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Abstract. This study purports to investigate whether a conductive tether left uninsulated and 
electrically floating in LEO could serve as an effective e-beam source to produce artificial 
auroras. An electrically floating tether comes out biased highly negative over most of its 
length. Ambient ions impacting it with KeV energies liberate secondary electrons, which are 
locally accelerated through the 2D tether voltage-bias, race down magnetic lines, and result 
in peak auroral emissions at about 120-160 km altitude. Since no current flows at either 
tether end, a bare-tether e-beam is fully free of spacecraft charging problems. Beam 
propagation and beam-atmosphere interactions need be modelled in a simple but quantitative 
way so as to allow a satisfactory discussion of observational options and their feasibility. The 
evolution in the energy spectrum of secondary electrons, their pitch distribution, and beam 
broadening due to collisions with neutrals, which would result in a broader but weaker tether 
footprint in the E-layer, need be modelled. Relations between particle/energy flux values, and 
ionization and accompanying emission rates, are considered. 
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1. INTRODUCTION 
 

This study purports to investigate whether a conductive tether left uninsulated and 
electrically floating in Low Earth Orbit (LEO) could serve as an effective e-beam source to 
produce artificial auroras. Standard electron beams emitted from satellites are marred by 
satellite charging problems. Also, standard e-beams have small cross-sections (with radius 
about one electron-gyroradius at typical KeV energies) and require ground observation, which 
is made possible by a beam energy-flux two orders of magnitude greater than in the strong 
Type-IV natural auroras. The strong flux compensates for the thinness of the emitting layer 
(10 m against, say, 10 km for natural auroras) but it results in gross beam distortions by 
nonlinear plasma effects. In addition, the gross perturbations produced by intense beam 
emission in the space plasma around the spacecraft affect emission itself, and the luminous 
glow arising from the electron bombardment in the return current contaminates sensitive 
optical instruments. 

A tether is a large object that move whit velocity “- v ” through a magnetized medium (in 
the plasma reference frame). The potential necessary to drive currents along the tether is 

0Bv × , where B0 is the magnetic field. This potential is of the order 0.1-0.2V/m in near-Earth 
orbit.1  An electrically floating tether comes out biased highly negative over most of its 
length. Ambient ions impacting it with KeV energies liberate secondary electrons, which are 
locally accelerated through the 2D tether voltage-bias, race down magnetic lines, and result in 
peak auroral emissions at about 120-160 km altitude. Since no current flows at either tether 
end, a bare-tether e-beam is fully free of spacecraft charging problems. Also, the beam is free 
of plasma interaction effects: its very large cross section (about twice electron-gyroradius 
times tether length) results in energy flux over 103  times weaker than in standard beam 
sources. In addition, emission of such a weak flux has no significant effect on the local 
plasma, and takes place far from any instrument. Beyond auroral effects proper, a floating 
bare-tether could provide measurements of neutral density along its E-layer footprint track, of 
interest in full numerical simulations of the atmosphere lying below, and in orbit decay and 
reentry predictions; it could, in principle, provide real-time mapping of plasma density along 
the orbit, for possible use in Global Positioning System (GPS) corrections.2-3  

Beam propagation and beam-atmosphere interactions need be modelled in a simple but 
quantitative way so as to allow a satisfactory discussion of observational options and their 
feasibility. The evolution in the energy spectrum of secondary electrons, their pitch 
distribution, and beam broadening due to collisions with neutrals, which would result in a 
broader but weaker tether footprint in the E-layer, need be modelled. Relations between 
particle/energy flux values, and ionization and accompanying emission rates, must be 
considered. The dependence of E-layer emissions on plasma environment at the F-layer and 
on the (carefully preflight-calibrated) tether-yield of secondary electrons, as well as the short 
beam dwell-time at any atmospheric point, must be considered too. 
 
2. E-BEAM PROPAGATION AND INTERACTION 
 

2.1. Introduction 
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Secondary electrons are emitted with low energies (a few eV) and accelerate away from 
the tether under the large potential difference  Φt -Φp  (a few kV). With tether bias large and  
1/8  the tape-perimeter (3 mm) well below the Debye length at night, the potential would 
follow a 2-D Laplace solution for some distance, most of the outward acceleration of 
secondary electrons occurring away from the tape, where the potential is already near radial. 
As a first approximation we assume that at the start of their race along magnetic lines, 
secondary electrons are uniformly distributed in the azimuthal angle  ϕ  around the tether. 
From the relation   cosθ = cosI × cosϕ   one finds the normalized distribution in pitch angle  θ  
(Fig.1), taking into account that both  ϕ  and  -ϕ  contribute to the same value of  θ, 
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Figure 1: Geometry of tether electron emission and pitch determination. 
 
For the dipole model of the geomagnetic field4, the (dip) angle  I  between a magnetic line 

in the meridian magnetic plane and the horizontal plane varies along each orbit between zero 
and a maximum at the point nearest the magnetic pole,  Imax = tan-1 (2 tan im),  im = magnetic 
inclination. At each value of  I,  the pitch angle  θ  ranges from  I  to  π - I,  but only electrons 
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down the field line are considered  (I  < θ  < π/2). The half-width of the e-beam perpendicular 
to the tether is taken to be the electron gyroradius  le∞  at the emission energy   eEmh ≡ ε∞(h),   
at each distance  h  from tether top, 
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where  Ωeq(a)  is the gyrofrequency at the magnetic equator, at the radius  a  of a circular 
orbit.  This yields a (one-sided) electron flux4-5, 
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Note that the beam flux increases (linearly) from top  (h = 0)  to bottom  (h = Lt)  although 

the half-width of the beam,   le ∝  ∞ε ,  increases itself as h . Note also that the flux in (2) 
is much smaller than the random flux in the ambient plasma, 
 

eeth mkTN π2/×=Φ ∞ . 
 

With   γ1EmLt  ∼  0.5,   I ∼  45°,   and tape width less than the thermal gyroradius (∼  30 mm), 
the ratio  Φ∞/Φth  is a small fraction of  ie mm / .  Beam-plasma interactions will then have a 
negligible effect on the propagation of the beam. 

As beam electrons move in helical paths down magnetic lines, they are slowed down by 
inelastic interactions with air molecules. For every ionization event there is a number of 
excitation collisions followed by prompt photon emission in the case of allowed transitions; 
one ionization is produced on the average for every  35 eV of energy (εi)  lost by a beam 
electron. Cross sections have a similar energy dependence for all interactions and are 
characterized by a maximum, and an energy threshold, and can be written as 

 
                                               ( )** /)( εεσεσ g×≈ .                                                   (3a) 

 
The cross-section shape function  g(u) must satisfy some conditions: i) g  vanishes at high 
energy as  lnε /ε  (Born approximation);  ii) g  vanishes at a threshold energy  ε*;  iii) g 
presents a maximum at  ε /ε*  between 4 and 5.  There has been extensive modelling of  g  
functions6. The ionization cross-section  σi  is quite similar for both dominant species  N2  and  
O2,  with values  σ*  (≈ 9.7 × 10-16 cm2),  ε*

 ( ≈ 23.6 eV),   σmax ≈ 0.25 σ*.   For energy above  
εi,  the cross-section is well modelled by the shape function 
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 (maximum g  ≈ 0.26  at  u  ≈ 4.24).  

As a primary electron with energy  ε,  pitch angle θ   and mean free path  1/ nσi  advances 
a distance  dl  in its path, the altitude loss is  dz = - sinI cosθ dl  and the energy loss rate is 
(Fig.1) 

 

                                               )()(cos εσεεθ ii zn
dz
dsinI = .                                             (4) 

 
For the purpose of illustrating the analysis, the scale height for atmospheric (neutral particle) 
density  n  in the altitude range  120 - 200 km  may be approximated as   n/|dn/dz|  ≈  z /3,   or   
n = constant / z3,   the constant being dimensionless (note that  z  is measured in meters if  n  
is measured in m-3) and  z  starting at  95 km above Earth.7 For the mean CIRA (Cooperative 
Institute of Research in the Atmosphere) reference atmosphere one has an approximate law 
 

                                                        n(z)  =  1031/ z3,                                                         (5) 
 
which we will use up to the tether altitude in the following discussion (Fig.2); note that  1031  
is a dimensionless constant. As we shall see results are not sensitive to the precise values of 
density above 200 km.  
 
2.2.   Pitch-averaged, frozen beam-flux model  
 

For a first simple discussion we fully ignore beam broadening from scattering in elastic 
collisions, with the pitch distribution for the propagating beam also frozen in the initial form 
given by Eq.(1). We now simplify Eq.(4) by averaging  cosθ  over that distribution,  

 
                                                 <cosθ> =  cos I × 2/π.                                                     (6) 

 
Then Eq.(4) can be solved for the energy  ε (z; h)  at height  z of electrons leaving the tether at 
some given  h,  with the initial condition 
 

                              ε [z∞(h) ; h]   =   ε ∞(h)  ≡  eEmh,         z∞(h)  ≡  zM - h,                     (7a, b) 
 
where  zM  is  z  at the top of the tether  (Fig.2). 

In Eq.(4)  dε / dz  should now be read as  ∂ε / ∂z.  One then finds 
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Figure 2: Geometrical disposition of tether and geomagnetic field. 
 
The solution (8) for  ε~ (z; h)  is shown in Fig.3,  for   h = Lt,   Lt/2  (tether bottom and 
midpoint). We took  Lt = 20 km,   I = 45°,   Em = 165 V/km,   zM + 95 km = 305 km.  Curves 
are terminated at   ε~ = 1.5  ≈  εi / ε*.   We note that there is little energy decrease above  200 
km.  An approximate solution for possible use in tomographic inversion, 
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is also shown for comparison. The approximation is very good down to energy  ∼  500 eV, and 
is still good below  (though errors in energy at given  z  are larger than suggested by the very 
flat profiles).  

With pitch evolution and beam broadening from scattering ignored, the volumetric 
ionization rate is just 
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Figure 4 shows ionization rate profiles for the cases in Fig.3.  We further took   p = 24 mm,   
N∞n = 3 × 105 cm-3,   Ωeq = 5.3 × 106 /s,   γ1 = 0.15/kV   in Eq.(2). 
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Figure 3. Energy distribution for pitch-averaged, frozen beam-flux model.  
 
Location and value of peak ionization for each given h can be analytically determined. 

From Eqs.(4) and (5) the maximum of  n(z) × g[ε~ (z; h)]  can be readily shown to satisfy the 
condition 
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with  ε~   and   z   also related by Eq.(8). With the right-hand-side of  (12) positive and clearly 
very small, ε~   will be very close to the value  4.24  for maximum  g.  Equation (8)  then gives 
the altitude  zmax(h)  for peak ionization as  
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Figure 5 shows the maximum of the ionization rate versus  h  or  ε∞(h),  as given by (13).  The 
peaks in Fig.4 are in very good agreement with Fig.5. 
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Figure 4: Ionization rate profiles for pitch-average, frozen beam-flux model.  
 
2.3 Frozen beam-flux model 
 

Keeping the frozen pitch-distribution we solve Eq.(4) for each  particular  θ, 
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where we wrote  µ  ≡  cosθ,  µ~  ≡  µ / µI. Equation (8') determines either  ( )µε ~,;~ hz    or   

( )εµ ~,;~ hz .  The pitch distribution  (1)  takes here the form 
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The volumetric ionization rate is now 
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Figure 5. Maximum ionization rate for pitch-averaged, frozen beam-flux model. 
 
The lower end of the integration range is determined by setting  iεε ~~ =  = 1.5  in Eq.(8'),  

that is,  [ ]minhz µε ~,;~  = 1.5.  Note that electrons with low pitch angle in Eq.(4) penetrate 

further down; electrons with pitch angle  )cos~(cos 1 Imin ×> − µθ  had reached down to 

energy  εi  at some altitude above  z.  Figure 6 shows ionization-rate profiles for   h = Lt,  Lt/2.   
One basic result is that retaining the spectrum of pitch angles makes profile maxima broader 
than those in Fig.4 corresponding to a single, average pitch angle (a similar broadening would 

J. Sanmart́ın, S. Elaskar

2601



  

occur if electrons exhibited a spectrum of energies, instead of being monoenergetic -for each  
h value-, as in our tether beam). Also shown for comparison are profiles resulting from using 
the left-hand-side of (10) as an approximation for the LHS of  (8'). 
 
2.4 Scattering effects: Isotropic-pitch model 
 

For a rough estimate of scattering effects we now consider a new limit model: we assume 
that the electrons reach an uniform pitch-angle distribution over the range 0-π/2 immediately 
after leaving the tether, and keep this distribution afterwards. The solution to Eq.(4) takes now 
the form 
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Figure 6. Ionization rate profiles for pitch-frozen beam-flux model  
 

with a pitch distribution 
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The volumetric ionization rate is now 
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with  ),;(~ µε hz  determined by (8").  The lower end of the integration range is again 
determined by setting  ε~  = 1.5   in Eq.(8"), that is,  [ ] 5.1,;~ =minhz µε . Figure 7  shows 
ionization rate profiles for  Lt,   Lt/2.   Also shown for comparison are profiles resulting from 
using the LHS of (10) as an approximation for the LHS of (8"). 
 

100

120

140

160

180

200

220

240

100 1000 10000 100000

A
lti

tu
de

 [
km

]

Ionization rate for pitch-isotropic model [1/s cm3]

h = 20km

h = 10km
Approx. Eq. (9)

Approx. Eq. (9)

Figure 7

 
 

Figure 7. Ionization rate profiles for pitch-isotropic beam-flux model  
 
 
 

J. Sanmart́ın, S. Elaskar

2603



  

 
2.5 Scattering effects:  Beam broadening 
 

As electrons move down the magnetic field, elastic collisions, in addition to affecting the 
pitch distribution, will result in the broadening of beam-width due to diffusion perpendicular 
to the magnetic lines. For (onedimensional) diffusion along the horizontal direction 
perpendicular to the beam one has 

 

                                           ⊥×=>< D
dl

Rdv
par

par 2
2

                                              (14) 

 
where  vpar  is the electron velocity parallel to the magnetic field and  dlpar  is the distance 
advanced parallel to the field corresponding to a height decrease  dz  (Fig.1), 
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>< 2R   is the diffusion length; and  D⊥   is the diffusion coefficient perpendicular to the 
magnetic lines, 
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the mean-free-path   λc = 1/n(z)σc   being much greater than the electron gyroradius  le  at 
energy  ε  <  ε∞(Lt). 

One then finds 
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Note that as electrons move down the field, the broadening rate decreases because their 
energy is progressively lower but increases because of the increasing density. With magnetic 
field nearly constant throughout the electron path, we have   le ∝  √ε.  Using Eq.(4) and 
writing   le

2  = le∞ 
2(h) × ε /ε∞(h)   we then find 
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where we took   σc  ≈ 10-15 cm2  ≈  σ*.   Using   >< 2R   =  le∞
    at   ε =  ε∞   one finds 
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The broadening factor 
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 is shown in Fig.8  for  h  =  20 km, 10 km. 

As a result of beam broadening, the flux of electrons that left the tether at a given  h  is 
reduced (along with energy) as it propagates, 
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Figure 8. Broadening factor versus energy. 
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When this correction is introduced into the ionization rate for the isotropic-pitch model of  
Sec. 2.4, as given by  Eq.(11"), we find 
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Figure 9 compares ionization profiles from Eqs.(11), (11'), (11") and (20). We first note that 
electrons in the (no-broadening) isotropic pitch-angle model penetrate further and produce 
higher ionization than electrons in the frozen pitch-angle model, but they keep close to each 
other up to very near the maximum in this last model. Next we note that broadening results in 
a reduction of the ionization rate by more than one order of magnitude. Also, since the factor  
fbr  soon approaches near constant values with decreasing energy in Fig.8, a simple 
approximation to Eq.(20) would be multiplying (8") by an average factor that varies  from 
about  12  for  Lt/2  to  about  24  for Lt. 
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Figure 9. Comparison of ionization rates. 
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2.6 Column-integrated ionization rate 
 

For later observational considerations it is convenient to introduce the 'column'-integrated 
ionization rate along any straight line,  ∫ dsni! ,  with  ds  the length element along the line and 
the integral extending over the ionization region. For a line coinciding with the magnetic line 
through some point in the tether we have  ds = - dz / sinI   with  s  starting at the tether (Fig.2). 
The range of integration vanishes for a line with   h < εi / eEm.   For the pitch-averaged frozen 
model of  Sec .2.2 and   h > εi / eEm  one can readily use Eqs.(4), (6) and (11) to find 
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For the isotropic-pitch model of  Sec. 2.4 we find 
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with   ),;(~ µε hz   as given in Eq.(8"), and 
 

[ ] 5.1~,;~ == iminhz εµε ,           [ ] .5.11,;~ =hzminε  
 

A similar result is found for the frozen-pitch model of  Sec. 2.3. 
The lines of interest for observational considerations correspond to lines of sight from the 

top of the tether at a (small) angle  ψ  with the magnetic field (Fig.2).4 Relations immediately 
following from that figure are 

 
                                             sin (I  +  ψ) ds   =  - dz,                                                  (21) 
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For  ψ  small against  I  one would have  ds  ≈  - dz / sin I  and 
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We would then find, for the isotropic-pitch model including beam broadening, 
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with  h = h(z; ψ)  given by Eq.(22b). 

We note that ionization does not occur above certain altitude  zmax  and below another 
altitude  zmin  where   ε = εi  on the line-of-sight. These altitudes are determined by using (22b) 
for  h(z; ψ)  in Eq.(8")  and setting  ε~ = 1.5  and  µ = 1  on its left and right hand sides, 
respectively, yielding 
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There are  2  roots  (zmax  and  zmin)  to this equation, except at small enough  ψ;  both are 
shown in Fig.10. Similar results are found for the isotropic-pitch model without beam 
broadening and for the frozen-pitch model. Figure 11 shows the column-integrated ionization 
rate versus  ψ  for all three pitch-distribution models. 
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Figure 10. Altitude of emission for pitch-isotropic beam-flux model. 
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2.7 CONCLUSIONS 
 

In the tomographic analysis4-5 is used the isotropic-pitch model with broadening. We note 
that the density law enters the column-integrated ionization rate in (23) in quite a complex 
way: both explicitly and through the function  ),,(~ µε hz , itself appearing in two ways [in the 
functions  g  and  fbr  and in the integration limits  µmin(z, h)  and  zmin(ψ)  and  zmax(ψ)].  In the 
tomographic analysis, the density law  n(z)  will be left undetermined in the algorithm for the 
column-integrated ionization rate. 

As regards effects of the ionospheric environment at the emitting heights, the geomagnetic 
field enters results in a complex way too, through the values of the dip angle  I,  the motional 
field  Em,  and  the electron gyrofrequency (at the magnetic equator at orbital radius  a)  
Ωeq(a),  again both explicitly [see Eq.(2) for  Φ∞(h)] and through the function  ),,(~ µε hz .  
Three-axis measurements of the magnetic field in orbit will be required. The dependence of 
column-integrated ionization rate on plasma density  N∞  (and on secondary-yield coefficient  
γ1)  is of simple proportionality, though  N∞  measurements in orbit, and careful precalibration 
of tether yield, will be also required. 
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Figure 11. column-integrated ionization rate.  
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