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Abstract. An arbitrary Lagrangian-Eulerian method is used for solving incompressible free-surface
flows with the finite element method, assuming that the fluid is viscous and Newtonian. The flow is
represented over a domain with a single fluid, where one of the frontiers is a free surface. The computa-
tional scheme consists of three main stages: (i) the resolution of the Navier-Stokes equations for the fluid
state, with equal order elements for velocity and pressure, stabilized with the streamline-upwind/Petrov-
Galerkin and the pressure-stabilizing/Petrov-Galerkin strategies; (ii) the determination of the free surface
displacements, as a function of the velocities from the Navier-Stokes stage; (iii) the mesh update proce-
dure, which is performed by a pseudo-elastic problem solved with the free-surface nodal movements as
imposed displacements. The main attention here is focused on open domains, where artificial boundaries
are proposed in order to bound the numerical problem. The numerical examples consist of free-surface
flows with artificial contours, and the results are compared with reference solutions.
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1 INTRODUCTION

Free Surface (FS) flows are one of the most typical problems in fluid mechanics, as well as in
engineering applications, such as open channel flows (Güler et al., 1999), or sloshing in liquid
storage tanks (Papaspyrou et al., 2004; Hernández-Barrios et al., 2007). As a consequence, sev-
eral numerical methods were developed to predict the FS displacements, as well as the behavior
of the liquid beneath or around that particular interface.

Most popular numerical methods for solving FS flows can be grouped in two families:
interface-capturing methods and interface-tracking methods (Shyy et al., 1996). In general,
in interface-capturing methods the numerical domain involves the liquid and the gaseous phase,
in such a way that the interface is determined in different ways, e.g. with the zero value of
a particular function, as in Level Set methods (Osher and Sethian, 1988), or with a fraction of
fluid in each element crossed by the interface, as in Volume-of-Fluid methods (Hirt and Nichols,
1981). These methods allow the resolution of problems with interface breaking or folding, with
large displacements. The interface-tracking methods are proposed in such a way that the inter-
face, which constitutes a boundary of the numerical domain, is explicitly modeled with certain
entities: (i) particles, in the Marker-and-Cell approach (Oishi et al., 2008) or in particle meth-
ods (Idelsohn et al., 2004); (ii) nodes, or faces of elements, as in Arbitrary Lagrangian-Eulerian
(ALE) methods (Hughes et al., 1981; Huerta and Liu, 1988), where the domain consists of a
single fluid phase and its shape changes in time due to the FS displacements.

In the case of infinite, semi-infinite, or large domains, where the FS and the flow are crossed
by an artificial boundary which is needed to bound the domain for the numerical analysis, wave
reflection problems on artificial contours arise. Then, as a possible solution, Absorbing (ABC)
or Non-Reflective (NRBC) boundary conditions are usually proposed for FS flows (Clément,
1996), either in the inlet or the outlet of the truncated domain. For advective-diffusive problems
in general, ABC can be given in a non-local or a local approach. In the first case, the solutions
are usually more accurate; however, these are also more expensive (Storti et al., 2008; Paz et al.,
2011). The local ABC, more frequent for non-linear fluid dynamic problems, are in general less
expensive and easier to implement. Numerous ABC are associated to finite sacrificial regions,
where the equations involved are modified; this is the case of the so-called absorbing layers,
sponges or buffer zones, among others (Colonius, 2004). applications,

In previous works, the ALE approach was employed for solving transient FS flows in closed
domains for small and moderate FS displacements (Battaglia et al., 2005, 2006), where the
fluid is assumed Newtonian, viscous and incompressible, and is used here for considering open
boundary flows. As the domain of analysis is truncated, the waves reflected at the outlet arti-
ficial boundaries affect the solution. For recovering an acceptable solution of the problem, the
methodology is complemented with the formulation of an Absorbing Layer (AL) that avoids
the reflection of the waves on the artificial boundary for FS flows in open domains, considering
small amplitude waves. This strategy is based on the eigenvalue decomposition of the advective
fluxes, which is easily seen in the shallow-water equations, and is applied later to FS flows.

The programming involved in this work is part of the PETSc-FEM code (PETSc-FEM,
2011), which consists of a series of finite element libraries, developed for parallel comput-
ing by using the Message Passing Interface (MPI, 2008) and the Portable Extensible Toolkit for
Scientific Computation (PETSc) libraries (Balay et al., 2008).
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2 GOVERNING EQUATIONS

The present ALE computing procedure for FS flows consists of solving three alternated
instances in each time step, by the Finite Element Method (FEM): (i) the Navier-Stokes (NS)
equations, that provide the velocity and the pressure in the fluid domain; (ii) the displacement of
the nodes over the FS, determined as a function of the velocities obtained in the first stage; (iii)
the new domain shape, deformed as a consequence of the FS displacements, which is performed
here through a pseudo-elastic problem, avoiding the remeshing of the domain.

2.1 Navier-Stokes Equations

The NS equations for the ALE approach are (Donea and Huerta, 2003),

ρ (∂tu + c · ∇u− f)−∇ · σ = 0 ; (1)
∇ · u = 0 . (2)

over the fluid domain Ω in time t ∈ [0, T ], with flow velocity u, body force f , fluid density ρ,
and a given final time T . Furthermore, the fluid stress tensor, σ = σ(u, p), is decomposed into
an isotropic part, −pI, and a deviatoric one, T,

σ = −pI + T ; (3)

where p is the pressure, I is the identity tensor, and T is

T = 2µε ; (4)

i.e., it is linearly related to the strain rate ε = ε(u) = 1
2
(∇u +∇Tu), being µ the fluid dynamic

viscosity. The convective velocity c in Eq. 1 is defined as follows,

c := u− û; (5)

where the velocities u and û are the fluid and the mesh velocity, respectively.
The boundary conditions for the contours Γ of the fluid domain Ω are typically given by

v = vD on ΓD; (6)
σ · n = t on Γt; (7)

with Γ = ΓD∪Γt and ΓD∩Γt = ∅. Conditions over ΓD are given velocities. generally for solid
walls. The interfaces between fluids, constitute the contour Γt; in the case of a FS, the condition
consists of the equilibrium between the fluid and the gas stress tensors, σl and σg, respectively,
projected onto the FS normal n,

σl · n = σg · n on ΓFS. (8)

Since the viscosity and the density of the gas are negligible, then T · n = 0 and p = Patm

on ΓFS, where Patm is the pressure exerted by the gas over the liquid, considered here as the
atmospheric one. Then, the traction forces over the FS are t = −Patm n.

The Eqs. (1,2) are solved by FEM with the NS module of PETSc-FEM (2011), stabilized
with streamline upwind/Petrov-Galerkin (SUPG) (Brooks and Hughes, 1982) and pressure stabilizing/-
Petrov-Galerkin (PSPG) (Tezduyar et al., 1992), given the advective character of the equations
and the use of linear elements with equal velocity and pressure interpolations.
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2.2 Free Surface displacements

The interface displacements are measured over a fixed direction defined for each FS node,
represented by a unit vector ŝj such that the position xj of the node j in time t is (Battaglia
et al., 2006)

xj(t) = x0,j + ηj(t) ŝj ; (9)

where x0,j is the initial position of the node j, and ηj is the scalar coordinate over ŝj , see Fig. 1.
The directions given by ŝj are used only for the FS nodal displacements, usually adopted as
normal to the FS at rest, while in the rest of the domain the nodal displacements are determined
independently of the fluid dynamics.

s j
^

n(t)

x (t)j

x0j

�FS(t)

�
j
(t)

Figure 1: Free surface nodal displacements.

The scalar coordinate ηj is determined from the kinematic FS condition (Pedlosky, 2003),

u · n = ∂tη · n over ΓFS; (10)

where
η = η ŝ (11)

is the FS elevation along ŝ, and η is the scalar displacement, see Fig. 1. Replacing in Eq. (10),

∂tη =
u · n
ŝ · n

. (12)

As Eq. (12) is a transport equation, the numerical solution of the problem requires numerical
stabilization, particularly when the advective terms are dominant. In these cases, a typical
SUPG (Brooks and Hughes, 1982) stabilization can be applied in order to avoid numerical
instabilities, as in Güler et al. (1999) and Battaglia (2009), among others.

2.3 Mesh movement

The third stage in each time step of the FS flow calculation consists of determining the
displacements of the internal nodes. Once the new positions of the FS nodes are known, as
described in Sec. 2.2, the input data for the mesh updating procedure is complete.

There are different strategies to take into account the deformation of the domain as a conse-
quence of the FS displacements, considering that such interface constitutes one of the domain
contours. Typical methodologies are: (i) remeshing, that is expensive due to the generation of a
new mesh and the extrapolation of nodal values for the fluid problem; (ii) algebraic mesh update
without mesh topology changes, appropriate for structured meshes with small displacements,
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as in classic spines methods (Saito and Scriven, 1981); (iii) relocalization of internal nodes by
solving an auxiliar problem, e.g. a pseudo-elastic problem (Behr and Abraham, 2002; Rabier
and Medale, 2003), or minimizing the elemental distortion of the mesh (López et al., 2007).

Considering the alternative of solving an auxiliary problem, there are two methods available
in the PETSC-FEM libraries. For small FS displacements, the pseudo-elastic mesh update
is an appropriate choice. The methodology consists of solving an elastic problem over the
initial domain Ω, where only Dirichlet conditions are applied. In the case of moderate FS
displacement, it is convenient the application of the method proposed in López et al. (2007),
that minimizes the distortion of the elements for the deformed domain. Further details about
these methodologies can be found in Battaglia (2009); Battaglia et al. (2005).

3 ABSORBING BOUNDARY CONDITIONS

3.1 Absorbing boundary conditions for the shallow water equations

For solving FS flows using the ALE approach, the shallow water (SW) equations can be
taken as a reference.

The SW system is
∂tU + ∂xF = G; (13)

with U = [h, u]T , F(U) = [hu, 1
2
u2 + gh]T , G = [0,−g∂xH

T ], being h the water height, u the
mean horizontal velocity, F(U) the advective fluxes, g the gravity acceleration, H = H(x) the
height of the bottom, and G the source term given by the variations of the bottom slope.

As it is known, the Jacobian of the flux is

A =
∂F

∂U
=

[
u h
g u

]
; (14)

and the corresponding eigenvalue decomposition is

A = VΛΛΛV−1; (15)

where

ΛΛΛ =

[
u+ c 0

0 u− c

]
; V =

[
h h
c −c

]
; W = V−1 =

1

2

[
1/h 1/c
1/h −1/c

]
; (16)

and c =
√
gh.

When the flow is subcritic at the outlet, there is one incoming characteristic with velocity
u− c. By summing an AL term from to the SW equations, Eq. (13), with Uref = [h0, u0]

T , the
modified system is

∂tU + ∂xF + K H (U−Uref) = G. (17)

Then, with c0 =
√
gh0,

H = V

[
0 0
0 u0 − c0

]
W = (u0 − c0)

[
1 −h0/c0

−c0/h0 1

]
. (18)

By writing all the terms, the modified SW equations are as follows,

∂th+ ∂x(uh) +K h0 (u0 − c0)
{
h− h0

h0

− u− u0

u0

}
= 0; (19)

∂tu+ ∂x(1/2u2 + gh) +K c0 (u0 − c0)
{
h− h0

h0

− u− u0

u0

}
= 0. (20)
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Figure 2: Variation of the penalty parameter K along the absorbing layer of length La

.

3.2 Absorbing boundary conditions for FS solved by an ALE strategy

Taking as a reference the concepts from Sec. 3.1, the aim is implementing the absorbing
terms of the modified SW equations, Eqs. (19,20), in the ALE-NS equations used for solving
FS flows.

Regarding the reference parameters to be replaced, some analogies should be made. First,
the horizontal velocity u in SW is an average in height of the velocity; then, for the ALE-NS
approach, and considering that near the outlet the wave perturbations are negligible, u can be
replaced by the average horizontal flow velocity. Regarding u0, and assuming that the mean
conditions are steady, it can be adopted in an analogous fashion as u; furthermore, it is usually
an input data for the computation.

With respect to the mean height, the reference value h0 will be given, while h has to be
obtained from the NS model available information. On the one hand, considering the wave
expression from the potential theory,

φ (x, y, z) = Ã exp [i(kx− ω̃t)] cosh (kz)

cosh (kh0)
; (21)

being φ the velocity potential, k the wave number, Ã the wave amplitude and ω̃ the angular
frequency, with z = 0 at the bottom and h0 the mean height of the water. On the other hand, the
Bernoulli equation can provide a relation of the wave shape with the pressure,

p

ρ
+ gz + ∂tφ+

1

2
u2 =

patm

ρ
+ gz0 +

1

2
u2
∞ = constant. (22)

For small amplitude waves, the quadratic velocity terms can be neglected; re-arranging and
introducing ∂tφ from Eq. (21), and considering that for small amplitude waves the depth factor
is one,

p− patm

ρ
+ g(z − z0) = iω̃Ã exp [i(kx− ω̃t)]. (23)
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Over the FS is p = patm; then, the elevation η is

η = h− h0 =
iω̃Ã

g
exp [i(kx− ω̃t)]. (24)

Expressions from Eqs. (23) and (23) are similar, and allows establishing the following approxi-
mation,

p− patm

ρ g
+ (z − z0) ≈ η = h− h0. (25)

Finally, left hand side of Eq. (25) can be used for replacing h − h0 in the AL term for the NS
equations in FS fluid flows.

It is known that the transition from the regular equations, Eqs. (1,2), to the modified ones,
i.e. by introducing the term KH(U − Uref), should be smooth for avoiding wave reflections
in the transition section (Clément, 1996). Then, the penalization parameter is chosen for this
approach as a function of the position in x-coordinates, i.e. K = K(x), such that the AL is
divided in two regions, see Fig. 2. In the first region, γ, the penalty parameter grows from 0 to
the maximum value K following a cubic polinomial variation. In the other region, named δ, the
value of K is kept constant.

4 NUMERICAL EXAMPLE

4.1 Problem description

gv gv gv h
gx

B

A D

C

L

LaLg

Figure 3: Numerical example. Domain geometry.

The numerical example consists of a rectangle of length L = 20 m and water depth of
h = 1 m, sketched in Fig. 3, where waves are generated in the left part of the domain, over a
length of Lg = 1.9365 m. Slip boundary conditions are given for side AB of the domain, as
well as for the bottom AD, i.e. u · n̂ = 0, with n̂ the unit vector perpendicular to the walls. The
free surface is defined by the contour BC, with Patm = 0, and side CD constitutes the artificial
boundary, also with a slip condition applied, u · n̂ = 0.

The fluid is considered Newtonian and incompressible, with kinematic viscosity ν = 1 ×
10−5 m2s−1 and density ρ = 1 kg m−3. The gravity acceleration in the vertical direction is
gv = 1 m s−2, and for the wave generation region, the horizontal gravity component gx is given
by the following expression,

gx = A gv sin (ωt); (26)

where A = 0.02 is a given amplitude, ω = 2π is the imposed acceleration frequency and t
is the time. The wave propagation velocity is c =

√
gv h = 1 m s−1, and the wavelength is

λ = 3.873 m.
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4.2 Numerical solutions

The numerical simulation was performed over a FE regular mesh with quadrangular elements
of side length he = 0.10 m. The analysis was performed for 4000 time steps of ∆t = 0.025 s.
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Figure 4: Numerical example. Free surface elevation for the reference solution (RS), the solution in the short
domain with slip condition at the outlet (SC), and the last two solved with absorbing boundary conditions (ABC),
in time t = 20 s.

Three different solutions were proposed:

1. Reference Solution (RS) with an extended domain LT = 3L; the results are taken as a
reference due to the lack of reflected waves for the analyzed time and length ranges;

2. Slip Condition (SC) with the regular domain of length L applied over the right boundary
for the regular domain of length L, which shows spurious wave reflections;

3. Absorbing Boundary Condition (ABC) cases, where the proposed methodology was ap-
plied over the last part of the domain over a length La = 7.75 m, for two penalization
parameter K values, and a total domain length of L.

The Figs. 4 to 7 show the FS elevation in different times of the simulations, as a function
of the x-coordinates. The curves plotted represent the RS, the SC and two ABC cases with
transition length γ = λ = 3.873 m for the absorbing layer, total absorbing layer of La = 2λ =
7.75 m, and penalization values K = 1 and K = 10.

In Fig. 4, there are no significant differences among the four curves represented, due to that
the wave train arrives to the right boundary at that time, t = 20 s.

Figure 5, for t = 40 s, shows the decrease in the amplitude for the ABC solutions approxi-
mately after x ≈ 14 m, being the most importan the one with K = 10. On the one side, from
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Figure 5: Numerical example. Free surface elevation for the reference solution (RS), the solution in the short
domain with slip condition at the outlet (SC), and the last two solved with absorbing boundary conditions (ABC),
in time t = 40 s.

the same figure, the curves ABC and RS show small differences among them over most of the
domain. By the other side, the curve SC shows a behaviour different from the curve RS, due to
the wave reflections over the right boundary.

For time t = 60 s, the ABC solution with K = 10 keeps showing the decrease in the
amplitude, see Fig. 6, while the SC solution exhibits an important increment of the amplitude,
due to the waves reflected. The ABC solution with K = 1 shows also a small increment of the
amplitude with respect to RS.
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Figure 6: Numerical example. Free surface elevation for the reference solution (RS), the solution in the short
domain with slip condition at the outlet (SC), and the last two solved with absorbing boundary conditions (ABC),
in time t = 60 s.
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Figure 7: Numerical example. Free surface elevation for the reference solution (RS), the solution in the short
domain with slip condition at the outlet (SC), and the last two solved with absorbing boundary conditions (ABC),
in time t = 80 s.

Finally, the curves appreciated in Fig 7 for t = 80 s repeat somehow the picture described for
time t = 60 s: the non-uniform increment of the wave amplitude for SC, and a minor amplitude
increment for ABC with K = 1. The ABC curve with K = 10 fits better the RS curve, although
the amplitude of the former is a little lower than expected.

Other indicator to be analized is the maximum wave amplitude measured in each time step
along the analysis, that is represented in Fig. 8. On the one hand, the RS results show along
the analysis an almost uniform wave amplitude, with small quasi-periodic decayment due to the
viscous effects, at least over length L, taking into account that this solution was obtained for
an extended domain. On the other hand, the SC solution presents an increment and a strong
variation in the maximum wave amplitude for each time step, which is due to the superposition
of the right-travelling waves and the reflected ones. At last, the solution ABC shows a smooth
amplitude variation, very similar to the one registered in RS. Then, the use of ABCs over the
oulet region of length La = 2λ with a transition of length λ, as described in Sec. 3.2, provided
suitable results for the semi-infinite problem of travelling waves using a finite extension domain.
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Figure 8: Numerical example. Maximum amplitude in each time step for the reference solution (RS), the solution in
the short domain with slip condition at the outlet (SC), and the last one solved with absorbing boundary conditions
(ABC) with a penalization of K = 10.
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5 CONCLUSIONS

A linear absorbing boundary conditions suitable for free surface flows with open domains,
solved in an ALE framework, was introduced. The methodology is based on a proposal for the
resolution of the shallow water equations for infinite domains, described in Sec. 3.1, and is im-
plemented so far for flows without a mean flow current. The application example from Sec. 4.1
shows that the absorbing condition was able to reduce the incoming spurious reflected waves
over the artificial boundary of a two-dimensional problem, and the influence of the penalization
parameter K on the results. Further work will be focused on (i) establishing appropriate val-
ues for K and for the absorbing/transition lengths, called here La, and (ii) the generalization of
the method for two- and three-dimensional free surface flows with mean current and artificial
boundaries.
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