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Abstract. We present a methodology for the generation of synthesized turbulence at inflow boundaries
when simulating fluid flow problems using the Large Eddy Simulation (LES) method. A key point of the
proposed technique is that the statistical properties of turbulence are properly represented, keeping even
the anisotropy characteristics that the turbulent flow may possess. The computational cost is comparable
to the other approaches in which this method is based.

The strategy of imposing conditions on the inlet velocity field through turbulence synthesis was imple-
mented in the parallel multiphysics code called PETSc-FEM (http://www.cimec.org.ar/petscfem) primar-
ily targeted to bi-dimensional (2D) and three-dimensional (3D) finite elements computations on general
unstructured grids.

Several tests were conducted in order to validate and evaluate the method describing the flow con-
ditions that take place in “real-life” applications, such as inside a low speed wind tunnel test section at
high Reynolds number.
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1 INTRODUCTION

The generation of random flow field as an inflow boundary condition in large eddy simula-
tions (LES) is a topic that has been widely studied owing to two main reasons. Firstly, LES
has become an attractive approach due to the improvement of computational power. Secondly,
regarding that the turbulence behavior within the domain is strongly influenced by the inlet
conditions; and moreover, considering that even for stationary turbulent flows, if the inlet con-
ditions are not properly prescribed, LES method could demand a high execution time to obtain
a fully developed turbulence.

In view of this facts, several methods are available for the generation of inlet turbulence
conditions and they follow different approaches that can be classified into two general method-
ologies: precursor simulation methods and synthesis methods (Tabor and Baba-Ahmedi, 2010).
Both approaches presents advantages and drawbacks and can be implemented in many different
ways.

Precursor simulation methods involve the generation of turbulence by running a precompu-
tation of the flow in order to generate a ‘library’ or database, before or in concurrency with the
main LES calculation. Then, the generated fluctuations are introduced into the inlet boundary of
the computational domain. Examples of this kind of approach are the methods based on cyclic
domains (Kim et al., 1987; Lund et al., 1998) or those using a preprepared library. In particular,
Lund et al. (1998) applied their modified Spalart method, in a concurrent library generation
fashion, sampling the data as the simulation proceed.

All the above mentioned precursor methodologies can be integrated into the main domain,
sampling the turbulence in a downstream section of the inlet and then mapping it back into the
inlet. In summary, the precursor simulation methods set the conditions for the LES implemen-
tation from a ‘real’ simulation of turbulence, hence it is expected that the velocity fluctuation
field could possess many of the required statistical characteristics, including temporal and spa-
tial correlation and energy spectrum.

Another widely used methodology is the so called synthesized turbulence method. In this
method a pseudo-random coherent field of fluctuating velocities with spatial and time scales is
superimposed on a predefined mean flow. The random perturbations can be generated in several
different ways, such as the Fourier techniques (with its variants), the digital filter based method
and the proper orthogonal decomposition (POD) analysis (Tabor and Baba-Ahmedi, 2010).

An example of Fourier approaches is the random flow generation (RFG) technique proposed
by Smirnov et al. (2001) and developed on the basis of the work of Kraichnan (1970), that in-
volves scaling and orthogonal transformations applied to a continuous flow field. This transient
flow field is generated in a three-dimensional domain as a superposition of harmonic func-
tions with random coefficients. The method can generate an isotropic divergence-free fluctu-
ating velocity field satisfying the Gaussian’s spectral model as well as an inhomogeneous and
anisotropic turbulence flow, provided that an anisotropic velocity correlation tensor is given.
Smirnov et al. (2001) used their approach to set inlet boundary conditions to LES methods in
the simulation of turbulent fluctuations in a ship wake as well as initial conditions in the simula-
tion of turbulent flow around a ship-hull. Another application successfully tested by the authors
was the particle dynamics modeling (Smirnov et al., 2005). It must be noted that the RFG
method has been included in the computational fluid dynamics (CFD) software FLUENT and
was called Spectral Synthesizer (Fluent, 2007).

All the above characteristics were taken into account in the discretizing and synthesizing
random flow generation (DSRFG) method by Huang et al. (2010), with the advantage that the
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spatially correlated turbulent flow field can satisfy any arbitrary model spectrum. This prop-
erty is especially useful in computational wind engineering applications where the von Kármán
model is widely adopted as a target spectrum and the energy content of the inertial subrange
cannot be discarded. Another remarkable feature of this method is its highly parallelizable algo-
rithmic implementation since the generation of the fluctuating velocity series is independent for
each node in the inlet plane of the computational domain; to the point that the procedure can be
done in an embarrassing parallel way. As this methodology imply discretizing and synthesizing
procedures for the generation of the inlet turbulence the authors called this approach as dis-
cretizing and synthesizing random flow generation (DSRFG) method. The authors concluded
that the DSRFG method proved to be able to enhance the accuracy of the turbulent flow simula-
tion and wind-induced forces on the building because of a more realistic vortices production in
the inlet turbulence flow. Nevertheless, only a few comments about the statistical characteristics
of the synthesized turbulence and no discussion at all about the time correlation was made.

The aim of the present study is to propose a synthesized turbulence method that is essentially
a modification of the DSRFG method. We shall focused on the derivation of the mathematical
equations used to generate fluctuating velocity series and the statistical implications of its pa-
rameters.

2 A MODIFIED METHOD TO SYNTHESIZE INLET TURBULENCE

Huang et al. (2010) proposed a synthesis method called discretizing and synthesizing ran-
dom flow generation (DSRFG) for the implementation of inlet turbulence conditions to perform
LES computations. This method proved to have several advantages with respect to its prede-
cessor, the random flow generation (RFG) by Smirnov (Smirnov et al., 2001). Nevertheless,
some re-analysis on the turbulence generative equations performed by the authors of this work
demonstrated that some improvements can be made. According to this, a brief introduction
of the DSRFG is performed followed by the presentation of the modifications proposed. For
a more detailed description about the RFG and DSRFG methods, the reader is encouraged to
refer to the original articles.

Following the DSRFG method, a homogeneous and isotropic turbulent flow field u(x, t) can
be synthesized as follows:

ui(x, t) =
M∑

m=1

N∑
n=1

[pm,n
i cos(k̃m,n

j x̃j + ωm,nt)

+ qm,n
i sin(k̃m,n

j x̃j + ωm,nt)],

(1)

where

pm,n =
ζ × km,n

|ζ × km,n|

√
a

4E(km)

N
, (2)

qm,n =
ξ × km,n

|ξ × km,n|

√
(1− a)

4E(km)

N
, (3)

x̃ =
x

Ls

, (4)

k̃
m,n

=
km,n

k0

, (5)

with ωm,n ∈ N(0, 2πfm), fm = kmUavg, ζ and ξ are the vector form of ζn
i and ξn

i , which
are random numbers selected independently from N(0, 1). Ls in equation (4) is a scale factor

Mecánica Computacional Vol XXX, págs. 2275-2288 (2011) 2277

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



related to the length scale of turbulence and plays an important role in this formulation, as will
be further specified later.

The factors pm,n
i and qm,n

i defines the distribution of the three dimensional energy spectrum
E(km) in each of the spatial coordinate axes which in turn are functions of the space wave num-
ber km,n (|km,n| = km) and normal random vectors ζ and ξ. When dealing with homogeneous
and isotropic turbulence, the distribution of km,n is isotropic on the surface of a sphere and
consequently the energy is uniformly distributed in the space. In such conditions it is evident
that the same spectrum will be obtained in the three principal directions but in the case of in-
homogeneous and anisotropic turbulence the distribution of km,n must change according to the
conditions of inhomogeneity and anisotropy. To achieve this behavior, pm,n

i and qm,n
i must be

aligned with the energy spectrum along a principal direction and then the distribution of km,n

can be remapped on the surface of the sphere. To summarize, the method is implemented using
equation (1) and

pm,n
i = sign(rm,n

i )

√
4

N
Ei(km)

(rm,n
i )2

1 + (rm,n
i )2

, (6)

qm,n
i = sign(rm,n

i )

√
4

N
Ei(km)

1

1 + (rm,n
i )2

, (7)

km,n · pm,n = 0, (8)
km,n · qm,n = 0, (9)
|km,n| = km, (10)

where rm,n
i is a random number, independently selected from a three dimensional Normal dis-

tribution with µr = 0 and σr = 1.
Here, with the aim to expose the ideas behind the proposed modifications we introduce some

considerations about the statistical implications of the DSRFG method. The mean square value
of equation (1) in each direction i = 1, 2, 3 can be written as:

u2
rms,i(x, t) = lim

T→∞

1

T

∫ T

0

{ M∑
m=1

N∑
n=1

[pm,n
i cos(k̃m,n

j x̃j + ωm,nt)+

qm,n
i sin(k̃m,n

j x̃j + ωm,nt)]
}2

dt.

(11)

that is,

lim
T→∞

∫ T

0

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2
dt = lim

T→∞

∫ T

0

( M∑
m=1

N∑
n=1

αm,n

)2

dt +

+ lim
T→∞

∫ T

0

( M∑
m=1

N∑
n=1

ϕm,n

)2

dt,

(12)

where

αm,n = pm,n
i cos(k̃m,n

j x̃j + ωm,nt)

ϕm,n = qm,n
i sin(k̃m,n

j x̃j + ωm,nt),
(13)
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Furthermore, equation (12) can be expressed as

lim
T→∞

1

T

∫ T

0

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2
dt

= lim
T→∞

1

T

M∑
m=1

N∑
n=1

∫ T

0

α2
m,ndt+ lim

T→∞

1

T

M∑
m=1

N∑
n=1

∫ T

0

ϕ2
m,ndt,

(14)

Then, using the result of equation (14) and by virtue of equations (11) and (13):

u2
rms,i(x, t) = lim

T→∞

1

T

∫ T

0

[ M∑
m=1

N∑
n=1

(αm,n + ϕm,n)
]2
dt

=
1

2

M∑
m=1

N∑
n=1

[pm,n
i ]2 +

1

2

M∑
m=1

N∑
n=1

[qm,n
i ]2.

(15)

Summing the left and right hands for i = 1, 2, 3,

3∑
i=1

u2
rms,i(x, t) =

1

2

M∑
m=1

N∑
n=1

3∑
i=1

[pm,n
i ]2 +

1

2

M∑
m=1

N∑
n=1

3∑
i=1

[qm,n
i ]2, (16)

or in a more compact form (using Einstein summation convention):

uiui =
1

2

M∑
m=1

N∑
n=1

pm,n
i pm,n

i +
1

2

M∑
m=1

N∑
n=1

qm,n
i qm,n

i

= 2

∫ ∞
0

E(k)dk ≈ 2
M∑

m=1

E(km)∆km,

(17)

given that the integral of the energy spectrum function E(k) is equal to the energy per unit mass
of fluid. According to the definition of pm,n

i and qm,n
i (equations (6) and (7)) it can be seen that

uiui =
1

2

M∑
m=1

N∑
n=1

3∑
i=1

[ 4

N
Ei(km)

(rm,n
i )2

1 + (rm,n
i )2

+
4

N
Ei(km)

1

1 + (rm,n
i )2

]
=

2

N

M∑
m=1

N∑
n=1

E(km) = 2
M∑

m=1

E(km),

(18)

thus, as E(km) is a positive quantity for any k, the kinetic energy is represented by a divergent
series. This causes a strong dependency of the turbulence intensity of the generated fluctuating
velocities with the number of points M considered to discretize the model spectrum.

Mecánica Computacional Vol XXX, págs. 2275-2288 (2011) 2279

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2.1 Time and spatial correlation

The autocorrelation function can be computed as

ui(x, t)ui(x, t+ τ) = lim
T→∞

1

T

∫ T

0

ui(x, t)ui(x, t+ τ)dt

= lim
T→∞

1

T

∫ T

0

M∑
m=1

N∑
n=1

[
pm,n

i cos(k̃m,n
j x̃j + ωm,nt)+

+ qm,n
i sin(k̃m,n

j x̃j + ωm,nt)
] M∑

m=1

N∑
n=1

[
pm,n

i cos(k̃m,n
j x̃j+

+ ωm,n(t+ τ)) + qm,n
i sin(k̃m,n

j x̃j + ωm,n(t+ τ))
]
dt,

(19)

then, after some mathematical manipulation using equations (6) and (7),

ui(x, t)ui(x, t+ τ) =
M∑

m=1

N∑
n=1

2

N
Ei(km) cos(τωm,n). (20)

Note that, if τ = 0 then the equation (20) gives back the equation (15).
Likewise, an expression for the spatial correlation can be obtained in an analogous way:

ui(x, t)ui(x
′, t) =

M∑
m=1

N∑
n=1

2

N
Ei(km) cos

[
k̃m,n

j

(x′j − xj)

Ls

]
(21)

Comparing equations (20) and (21), it can be seen that while in the last equation a scaling
parameter Ls (that provides a way to obtain the required spatial correlation in the generated
flow field) exists, an analogous parameter is not present in the first equation.

3 PROPOSED METHODOLOGY

In the light of the analysis above, we propose some modifications to the equations of the
DSRFG method. Firstly, the Fourier series in equation (1) will be written as:

ui(x, t) =
M∑

m=1

N∑
n=1

[
pm,n

i cos
(
k̃m,n

j x̃j + ωm,n
t

τ0

)
+ qm,n

i sin
(
k̃m,n

j x̃j + ωm,n
t

τ0

)]
,

(22)

where τ0 is a parameter introduced to allow some “control” over the time correlation.
Secondly, the parameters pm,n

i and qm,n
i have to be in accordance with equation (17). To

decoupling this equation we propose the following relationship:

3∑
i=1

u2
rms,i = 2

M∑
m=1

E(km)∆km = 2
M∑

m=1

3∑
i=1

ciEi(km)∆km, (23)

where Ei(km) is the energy spectrum along direction i and ci is a function value that depends
on the form of the spectrum in order to satisfy the condition

u2
rms,i = 2ci

∫ ∞
0

Ei(k)dk, (24)
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i.e., in each direction the variance of the simulated velocity series must satisfy the equation (24).
Then,

3∑
i=1

u2
rms,i = 2

3∑
i=1

∫ ∞
0

ciEi(k)∆k = 2

∫ ∞
0

E(k)∆k. (25)

Thus, for each direction i we obtain the modified values of equations (6) and (7):

pm,n
i = sign(rm,n

i )

√
4ci
N
Ei(km)∆km

(rm,n
i )2

1 + (rm,n
i )2

, (26)

qm,n
i = sign(rm,n

i )

√
4ci
N
Ei(km)∆km

1

1 + (rm,n
i )2

. (27)

Now, equation (20) can be written as

ui(x, t)ui(x, t+ τ) =
2ci
N

M∑
m=1

N∑
n=1

Ei(km)∆km cos
( τ
τ0
ωm,n

)
, (28)

while equation (21) changes to

ui(x, t)ui(x
′, t) =

2ci
N

M∑
m=1

N∑
n=1

Ei(km)∆km cos
[
k̃m,n

j

(x′j − xj)

Ls

]
. (29)

The spatial scaling parameter Ls is obtained by

Ls = θ1

√
L2

u + L2
v + L2

w, (30)

and the time scaling parameter τ0 can be derived using the Taylor’s hypothesis, so that

τ0 = θ2
Ls

Uavg

. (31)

θ1 and θ2 are scalars to be defined according to the problem at hands. Since this new method-
ology is based on the DSRFG approach, we called it as modified discretizing and synthesizing
random flow generation (MDSRFG).

4 VALIDATION OF THE PROCEDURE

A test case, considering inhomogeneous anisotropic turbulent conditions of the flow field,
was performed. This example was proposed Huang et al. (2010). The spectra of the three
principal velocity components are described by the von Kármán models, i.e.,

Su(f) =
4(IuUavg)2(Lu/Uavg)

[1 + 70.8(fLu/Uavg)2]5/6
, (32)

Sv(f) =
4(IvUavg)2(Lv/Uavg)(1 + 188.4(2fLv/Uavg)2)

[1 + 70.8(2fLv/Uavg)2]11/6
, (33)

Sw(f) =
4(IwUavg)2(Lw/Uavg)(1 + 188.4(2fLw/Uavg)2)

[1 + 70.8(2fLw/Uavg)2]11/6
. (34)
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The turbulence intensity values are Iu = 8%, Iv = 16% and Iw = 24%, while the turbulence
integral length scales are Lu = 0.6 m, Lv = 0.3 m and Lw = 0.1 m. To apply the procedure we
must first obtain the ci values of equations (26) and (27) using the relationship (24), that is

u2
rms,1 = (IuUavg)2 = 2c1

∫ ∞
0

Su(k)dk

≈ 2c1 0.2377 β
(1

3
,
1

2

)
I2
uUavg ⇒ c1 =

Uavg

2
,

(35)

where β(, ) is the Beta function (Abramowitz and I., 1970). In the same way, c2 and c3 are such
that,

u2
rms,2 = (IvUavg)2 = 2c2

∫ ∞
0

Sv(k)dk

≈ 2c2

[
0.1189 β

(1

2
,
4

3

)
+ 0.3163 β

(1

3
,
3

2

)]
I2
vUavg

⇒ c2 = c3 ≈
Uavg

2
.

(36)

Figure 1: Comparison of the spectra simulated by the modified DSRFG with the target spectra.

As can be observed in figure (1) the simulated spectra fit well with the target spectra in the
three principal directions; indicating that the anisotropy of the spectra is well represented by the
proposed method. The rms value of each simulated fluctuating velocity component (obtained
from a sample of 10 velocity simulations) is also compared to corresponding target values. As
shown in table (1) the fluctuating velocities simulated by the MDSRFG approach is in better
agreement with the target values obtained using the scaling and orthogonal transformation or
the aligning and remapping techniques (Huang et al., 2010).
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σu σv σw

Scaling and transformation 0.9968 2.44 2.9956
Aligning and remapping 0.95 1.9987 3.08
MDSRFG approach 1.0527 2.1850 3.1123
target 1.12 2.24 3.36

Table 1: Comparison of the rms values [m/s] of the simulated fluctuating velocities by different techniques.

When modeling the spatial correlation between same fluctuating velocity components in two
different points i and j, a spatial correlation matrix needs to be computed. This target function
is built for the u-component, for instance, from the spectra and coherence functions between
nodes i and j as

Sci,j =
M∑

m=1

√
Sui(fm)Suj(fm) γy

u(fm), (37)

where

γy
u(fm) = exp

(−Cy
u|yi − yj|fm

Uavg

)
, (38)

is the coherence function of the u fluctuating velocity component in the y−direction and Cy
u is

the decay coefficient (usually taken in the range 10-12).

Figure 2: Non-dimensional spatial correlation of the u fluctuating velocity component.

In figures (2), (3) and (4) the spatial correlation for the u, v and w-components of the ve-
locity fluctuations obtained by the expression (29) is compared to correlations computed using
equation (37) for different values of Ls.

Time correlation is also computed for each velocity component according to equation (28)
and compared to the expression

R(mδτ) =
1

M −m

M−m∑
j=0

ui(j δτ) ui[(j +m) δτ ], (39)

here, m is an integer such that τm = mδτ , with 0 ≤ m < M and M is the length of the vector
τm. Comparing the results shown in figures (5), (6) and (7) it can be seen that the temporal
correlations of the each component are well represented by the simulated series.
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Figure 3: Non-dimensional spatial correlation of the v fluctuating velocity component.

Figure 4: Non-dimensional spatial correlation of the w fluctuating velocity component.

Figure 5: Non-dimensional time correlation of the u fluctuating velocity component. (a) equation (28), (b) equa-
tion (39).
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Figure 6: Non-dimensional time correlation of the v fluctuating velocity component. (a) equation (28), (b) equa-
tion (39).

Figure 7: Non-dimensional time correlation of the w fluctuating velocity component. (a) equation (28), (b) equa-
tion (39).

Some remarks

As it is clearly depicted by equation (22) the computational cost is identical as in the DSRFG
method. Thus, for each node at the inlet section the cost at each time step is O(MN); where M
is the number of points in which the target spectrum is discretized andN the number of samples
for each wave number km. A remarkable feature of the algorithm is evidenced by noting that
the computation of the fluctuating velocity components in equation (22) is independent of LES
process, i.e., the turbulence synthesis for some number of time steps (or the entire simulation
process) can be done prior to the LES computations.

The anisotropic turbulence conditions at the inlet plane can be obtained by performing a
previous RANS simulation or by experimental measurements. The two input parameters, Ls

and τ0, must be carefully selected (at least in a few inlet nodes) in order reproduce the statistical
properties of the flow under consideration.

As a final observation we notice that the proposed approach, as any synthesized turbulence
generation method, must be used as a turbulence initializer, i.e., a perturbation generator that
“triggers” the transition to a fully developed turbulence state by LES (Davidson, 2007). In this
regard, it must be said that independently of the selected Ls value, the resolved scales are in
concordance with the mesh (filter) size which is inherent to the LES conception.
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5 APPLICATION OF THE MODIFIED DSRFG METHOD IN LES

It is well known that the generation of developed turbulence by LES at high Reynolds number
flows is computationally expensive and time consuming. A particular field where those two flow
conditions meet is in the study of computational aerodynamics of buildings, bridges, airplanes
and all kind of road vehicles. In order to avoid the drawbacks mentioned above, the MDSRFG
method can be used to setting up the turbulent inflow conditions in LES computations.

As an example of application, a computational simulation of the flow conditions in the
UNNE Wind Tunnel test section was performed. This wind tunnel is an open-circuit, low
velocity atmospheric boundary layer wind tunnel. The flow characteristics of the test section,
defining the input data for the MDSRFG method, were taken from the work of Wittwer and
Möller (2000).

10 2 3 4
-2

v
 [

m
/s

e
c
]

time [sec]

-1

0

1

2

10 2 3 4
-2

u
 [

m
/s

e
c
]

time [sec]

-1

0

1

2

10 2 3 4
-2

w
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m
/s

e
c
]

time [sec]

-1

0

1

2

u     = 0.222 m/sec

v     = 0.441 m/sec

rms

rms

rmsw     = 0.627 m/sec

Figure 8: Inlet fluctuating velocities simulated by the MDSFRG method.

Other parameters, like turbulence intensities Iv = 0.02, Iw = 0.03, integral length scales
Lu = 0.3 m, Lv = 0.1 m, Lw = 0.05 m and the mean velocity magnitude of 23.6 m/s were also
adopted. The input parameters for the MDSRFG method presented in equations (30) and (31)
were computed with θ1 = 45 and θ2 = 0.5π. The domain was a rectangular box with a cross
section of 2.40 m width (x-direction) and a height of 1.80 m (z-direction) representing the wind
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tunnel test section. Non-slip boundary condition is prescribed at ground, roof and tunnel walls,
while null pressure is imposed at outlet wall.

The computational simulations were performed using the PETSc-FEM code developed at the
CIMEC (http://www.cimec.org.ar/petscfem). PETSc-FEM is a general purpose, parallel, multi-
physics finite element program which has been used in many applications including analysis of
petroleum refinery processes, aerospace industry, environmental impact assessment and siderur-
gical processes. PETSc-FEM uses the Finite Element Method (FEM) to solve the momentum
and continuity equations for the velocity and pressure at each node and at each time step on
unstructured meshes. Streamline-Upwind/Petrov-Galerkin (SUPG) (Brooks and Hughes, 1982)
and the Pressure-Stabilizing/Petrov-Galerkin (PSPG) (Tezduyar, 1992) discretization scheme
of the incompressible Navier-Stokes equations were implemented. The problem was solved
using a Beowulf kind of cluster architecture with disk-less dual quad-core Intel Xeon E5420
(1333Mhz Front Side Bus, FSB) processors (2.5 GHz CPU with 8 Gb RAM per node) inter-
connected via a Gigabit Ethernet network.

Figure (8) shows in the right side the time history of the simulated fluctuating velocity com-
ponents in a central point of the inlet section and the instantaneous fluctuation contours on the
left side. The velocities maintains the spatial anisotropy among the three directions, as can be
observed from the statistical values.

6 CONCLUSIONS

In this paper, a general method for the generation of inflow synthesized turbulence was pre-
sented and evaluated. The method is based on a previously turbulence generator known as the
discretizing and synthesizing random flow generation (DSRFG) method, preserving its main
characteristics and advantages. The key point of the modified DSRFG (MDSRFG) method pre-
sented in this study is that it preserves the statistical quantities that would be prescribed at the
inlet of the domain independently of the number of samples M (number of points in the spec-
trum) considering in the computation of the factors pm,n

i and qm,n
i of equation (22) by virtue of

the proposed equations (26) and (27).
As each fluctuating velocity component is generated in each node independently of the oth-

ers, the method is highly parallelizable. Furthermore, the generation of each nodal fluctuating
velocity component can be done previously to the computation by LES, calling in each time
step the corresponding nodal value.

It is worthy noting that the grid resolution in this transition region needs to be an adequate one
in order to ensure that the high frequency turbulence statistics imposed in the inlet conditions
will not be filtered by the size of the cells.
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