τ̃w =
1

2
ρgxH . (12)

4 AVERAGE PROCEDURE

As in the case of periodic flows, the homogeneity hypothesis in the two infinite directions is
assumed15, that is, all the quantities averaged in these directions are independent of thex-
streamwise andz-spanwise directions. Then, by the ergodic hypothesis, the statistical averaged
is replaced by an averaging in thex-streamwise andz-spanwise directions given by

f = f(y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0

f(x, y, z, t) dxdz ; (13)
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When the simulated flow reaches a statistically steady state, the mean-velocity profile can be
defined

U(y) = ux(y) = lim
T→∞

∫ T

0

ux(y, t) dt ; (14)

5 MEAN FLOW VARIABLES

In order to characterize the flow in the channel the following mean values are used. The bulk
Reynolds number isReb = Ubδ/ν, whereUb is the mean velocity, while the wall Reynolds
number is given byReτ = Uτδ/ν, whereUτ =

√
τw/ρ is the friction velocity,τw is the shear

stress (statistically averaged) whileν andρ are the kinematic viscosity and density of the fluid,
respectively. The channel half-widthδ = Ly/2 is its hydraulic radius (the ratio of the cross
sectional area to the transverse wetted perimeter, e.g. see Corcoran16 et al.) which is often
used in the literature. The normalized mean velocity and wall-normal coordinate are given
by u+ = u/Uτ andy+ = yUτ/ν, respectively. The friction coefficientCf is defined from
τw = Cf (ρUb

2/2).

6 GOVERNING EQUATIONS

The unsteady Navier-Stokes equations (NS) for the flow of a viscous and incompressible New-
tonian fluid are written as

ρ (∂tu + u · ∇u− f)−∇ · σ = 0 ;

∇ · u = 0 ;
(15)
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Figure 10: Plots of the Kolmogorov lengthηK and and TaylorηTaylor scales as functions of the time numbern.

on the flow domainΩ, for all timet ∈ [0, T ] whereT is a some final time,u is the fluid velocity,
f is the body force andρ is the fluid density. The fluid stress tensorσ is decomposed into its
isotropic−pI and deviatoricT parts

σ = −pI + T ; (16)

wherep is the pressure andI is the identity tensor. As only Newtonian fluids with constant
physical properties are considered, its deviatoric partT is related linearly to the strain rate
tensor with

T = 2µε ; ε =
1

2

[
∇v + (∇v)T

]
; (17)

whereµ andν = µ/ρ are the dynamic and kinematic viscosity of the fluid and(...)T denotes
the transpose. In channel flow periodic boundary conditions are imposed in thex-streamwise
andz-spanwise directions (or at the boundary of thexz-horizontal planes) as

u(x + Lx, y, z, t) = u(x, y, z, t) ;

u(x, y, z + Lz, t) = u(x, y, z, t) ;

p(x + Lx, y, z, t) = p(x, y, z, t) ;

p(x, y, z + Lz, t) = p(x, y, z, t) ;

(18)

while no-slip ones for the velocity

u(x, 0, z, t) = u(x, Ly, z, t) = 0 ; (19)

are imposed on the top and bottom walls for all timet ∈ [0, T ]. The lengthsLx andLz are
the assumed periods in the two infinite directionsx-streamwise andz-spanwise large enough to
accommodate the largest eddies.
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Figure 11: Plot of the Kolmogorov timeΘK scale as a function of the time numbern.

7 NUMERICAL SOLUTION BY FINITE ELEMENTS

The numerical simulation is performed by a stabilized finite element scheme where, at each
node and at each time step, the moment and continuity equations are solved for the three com-
ponents of velocity and pressure. The combined Streamline Upwind Petrov Galerkin (SUPG)
and Pressure Stabilized Petrov Galerkin (PSPG)] scheme, proposed by Tezduyar17,18 et al. is
employed for stabilization of the advective and incompressibility terms. This combined scheme
is due to two distinctive difficulties in the numerical resolution of the Navier-Stokes equations
of flows of incompressible and viscous fluids by finite elements. First, when the Reynolds num-
ber increases, these equations are more dominated by the advection term. On the other hand,
the incompressibility condition is not really a evolution equation itself but, rather, a restric-
tion one on the velocity field. This implies, in turn, that only some combinations of the velocity
and pressure interpolation spaces can be employed, that is, those that satisfy the Brezzi-Babuska
condition. The spatial discretization has equal order for pressure and velocity (linear tetrahedral
elements), and is stabilized through the addition of two operators. Advection at high Reynolds
numbers is stabilized with the SUPG operator, while the PSPG one stabilizes the incompress-
ibility condition, which is responsible of the checkerboard pressure modes. When the modified
equations are then discretized by finite elements in space, an Ordinary Differential Equation
(ODE) system in time results, which is next discretized by a finite difference method and, at
each time step, we have a non-linear system of equations

F

(
un+1 − un

∆t
, pn+1

)
= 0 . (20)

Then, having the state of the fluid at timetn, we solve the velocity and pressure unknowns at
time tn+1.
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The whole strategy is implemented within the PETSc-FEM19,20 code, a multi-physics finite
element library. In our DNS simulations we have used its special matrix solver “Interface Itera-
tive and Sub-domain Direct” (IISDMat), which solves the linear system by iteration over the in-
terface nodes while a direct method is employed in each interior sub-domain (this is commonly
referred as a “Domain Decomposition Method”). The PETSc-FEM code is based on MPI21

(Message Passing Interface) and PETSc22 (Portable Extensible Toolkit for Scientific computa-
tions), a scientific library that gives to the developer a parallel environment with different levels
of complexity.

8 COMPUTATIONAL PARAMETERS

The computational flow domain is the boxΩ = [0, Lx] × [0, Ly] × [0, Lz]×, whereLx = π is
the streamwise length,Ly = 1 is the channel width andLy = H = π/2 its spanwise width.
The lengthsLx andLz are chosen in order to ensure that the turbulence fluctuations are uncor-
related at one half-period of separation. A structured finite element mesh with linear tetrahedral
elements is employed. It is resolved by an equidistant grid in thexz-planes, withNx = 128
andNz = 64 points along streamwise and spanwise directions, respectively. In order to verify
Eq. (10) the mesh step should be 40% smaller. Along the wall-normaly direction, a non-
equidistantly grid is placed withNy = 34 points along wall-normal direction, with refinement
center/wall ratio ofhratio = 75, where the first point aty+ = 0.48. There is a total ofNx ≈ 294
K-nodes andNu ≈ 1.18 M-degree of freedom. In order to obtain a wall Reynolds number
Reτ ≈ 180 and mean velocitiesO(1), the kinematic viscosity was set toν = 3 10−5 m2/s and
the body forcegx = 0.00025 N/m3.

The overall computation was performed by continuation on the body forcegx (related to the
friction Reynolds number), which was started with a laminar velocity profile. The final Courant
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Figure 13: Mean velocityUx as a function of the wall-normal coordinatey.

number wasNC ≈ 0.5 and the last time-step∆t = 0.002 s. This final time-step is lower than
the viscous one from the estimate given by Eq. (11).

9 NUMERICAL RESULTS

The DNS curves are adimensionalized with both the friction stressτw (computed from Eq. 8)
and the asymptotic friction stressτ̃w (given by Eq. 12).

Fig. 2 shows plots of the non-dimensional mean velocityu+ = u/uτ as a function of the
non-dimensional wall-normal coordinatey+ = yuτ/ν. As it is well known, in fully developed
turbulence there is a logarithmic region empirically approximated by

u+ = A ln y+ + B ; (21)

whereA = 1/κ is the reciprocal of the von Ḱarmán parameter andB is an additive one. Several
values are found in literature (for both smooth and rough walls) and we have chosenκ = 0.41
andB = 5.1.

Plots of the friction Reynolds numberReτ = Uτδ/ν and bulk Reynolds numberReb =
Ubδ/ν, as functions of the time numbern are shown in Figs. 3 and 4, respectively, where
δ = H/2 is the channel half-width (the hydraulic radius for this case).

Plots of the friction coefficientsCf as functions of the time numbern are shown in Fig. 5
obtained with: (i) the present DNS, (ii) the Dean empirical correlation for channel flow

Cf = 0.073 Reb
−0.25 ; (22)

and (iii) the Blasius one for pipe flow

Cf = 0.079 (2Reb)
−0.25 . (23)
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A plot of the ratio of the centerline velocity to the bulk one,Uc/Ub, as a function of the time
numbern, compared with the Dean correlation

Uc

Ub

= 1.28 Reb
−0.0116 ; (24)

is shown in Fig. 6.
A plot of the ratio of the distance of the first node layer to the Kolmogorov length∆0y/ηK ,

where∆0y = y1 − y0, is shown in Fig. 7, and another for the ratio of time-step to the Kol-
mogorov time∆t/ΘK is shown in Fig. 8, both as functions of the time numbern. A plot of the
ratio of the time-step to an estimative DNS one,∆t/TDNS, is shown in Fig. 9 as a function of
the time numbern, where (e.g. see Wilcox14)

TDNS = 0.003
H

Uτ

√
Reτ

. (25)

Plots of the Kolmogorov scales for lengthηK , timeΘK and velocityUK computed by Eq. 1 are
shown in Figs. 10, 11 and 12, respectively, all as functions of the time numbern. In Fig. 10, as
a reference, the Taylor scale

ηTaylor =

√
15 ν

Ub
2

ε
; (26)

for homogeneous and isotropic turbulence, it is also ploted as a function of the time numbern,
where it is verified thatηK < ηTaylor.

The last mean velocityUx and mean velocity gradient∂Ux/∂y as functions of the wall-
normal coordinatey are shown in Figs. 13 and 14, respectively.

The mean dissipation rateε as a function of the wall-normal coordinatey is shown in Fig.
15.
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10 DISCUSSION

Due to the fact that the mesh is not properly refined in the sense that the mesh step should be
40% smaller in order to verify Eq. (10), an assessment is necessary in order to clarify if the
present simulation is more likely a LES without a subscale model than a truly DNS. To quantify
this possibility an analysis beyond the mean flow should be made. For this aim, the external
work We = ρgxUbΩ should be equal in mean to the dissipation energy

Ed =

∫
Ω

ε dΩ =

∫
Ly

〈ε〉LxLz dy ; (27)

where

〈ε〉LxLz =
1

LxLz

∫
Lx

dx

∫
Lz

ε(x, y, z) dz ; (28)

both We andEd are integrated in the flow volumeΩ = LxLyLz. Fig. 16 shows a plot of
the external workWe and dissipation energyEd in the flow volumeΩ, as a function of the
time numbern. From this figure it can inferred that (i) the difference between dissipation and
external work it is not small enough, (ii) that the external work is bigger than the dissipation
energy due to the numerical dissipation added by the numerical method and (iii) the relative
numerical dissipation isBC/AC ≈ 30%. It can be concluded that the present simulation is
more likely to be a LES without a subscale model than a truly DNS. For a truly DNS the mesh
step should be more refined. For instance, the number of nodes should be increased from the
≈ 300 K-nodes in the present simulations to 600 and 900 K-nodes. In this way a convergence
test under mesh refinement could be also performed.

Another validation is to compute spatial and time correlations of the fluctuating velocities,
which are more sensitive to the subscale models than the mean ones. For this aim, the Reynolds
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Figure 17: Reynolds stressesr12 = ρ〈ũ1ũ2〉 andr11 = ρ〈ũ1ũ1〉 as a function of the wall-normal coordinatey.

stressesr11 = ρ〈ũ1ũ1〉 and r12 = ρ〈ũ1ũ2〉 can be computed as a function of wall-normal
coordinatey, whereũi = ui−Ui is the fluctuating velocity, whileui andUi are the instantaneous
and mean velocities along thei-Cartesian coordinate, respectively. A plot of these Reynolds
stresses as a function of the wall-normal coordinatey is shown in Fig. 17.

11 CONCLUSIONS

As Karniadakis23 remarks, there are two major challenges today in DNS of turbulence: (i) the
maximum Reynolds number feasible in numerical simulations is still much lower than those of
practical interest and (ii) complicated flow geometries are still untackled. Nevertheless, from a
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practical standpoint, statistics computed from the DNS results can be used to test and calibrate
closure models and Sub-Grid-Scale (SBS) ones, which are often used to predict the more usual
complicated flows of technical interest. Thus, DNS of turbulence is still devoted to flow research
since it gives more detailed mechanisms of fluctuating fields and it can be used as a tool to study
the turbulence physics. DNS of turbulence can also be considered as an additional source of
experimental-like data if is seen as an unobtrusive measuring technique as well for obtaining
information about near unmeasurable properties like pressure fluctuations. Other test cases
could be the DNS of turbulence through partially permeable pipes since it has been reported to
behave similarly to flow through rough pipes24.
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