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Abstract. The hearth life is the key factor for the campaign length of a blast furnace and, in
order to understand the wear mechanisms, it’s useful to be able to estimate the location of the
1150◦C isotherm because it represents a potential limit on the penetration of the liquid iron into
the hearth wall.
The location of the 1150◦C isotherm can be estimated solving a nonlinear inverse heat trans-
fer problem, based on the thermocouples located inside the hearth. As the domain of the heat
transfer problem is unknown, a set of parameters is defined in order to describe it. These pa-
rameters are the inverse geometry heat transfer problem unknowns. In previous publications
(M. Gonzalez et al., 4th IAS Ironmaking Conference, Nov. 2003, 381-386) the authors have
presented this inverse geometry model applied to a unidimensional geometry.
In this work we reformulate the model for a bidimensional geometry, where the iteratively reg-
ularized Gauss-Newton method is used to solve the nonlinear inverse problem, Radial Basis
Functions (RBF) are used to describe the geometry from a set of parameters, and remeshing
techniques are used to discretize the domain. We describe the developed bidimensional inverse
model and validate the solution against simulated measurements with different levels of noise.
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1 INTRODUCTION

One of the most critical parts of the blast furnace is its hearth, which cannot be repaired or
relined without interrupting its production for a long. Therefore, the blast furnace campaign is
mainly limited by the hearth refractory wear produced by thermo-chemical solution and thermo-
mechanical damage1 . Unfortunately, it is not possible to do direct measurements of the remain-
ing lining thickness, so the thermal state of the blast furnace hearth is valuable information to
estimate the erosion profile. In particular, it is useful to be able to estimate the location of the
1150◦C isotherm because it represents a potential limit on the penetration of liquid iron into the
hearth wall porosity (1150◦C is the eutectic temperature of carbon saturated iron1).

The location of the 1150◦C isotherm can be estimated solving a nonlinear inverse heat trans-
fer problem based on the thermocouples located inside the hearth2–5 . The purpose of inverse
heat transfer problems is to recover causal characteristics from information about the tempera-
ture field, while the purpose of direct problems is to specify the cause and effect relationships.
Causal characteristics of heat transfer are boundary conditions and their parameters, initial con-
ditions, thermophysical properties, as well as geometric characteristics of the studied object.
Our general problem is an inverse geometry heat transfer problem where the observations are
temperature measurements at points inside the object and the unknown is the geometry of the
volume where the problem is defined. In Section 2, we formally define the general problem and
describe the finite element model developed for the direct heat transfer problem.

It is well known that inverse problems are typically ill-posed in the sense that small obser-
vation perturbations can lead to big errors in the solution, so regularization methods have to
be applied in order to guarantee a stable solution. Several regularization methods have been
used in the literature to handle nonlinear ill-posed problems6,7 . Iterative regularization appears
to be one of the most efficient approaches for the construction of stable algorithms for solving
nonlinear inverse problems7 and, among them, we use the iteratively regularized Gauss-Newton
method8–11 . In Section 3, we formulate the inverse geometry problem, considering the case of
a linear combination of several regularization matrices.

The geometry is described by Radial Basis Functions (RBF) from a set of interpolation
points, and these interpolation points are defined by a set of parameters which are actually the
inverse geometry problem unknowns. We use Radial Basis Functions because they impose few
restrictions on the geometry of the interpolation points which do not need to lie on a regular
grid and provide a smooth interpolation12–15 . In Section 4, we present the parametrization of
the geometry and introduce Radial Basis Functions.

Finally, in Section 5, we develop the industrial application of estimating the location of
the 1150◦C isotherm in a blast furnace hearth. We also validate the solution of the algorithm
against simulated measurements with different levels of noise and study its behavior on different
regularization matrices.
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2 DEFINITION OF THE GENERAL PROBLEM

Consider a general steady-state heat transfer problem defined on an arbitrary volume (Ω) which
has a fixed boundary (∂Ωn) where natural boundary conditions are applied, and an unknown
boundary (∂ΩT ) where a known temperature is applied. As the volume Ω has different materials
located on fixed positions, it will contain only some of them depending on the location of the
boundary ∂ΩT (Fig. 1).
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Figure 1: Schematic of the general problem.

Our aim is to determine the location of the boundary ∂ΩT , and so the geometry of the volume
Ω, matching a set of temperatures measured at certain points located inside the volume. There-
fore, our general problem is an inverse geometry heat transfer problem where the observations
are temperature measurements at points inside the volume and the unknown is the geometry of
the volume where the problem is defined.

2.1 The direct heat transfer problem

The solution of any inverse problem requires the solution of a direct problem. Our direct prob-
lem is a steady-state heat transfer problem governed by

∇ · (k∇T ) = 0 ∀x ∈ Ω, (1)

where k is the temperature-dependant thermal conductivity, Ω ⊂ Rndim is a bounded domain
with 1 ≤ ndim ≤ 3, and ∂Ω is the smooth boundary of Ω.

Eq. (1) is subjected to the following boundary conditions on ∂ΩT , ∂Ωq and ∂Ωc, complemen-
tary parts of ∂Ω ( ∂Ωn = ∂Ωq ∪∂Ωc, ∂Ωq ∩∂Ωc = ∅ and ∂Ω = ∂ΩT ∪∂Ωn, ∂ΩT ∩∂Ωn = ∅):

• Dirichlet boundary condition on ∂ΩT :

T = Tw ∀x ∈ ∂ΩT , (2)

where Tw is a given imposed temperature.
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• Neumann boundary condition on ∂Ωq:

−k∇T · n = qw ∀x ∈ ∂Ωq , (3)

where qw is a given normal heat flux and n is the outward normal to the surface ∂Ω.

• Robin boundary condition on ∂Ωc:

−k∇T · n = h (T − T∞) ∀x ∈ ∂Ωc , (4)

where h is the convective heat transfer coefficient and T∞ is the ambient temperature.

The direct problem is solved using the Galerkin finite element method16,17 with the following
resulting system of equations ¡

Kk +Kc
¢
TFEM − F = 0, (5)

where TFEM is the vector of nodal temperatures, Kk is the conductivity matrix, Kc is the
thermal convection matrix and F is the thermal load vector, given byeT = NTFEM , (6)

Kk =

Z
Ω

BT k B dV , (7)

Kc =

Z
∂Ωc

hNT N dS , (8)

F =

Z
∂Ωc

hNT T∞ dS −
Z
∂Ωq

NT qw dS , (9)

where eT is the approximated temperature field, N is the finite element interpolation matrix,

and B is the temperature-gradient interpolation matrix whose components are Bij =
∂Nj

∂xi
.

The equations are nonlinear because the thermal conductivity is temperature-dependant;
therefore, it is necessary to solve them using an iterative technique.

3 FORMULATION OF THE INVERSE GEOMETRY PROBLEM

Since we are interested in practical applications, we have to consider our problem in finite-
dimensional subspaces. This means that not only the number of measurements is finite, but also
the location of the unknown boundary ∂ΩT is parametrized in order to obtain the approximate
solution numerically.

Therefore, we parametrize the location of the unknown boundary ∂ΩT by a set of np param-
eters p = (p1, . . . , pnp), and we pose the inverse problem as finding the geometry parameters
p∗ such that

p∗ = arg min
p∈Rnp

F(p) (10)
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where F(p) is a function defined by the least-square error between the calculated and measured
temperatures, given by

F(p) = 1

2

°° T(p) − TOBS
°°2 = 1

2

nobsX
i=1

h eT(xOBSi ,p) − TOBS
i

i2
, (11)

where TOBS
i is the temperature measured at point xOBSi , eT(xOBSi ,p) is the temperature calcu-

lated by the finite element model using the geometry parameters p, and nobs is the number of
observations.

It is well known that inverse problems are typically ill-posed in the sense that small obser-
vation perturbations can lead to big errors in the solution, so regularization methods have to be
applied in order to guarantee a stable solution. Several regularization methods have been used in
the literature to handle nonlinear ill-posed problems6,7 and, among them, iterative regularization
appears to be one of the most efficient approaches for the construction of stable algorithms7 .

3.1 Iteratively regularized Gauss-Newton method

We use a discrete scheme of the interatively regularized Gauss-Newton method8–11 , whose
iterative solution is defined by:

GNpIter+1 = pIter +
h
DTT

(pIter) DT(pIter) + αIter L
T L
i−1

·
h
DTT

(pIter) ∆T
OBS
(pIter) + αIter L

T L
¡
p4 − pIter¢i (12)

where Iter denotes the iteration number;DT(p) is the sensitivity matrix; L is some regulariza-
tion matrix; ∆TOBS

(p) is a vector whose components are
h
TOBS
i − eT(xOBSi , p)

i
with i = 1, nobs;

p4 is a priori suitable approximation of the unknown set of parameters; and αIter > 0 is the
regularization parameter.

The solution calculated with the interatively regularized Gauss-Newton method, GNpIter+1,
is used to update pIter as follows

pIter+1 = pIter + βIter
¡
GNpIter+1 − pIter¢ (13)

where βIter > 0 is a step length such that
F∗(pIter+1) < F∗(pIter) , (14)

with
F∗(p) =

1

2

°° T(p) − TOBS
°°2 + 1

2
α
°° L ¡p− p4¢°°2 . (15)

The selection of a step length makes sense due to the highly non-linear nature of the function
F∗(p), in which case βIter is typically less than 1.00.

The iterative process is repeated until the following convergence criterion is satisfied°°T(pIter+1) −T(pIter)°°°°T(pIter)°° ≤ TOL · βIter. (16)
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3.1.1 Evaluation of the sensitivity matrix

The components of the sensitivity matrix are the partial derivatives of the temperature with re-
spect to the set of geometry parameters. We evaluate them using a “discretize-then-differenciate”
approach18 , which means that we first discretize the temperature field and then we differentiate
it. So, we apply a finite difference approximation of each partial derivative

∂T

∂pj

¯̄̄̄
(x,p)

≈
eT(x,{p1,...,pj+∆pj ,...,pnp}) − eT(x,{p1,...,pj ,...,pnp})

∆pj
. (17)

Therefore, the sensitivity matrix can be written as

DT(p)=


N(xOBS1 )

∂T

∂p1

¯̄̄̄FEM
(p)

· · · N(xOBS1 )

∂T

∂pnp

¯̄̄̄FEM
(p)

... . . . ...

N(xOBSnobs
)

∂T

∂p1

¯̄̄̄FEM
(p)

· · · N(xOBSnobs
)

∂T

∂pnp

¯̄̄̄FEM
(p)

 ∈ R
nobs×np , (18)

where
∂T

∂pj

¯̄̄̄FEM
(p)

are vectors of nodal sensitivities with respect to the parameter pj , such that

∂T

∂pj

¯̄̄̄
(x,p)

≈ N(x)
∂T

∂pj

¯̄̄̄FEM
(p)

. (19)

The components of these nodal sensitivity vectors can be easily obtained from definition (17)
because the finite element discretization support is the same as the one we use for the tempera-
ture field.

3.1.2 Evaluation of the regularization matrix

The regularization matrix L is the discrete form of some differential operator11,19 . We choose a
combination of the identity matrix I and discrete approximations of derivative operators given
by

LT L =
2X

k=0

wk L
T
k Lk , (20)
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where

L0 = I ∈ Rnp×np (21)

L1 =

 1 −1
. . . . . .

1 −1

 ∈ R(np−1)×np (22)

L2 =

 1 2 −1
. . . . . . . . .

1 2 −1

 ∈ R(np−2)×np (23)

and wk ≥ 0 are weighting factors such that
2X

k=0

wk = 1. In Section 5, we study the solution

behavior on different regularization matrices.

3.1.3 Determination of the regularization parameter

The regularization parameter αIter > 0 is a priori chosen such that

1 ≥ αIter+1

αIter
≥ r, lim

Iter→∞
αIter = 0 (24)

with r < 1. This monotically decreasing sequence has as its first term the optimal regularization
parameter for the Tikhonov regularization method6

α0 ∼ δ
2

2ν+1 , ν ∈ [1/2; 1] (25)

where δ is called the noise level.

3.2 The algorithm

In Fig.2 we show the iterative algorithm of the nonlinear inverse problem. There are three
different steps involved in the iterative process:

• the solution of the direct problem,

• the evaluation of the sensitivity matrix, which requires to solve the direct problem several
times, and

• the determination of the iteratively regularized Gauss-Newton method solution, which
also requires to solve the direct problem several times when the optimal step length is
determined.
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Direct problem
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Iter 0
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T
p1 pIter
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T T pIter
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Iter LT L p pIter

pIter 1 pIter Iter GNpIter 1 pIter

Figure 2: Iterative algorithm of the nonlinear inverse problem.

4 PARAMETRIZATION OF THE GEOMETRY

As stated in Section 3, the location of the unknown boundary ∂ΩT is parametrized by a set of
np parameters p = (p1, . . . , pnp). Each parameter pi has a base point with coordinates BPpi ,
and a direction vectorDVpi , such that a point on the unknown boundary is defined by

SPpi = BPpi + pi DVpi . (26)

As an example, we show in Fig.3 a set of base points and direction vectors which are used to
describe the location of the unknown boundary ∂ΩT , but clearly their location and orientation
depend on the geometry of each problem.

Then, given a set of surface points, the location of the unknown boundary ∂ΩT is approxi-
mated with a smooth function which interpolates them. For this purpose we use Radial Basis
Functions because they impose few restrictions on the geometry of the interpolation points
which do not need to lie on a regular grid, and provide a smooth interpolation12–15 . As a result,
the domain where the direct heat transfer problem is stated is perfectly defined.

Finally, since the direct problem must be solved several times for each inverse problem itera-
tion, changing the geometry parameters and so the domain to be discretized, we use remeshing
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Figure 3: Schematic of the geometry parametrization.

techniques in order to solve it, for each given geometry.

4.1 Radial Basis Functions

The problem consists in finding an interpolation function Φ (x) given a set of nsp points on the
unknown boundary ∂ΩT (where Φ = 0) and a set of nip points inside the volume Ω (where
Φ < 0). For this purpose, we choose a Radial Basis Function defined by

Φ(x) = q (x) +
nX

i = 1

αi R(kx−xik) . (27)

where n = nsp + nip; q(x) is a low degree polynomial; αi are real numbers; and R is the basis
function12–15 .

In the specific case of thin plate spline functions on R2, R(r) and q(x) are defined as

R(r) = r2 log(r) (28)

q(x) = q(x1,x2) = d0 + d1 x1 + d2 x2 (29)
and, as Φ(x) is chosen from the Beppo-Levi space of distributions on R2 with square integrable
second derivative, some conditions must be imposed on αi

nX
i = 1

αi =
nX

i = 1

αi x
i
1 =

nX
i = 1

αi x
i
2 = 0 . (30)

Therefore, the coefficients αi and dj are obtained from the following system of equations·
A Q
QT 0

¸µ
α
d

¶
=

µ
Φ
0

¶
(31)
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where

Aij =
°°xi − xj°°2 log(

°°xi − xj°°) , A ∈ Rn×n; (32)

Q =

 1 x11 x12
... ... ...
1 xn1 xn2

 ∈ Rn×3; (33)

αT =
¡
α1 · · · αn

¢ ∈ Rn; (34)
dT =

¡
d0 d1 d2

¢ ∈ R3; (35)
ΦT =

¡
Φ(x1) · · · Φ(xn)

¢ ∈ Rn . (36)

Note that Φ(xi) will be equal to zero except for the nip interior points.

5 INDUSTRIAL APPLICATION

In this section, we develop the industrial application of estimating the location of the 1150◦C
isotherm in a blast furnace hearth.

Regarding the direct problem, we model a vertical section of the lining (Fig. 4) with ax-
isymmetric finite elements because the geometry of the blast furnace hearth is rotationally sym-
metric about an axis and is subjected to axisymmetric cooling conditions (Table 1). The hearth
is built with refractories with different temperature-dependant thermal properties (Table 2), so
we consider their dependence on the direct problem resolution, and their fixed location in the
remeshing algorithm. The remeshing algorithm developed for this purpose is not discussed in
this paper.

Regarding the inverse geometry problem, the number of observations (nobs) is 28 because
there are 28 thermocouples located inside the hearth (Fig. 4), and the number of parameters
used to parametrize the location of the unknown boundary (np) is chosen to be 7. We show in
Fig. 5 the set of base points and direction vectors which are used to describe the location of the
1150◦C isotherm, where the set of surface points is interpolated using thin plate spline radial
basis functions (see Section 4.1).

In order to validate the solution of the algorithm against measurement uncertainties, we
simulate measurements with different levels of noise following these steps:

1. We define a “real geometry” described by a set of geometry parameters pReal.

2. We calculate the observations that correspond to the “real geometry”, TReal, assuming
error free measurements.

3. We simulate measurements with different levels of noise (noise = 5%, 10%, 15%) as
follows

TOBS
i = TReal

i (1+ ξ · noise) (37)

where ξ ∈ [−1; +1] is a uniformly distributed random disturbance.
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Cooling zone Convective cooling parameters
Lower hearth spray hwater= 450W/m2◦C Twater= 38

◦C

Bottom cooling hair=
³
120− 90 r

rmax

´
W/m2◦C Tair=

³
26 + 22 r

rmax

´
◦C

Table 1: Cooling conditions.

Refractories Thermal Conductivity
SiC Castable 20.00 W/m K
Mortar 1.00 W/m K
Graphite EGF 130.00 W/m K
Semi Graphite BC-30 31.67 W/m K

Carbon BC-7S

T = 873 K 14.12 W/m K
T = 1073 K 14.99 W/m K
T = 1273 K 15.63 W/m K
T = 1473 K 16.09 W/m K

SiC / Alumnina 7.20 W/m K

High Fired Super Duty
T = 673 K 1.200 W/m K
T = 973 K 1.300 W/m K
T = 1373 K 1.500 W/m K

EG Ramming

T = 293 K 25.00 W/m K
T = 473 K 20.00 W/m K
T = 873 K 11.00 W/m K
T = 1273 K 8.00 W/m K
T = 1573 K 7.00 W/m K

Carbon BC-5

T = 873 K 16.96 W/m K
T = 1073 K 17.66 W/m K
T = 1273 K 18.13 W/m K
T = 1473 K 18.36 W/m K

Table 2: Material Properties.
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Steel shell
SiC Castable
Mortar
Graphite EGF
Semi Graphite BC30
Carbon BC-7S
High Fired Super Duty
SiC / Alumina
EG Ramming
Carbon BC-5
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hearth
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spray

Lower
hearth
spray

Thermocouple

Figure 4: Vertical section of the blast furnace hearth.
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Direction Vector

Thermocouples
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x 0
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Figure 5: Parametrization of the unknown boundary location.
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Then, we solve the inverse geometry problem for each set of observations, using as initial
guess the regularization geometry p0 = p∆, and evaluate the following relative errors

εobs =

°° T(pIter) − TOBS
°°

kTOBSk (38)

εgeom =

°° pIter − pReal
°°

kpRealk (39)

We also study the behavior of the algorithm on different regularization matrices. For this
purpose, we propose five regularization matrices as linear combinations of L0, L1, L2 (Eq. 20)
and solve the inverse geometry problem for each case.

The aim of these studies is to determine the optimal regularization matrix analyzing the
stability of the algorithm against measurements with different levels of noise, and validate the
algorithm developed as a reliable tool for estimating the location of the 1150◦C isotherm in a
blast furnace hearth.

In Tables 3, 4, 5 and 6, we show the relative errors εobs and εgeom, and the number of iterations
required to solve the problem, for each set of weighting factors (w0, w1, w2) and for each noise
level.

Analyzing these results we conclude that:

• As is expected, the relative error εobs increases as the noise increases.

• The algorithm is equally stable for different regularization matrices when measurements
have a low level of noise because εgeom remains stable in all cases (Table 4).

• The optimal regularization matrix appears to be (0.00, 0.00, 1.00) because the solutions
have the lowest errors on the estimated geometry, εgeom, particularly when measurements
have a high level of noise (Tables 5 and 6 ).

• Even though 15% is a high level of noise, the geometry is estimated with good accuracy
in the context of the industrial application (Fig. 6).

Finally, we can conclude that the algorithm developed is a reliable tool for estimating the
location of the 1150◦C isotherm in a blast furnace hearth.

6 CONCLUSIONS

We have developed a inverse geometry model for estimating the location of the 1150◦C isotherm
in a blast furnace hearth. The observations of the inverse problem are temperature measure-
ments at points inside the object and the unknown is the geometry of the volume where the
problem is defined. Due to the instability of ill-posed problems and the nonlineality of our
inverse problem, we have used the iteratively regularized Gauss-Newton method.
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Case w0 w1 w2 εgeom [%] εobs [%] Iter
1 1.00 0.00 0.00 1.283 0.354 6
2 0.00 1.00 0.00 1.798 0.872 5
3 0.00 0.00 1.00 0.582 0.376 5
4 0.00 0.50 0.50 0.646 0.284 5
5 0.50 0.50 0.00 0.408 0.247 6

Table 3: noise = 0% and p∆ = (1.000, 1.000, 1.000, 0.850, 0.750, 0.700, 0.700)T .

Case w0 w1 w2 εgeom [%] εobs [%] Iter
1 1.00 0.00 0.00 2.457 2.127 5
2 0.00 1.00 0.00 2.774 2.119 6
3 0.00 0.00 1.00 2.560 2.136 5
4 0.00 0.50 0.50 2.628 2.129 5
5 0.50 0.50 0.00 2.855 2.122 5

Table 4: noise = 5% and p∆ = (1.000, 1.000, 1.000, 0.850, 0.750, 0.700, 0.700)T .

Case w0 w1 w2 εgeom [%] εobs [%] Iter
1 1.00 0.00 0.00 12.284 4.163 6
2 0.00 1.00 0.00 11.241 4.171 5
3 0.00 0.00 1.00 6.647 4.632 4
4 0.00 0.50 0.50 8.025 4.446 4
5 0.50 0.50 0.00 12.411 4.123 6

Table 5: noise = 10% and p∆ = (1.000, 1.000, 1.000, 0.850, 0.750, 0.700, 0.700)T .

Case w0 w1 w2 εgeom [%] εobs [%] Iter
1 1.00 0.00 0.00 11.175 4.900 8
2 0.00 1.00 0.00 11.964 4.853 5
3 0.00 0.00 1.00 9.974 5.426 7
4 0.00 0.50 0.50 10.172 5.070 6
5 0.50 0.50 0.00 11.108 4.885 6

Table 6: noise = 15% and p∆ = (1.000, 1.000, 1.000, 0.850, 0.750, 0.700, 0.700)T .

M. Gonzalez, M. Goldschmit

2378



Exact geometry
Regularization geometry
Error = 5%
Error = 10%
Error = 15%

Figure 6: Estimated geometry for different levels of noise.

The location of the unknown boundary has been parametrized by a set of parameters and
described with radial basis functions because they impose few restrictions on the geometry and
provide a smooth interpolation.

The behavior of the algorithm on different regularization matrices has been studied analyzing
its stability against simulated measurements with different levels of noise.

We can conclude, from the results of the analyzed cases, that the optimal regularization
matrix appears to be L2, the discrete approximation of the second derivative operator, and that
the geometry is estimated with good accuracy in the context of the industrial application.

To sum up, we conclude that the algorithm developed is a reliable tool for estimating the
location of the 1150◦C isotherm in a blast furnace hearth.
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