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Abstract. Particle Finite Element Method - Second Generation (PFEM-2) is a numerical method written
in a Lagrangian formulation that uses both particles and a mesh to solve the physics equations in an
uncoupled way. The method uses fractional-steps with explicit and implicit calculations as needed.
The difference with the original form, is that in this second generation a temporal integration scheme
based on streamlines integration is added while for the spatial discretization a point-colocation method is
adopted. PFEM-2 has proved to obtain accurate and stable results, but it is necessary to make an efficient
implementation to get a competitive code saving computing time.

Given that the particle based methods are inherently parallelizable, the present work is focused on
the analysis, the comparison and the selection of the optimal tools and techniques to be used to solve,
in an efficient way, each algorithm’s critical stages in each time steps. Those critical stages are the
particle trajectory and acceleration computation through streamlines time integration, the remeshing and
the equation system solver on the mesh (necessary for implicit calculations).

Finally, results obtained with this implementation are presented, allowing to simulate, with accuracy,
robustness and at a reasonable computational cost, large numbers of particles in problems with scalar
unknowns, such as scalar transport problems, and vectorials unknows, such as fluid-dynamic problems.
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1 INTRODUCTION TO PFEM-2 METHOD

In computational mechanics the need for decreasing execution times is overriding. There
are different ways to reduce costs for solve an specific problem (with fixed geometry, fixed
physical parameters such as viscosity, external forces and so on): the first possibility would
be replace the hardware with another faster trying to take advantage of parallel processors and
clusters existing nowdays, but this option depends on the available resources; another way tries
to solve the model equations using new numerical approachs. Combining these options the
numerical method called Particle Finite Element Method - Second Generation (PFEM-2) was
developed and this paper discusses its parallel implementation. PFEM-2 can be used to solve
problems with scalar unknows such as scalar transport problems, and vectorial unknows such
as fluid-dynamic problems, but this paper focus on the last one.

Navier-Stokes equations describes the behavior of newtonian and incompressible fluids, its
formulation is based on local momentum balance and must be coupled with the equation for the
local mass balance, giving the equation system that is presented in Equations 1 and 2.

ρ
Dv

Dt
= −∇p+ µ(∇vT +∇v) + f (1)

∇ · v = 0 (2)

It should be noted that the left term includes a material derivative instead the typical local
derivatives for the local balance (Dv

Dt
= ∂v

∂t
+ v · ∇v). Lagrangian Formulation is used

to simplify some calculations (especially the non-linear convective term) normally used in
Eulerian Formulation and specially because its natural adaptation to particles methods.

PFEM-2 is a particle-based method that uses a segregated approach to solve the fluid-
dynamic equation system called fractional-step, which consists in three generic steps: first a
velocity prediction, second a pressure calculation and last a velocity updating.

In PFEM-2, the velocity prediction is calculated using particles with an explicit approach
called streamline-integration that allows to use a Courant number greater than one without
lossing the stability of the solution. The second step is mesh-based and solves the Poisson
equation for the pressure implicitly using Finite Element Method (FEM), and the last step is
again particle-based and consists on using the new pressure to update the velocity field at each
particle explicitly.

These approaches require a particle cloud with a background mesh to solve each time-step.
In PFEM-2, the relation between particles and nodes is taken a 1-1, which requires remeshing
the new particle positions after each streamline-integration.

Others mathematical features of the method and the differences with the original PFEM are
not presented here and might be obtained from (Idelsohn et al., 2011). The Algorithm 1 presents
a simplified description to understand the necessary steps to be implemented (Gimenez, 2011).
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Algorithm 1 - Particle Finite Element Method Second Generation
1. Particles-Nodes in position xnp .

(a) Evaluate new particles position in n+ 1 and the fractionary velocity following the streamlines:
yn+1
p = ynp +

∫ ∆t

0
vn(yαp ) dα.

ρv̂n+1(yn+1
p ) = ρvn(ynp ) +

∫ ∆t

0
[∇ · σn(yn+α

p ) + fn+α(yn+α
p )] dα.

(b) Remeshing:
M(xn+1

p ) ≈M(yn+1
p ).

2. Particles-Nodes in position xn+1
p .

(a) Find the pressure value solving the Poisson equation system using FEM:
ρ∇ · v̂n+1(yn+1

p ) = ∆t
2 ∆[δpn+1(yn+1

p )]

(b) Actualizate the velocity value with the new pressure vn+1
p :

ρvn+1(xn+1
p ) = ρv̂n+1(yn+1

p )− ∆t
2 (∇pn+1(yn+1

p )−∇pn(yn+1
p ))

2 IMPLEMENTATION DETAILS

Historically conventional numerical programs has been developed using procedural
programation paradigm through programming languages such as Fortran or C. There, simple
data structures and reduced logic operation are used. Although in their application scope they
have a high efficiency in computational time and can optimize CPU and memory resources.
This optimization is problem-dependent: they solve particular problems and every time when
some conditions change in the program or in the program extensions it requires not only the
knowledge of the aspects to be improved, but also a deep knowledge about all the code. Last
decreases the efficiency, the scalability and increase the initial effort to obtain results in this
paradigm (Bretones et al., 1995).

Using Object Oriented Programming (OOP), with languages such as C++, the information
is stored in objects with more complex structure to represent abstractions of the problem and it
allows to solve any problem with a succession of high level instructions. The high scalability
of this paradigm increases the number of problems that can be solved, preserving the same
computational time because it is as efficient as any procedural paradigm (Cary et al., 1997).
Then, the language chosen for this implementation is C++ using a OOP approach. More details
about OOP implementation may be obtained from author’s previous work (Gimenez, 2011).

Nowadays, computers that include two or more cores and the recent upcoming of new
Graphics Processing Units (GPU) give new calculation possibilities. Sequential codes, that
do not have these parallel computing capabilities must be updated making use of parallel
programing used intensively in such kind of hardware. Shared memory and distributed memory
techniques are the two approachs to run programs in parallel: the first one is used in multi-
core CPUs (is necessary that each process shares the same memory) and the second one can be
used in a multi-node architecture (one multi-core PC or between various PCs). Finally exists
an hybrid approach that use distributed memory techniques between nodes and shared memory
techniques inside each multi-core node.

In the present implementation, shared memory with Open Multi-Processing (OpenMP) is
chosen, that allows, in an easy way (only including some compiler directives) to transform
sequential code into parallel code. However, not all numerical methods or algorithms are
plausible to be coded and to be run in parallel, also problems such as the race condition
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(processes that modify the same data) or the reentrancy (dependency from past values) must
be taken carefully.

2.1 Streamline Integration

In streamline integration each particle moves from initial position xn
p to final position xn+1

p

through fixed streamlines at time n. For this task some sort of projection should be done. At
each element some constant-element values (such as pressure gradient ∇p and tau divergence
∇ · τ ) should be transferred to the nodes, using an standard technique similar to gradient
recovery. Also, each particle must know the elements in which is contained, calculate the area
coordinates to know the acceleration and velocity at that position verifying if this particle has
gone through its boundary to a neighbour element (or out of the domain), and update these data.

Figure 1: Streamline Integration Example.

Although this step includes many tasks, both particles and elements instances can calculate
their data independently from other particles or elements respectively, so it is possible to
parallelize it with shared memory techniques without race condition risks.

2.2 Remeshing

Before solving the Poisson step, it is need to regenerate the mesh with the new particle
positions. Previously, some particles must be removed (those which are very close each other or
making small internal angles that will generate bad-quality elements), and new particles must be
seeded in those elements that exceed some minimum reference area; this task is called particle
updating, and in order to optimize it, pointer-linked containers such as std::List must be
used, which disables its parallelization, without affecting the computational cost significatively
because the cost for operations such as remove and append are small (about O(1)).

After moving the particles and remove or seed them, is necessary to generate the new
mesh. Taking only the new particles position, a Delaunay triangulation is used. Delaunay
triangulations maximize the minimum angle of all the angles of the triangles in the tesselation;
they tend to avoid skinny triangles, which is a necessary feature for all FEM calculation.

Exists many libraries that implements that algorithm, in this implementation msuite (Calvo,
2005) is chosen, because is stable, fast, written in C and developed by the same investigation
group, making easier the support.

The library msuite runs in sequential mode, for this reason a new approach to Delaunay
triangulation is needed. A parallel implementation using pthreads has been developping,
but unfortunately without stable results.
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2.3 Poisson Step

Poisson Step is inherently implicit, meaning that for solving an appropiate numerical method
should be adopted. PFEM-2 uses FEM to do this task. So, each element matrix must be
calculated using an appropiate data-structure that simplifies this job and, further, to generate
the equation system, to find the unknow vector using a fast solver.

2.3.1 Elemental Assembly

Each instance of class Element calculates its own finite element matrix, called elemental
matrix Ke, and its own residue vector re. For that, fast data-structures must be selected. In this
implementation LTensor library is chosen, because is almost as fast as c-arrays and allows
perform operations using an indexation similar to Einstein summation convention (Limache and
Fredini, 2010).

Each local assemble can be parallelized with OpenMP without risks: each Element is able
to calculate its own matrix and residue, so the loop for all elements can be done in parallel.
In Algorithm 2 the implementation is presented: the outer loop is parallelized and for each
instance of Element the elemental matrix and residue vector are stored in LTensor Ke and Re
objects, and their coefficients are easily calculated using index notation for the operations.

Algorithm 2 - Elemental matrices and residue in parallel using OpenMP and LTensor

i n t i e l e ;
# pragma omp p a r a l l e l f o r d e f a u l t ( s h a r e d ) p r i v a t e ( i e l e )
f o r ( i e l e =0; i e l e < t h i s −>numel ; i e l e ++) {

t h i s −> e l e s [ i e l e ] . a s s e m b l e E l e m e n t a l ( var , param ) ;
}
. . .
vo id Element : : a s s e m b l e E l e m e n t a l ( c h a r * var , P a r a m e t e r s& param ) {

f o r ( i n t i p g =0; ipg <pg . npg ; i p g ++) {
. . .

Ke ( iG , kG ) += ( d t / ( 2 * rho ) + t a u ) *W * dN ( iG , jG ) *dN ( kG , jG ) ;
Re ( iG ) += dN ( iG , jG ) * PI ( jG ) * t a u *W;
Re ( iG ) += dN ( iG , jG ) *gp ( jG ) * ( d t / 2 ) *W;
Re ( iG ) −= dN ( iG , jG ) *gp ( jG ) * ( d t / ( 2 * rho ) + t a u ) *W;
Re ( iG ) −= div_u *N( iG ) *W;
. . .

}
}

2.3.2 Global Assembly

Assembling the global matrix consists on performing the matricial operationKg =
∑N

e=1K
e

and Rg =
∑N

e=1R
e, where Kg and Rg are the global matrix and the global residual vector

respectively. The matrix Kg generated with FEM is initialized primarily with zeros. Due to
compact support of shape functions, it is necessary to store their coefficients in an efficient
data-structure called sparse matrix. Compressed Sparse Row (CSR) format is chosen with a
row-major upper triangular storage: the matrix is compressed row-by-row and for symmetric
matrices only non-zero elements in the upper triangular half of the matrix are stored. Then the
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storage is specified by three arrays: values, columns, and rowIndex and this format is used in
Pardiso solver (Intel MKL, 2005c).

To parallelize this assembly, each node will generate a row in the matrix that will represent
its own equation, and these coefficients can be calculated independently node by node, here
structures such as std::map are used to facilitate the ordering of the column by index number
and the accumulation of the coefficient values. Also, in this parallel task, Dirichlet conditions
are imposed in the selected nodes generating a row with only an one in the diagonal and zeros
for the rest.

After that each row was calculated in parallel, a non-parallel task is done, where the three
global arrays are constructed ordering that data by node (row) number.

2.3.3 Solving equation system

After the global matrix and the global residue vector were assembled, the linear equation
system Kφ = r must be solved. For choosing the best option to make this task, some known
parallel solvers were compared, specifically their performance solving a laplacian equation
system, similar to the equation system found in PFEM-2.

The parallel solvers compared were

• Kyrlov Subspace Library (KSP) from Portable, Extensible Toolkit for Scientific
Computation (PETSc) (Balay et al., 2010) that implements the iterative solver
Preconditioned Conjugated Gradient (PCG) and is parallelized with distributed memory
programming using Message Passing Interface (MPI).

• Intel Math Kernel Library - Parallel Sparse Direct Linear Solver (MKL-PARDISO) (Intel
MKL, 2005a) that implements a direct solver with Gaussean Elimination for solving
large sparse symmetric and nonsymmetric linear systems of equations on shared memory
multiprocessors with OpenMP.

• Intel MKL Iterative Sparse Solver (MKL-IIS) (Intel MKL, 2005b) that allows controls
the parallel reversing communication interface to implement the PCG.

• Matlab backslash operator that works in parallel too.

The figure 2 shows the computation times for each solver necessary to find the solution vector
φ in a problem Kφ = r where the size N =

√
nrows of the matrix K changes. The matrix K

was assembled using the laplacian finite difference operator in 2D present in the Poisson Step
in PFEM-2. The result allows to choose the Pardiso solver, because it has demonstrated solving
each system in the lowest time and its scalability (when N grows) is better than the others
solvers.

2.4 Velocity Updating

This is the simplest step. It consists on take each particle and modify its state with the new
pressure data. This step is explicit and it is able to be parallelized easily. Subsets of particles
are sent to each processor using OpenMP.

In Algorithm 3 the implementation of this step is presented. The only code-line necessary to
parallelize it is the pragma directive, that indicates to the compiler that the next for instruction
must be forked (the load splitted among each processor) and joined (gather results from each
processor). This code implements the step 2-b) of the Algorithm 1.
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Figure 2: Solvers Comparison in Intel(R) Xeon(R) CPU E5335 - 2.00GHz (8 cores)

Algorithm 3 - Code used to parallelize velocity actualization

Node* pNode ;
i n t i ;
# pragma omp p a r a l l e l f o r d e f a u l t ( s h a r e d ) p r i v a t e ( i , n o d e P t r )
f o r ( i =0 ; i < t h i s −>mesh . numnp ; i ++) {
pNode = &( t h i s −>mesh . nodes [ i ] ) ;
pNode−> s t a t e ( vG ) −= ( param . d t / 2 ) *

( pNode−>gp_new ( vG )−pNode−>gp_old_on_new ( vG ) )
}

2.5 Implementation Overview

Taking into account the previous subsections, the implementation can be summarized in the
Algorithm 4. Finally, in this first implementation only shared memory techniques with OpenMP
are used.
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Algorithm 4 - Time Step resolution in PFEM-2

i n t PFEM2 : : doOneStep ( )
{

i f ( i t i m e%param . n p l o t ==0)
t h i s −> p r i n t S t a t i s t i c s ( ) ;

param . t t i m e = param . t t i m e + param . d t ;
c o u t << " Time : " << param . t t i m e << " [ s ] " << e n d l ;

/ / f i r s t s t e p : v e l o c i t y p r e d i c t o r
t h i s −> d o u b l e P r o j e c t i o n ( ) ;
t h i s −> s t r e a m l i n e I n t e g r a t i o n ( ) ;
t h i s −> u p d a t e P a r t i c l e s ( ) ;
t h i s −>remesh ing ( ) ;

/ / second s t e p : p r e s s u r e c a l c u l a t i o n
t h i s −>p o i s s o n S t e p ( ) ;

/ / t h i r d s t e p : v e l o c i t y a c t u a l i z a t i o n
t h i s −> a c t u a l i z e V e l o c i t y ( ) ;

r e t u r n 0 ;

}

3 TESTS

3.1 Lid-Driven Cavity

A first set of comparison is against the Ghia references of the lid-driven cavity (Ghia et al.,
1982). The geometry used is presented in Figure 3. A fixed velocity of vx = U = 1m

s
is applied

on the top, so as is well known a big vortex is developed within the cavity. Comparisons were
done at x and y centerlines, with coordinates (x, 0.5) and (0.5, y) taking the case forRe = 1000.

Figure 3: Geometry in Lid-Driven Cavity

Simulations were carried out using 75×75 initial particles, with a maximum Courant number
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about 2 < Comax < 4. The Figures 4a and 4b present the results of accuracy comparing the
reference data against those obtained with PFEM-2.
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Figure 4: Comparison vs. Ghia reference for x and y centerlines respectly (using Re = 1000).

Another results of interest are those concerning the computation times for each step of the
algorithm when one or several processes are used. In this comparison the differents times taken
for each step are shown, allowing find the implementation bottlenecks. A lid-driven test was
used with a initial seeding of 150×150 particles and the execution is from t = 0[s] to t = 2.5[s]
with δt = 0.01[s]. The processor used was Intel-Core i7 2600K 3.40GHz and the results are
presented in Figure 5.0 50 100 150Time [s]StreamlineUpdateRemeshingAssemblySolveTOTAL 4 threads2 threads1 thread

Figure 5: Times in Lid-Driven Cavity for different # of threads

Some conclusions can be extracted from those times results. First, the remeshing step is the
bottleneck, it spend about 50%, and its reduction of time when more threads are used is because
the constructor of the class Mesh is parallelized, therefore, a large-constant time for construct
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the new mesh is need. The solve step shows that, although Pardiso is a parallel solver, not all
the method can be parallelized, only some algebraical operations between rows, columns of the
matrix; for this, the decrease is not n-threads-times, as it happens, for example, in streamline
integration step, where computation time decrease to about 31% when 4 threads are used, due
to the aforementioned parallel capacity of the particle methods.

3.2 Backward Facing Step

The second test that was carried out was the Backward Facing-Step. It was modelled in
laminar regime. This flow allows to compare prediction of separated flow like is developed
along the step in geometry.

Laminar case was compared to experimental results from Armaly given by (Chiang and
Sheu, 1999), taking the case of Re = 389. Simulation was carried out in 2D and geometry
(Figure 6). Dimensions h, S, Ld = 55h and upstream length Lu = h were selected
following guidelines given by (Marquez Damián and Nigro, 2010). The initial seeding was
550 × 60 particles (x-refinement 10

h
and y-refinement 30

h
), running with 1.5 <= Comax <= 6

aproximatelly.

Figure 6: Geometry in Backward Facing Step

The results are presented in Figure 7.
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Figure 7: Results in Backward Facing Step compared with Armaly References. Circles
represents Armaly reference values and dotted lines show PFEM-2 values.

An interesting result shows the evolution of the Courant numbers throught the simulation.
Although the method contains explicit calculations, is able to use Co > 1 without affect the
stability and the accuraccy. This feature is presented in the Figure 8.
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Figure 8: Evolution of the Courant numbers (maximum and mean)

4 CONCLUSIONS

The actual implementation of the method PFEM-2, was developed in C++ following the
paradigm OOP, using libraries such as msuite to generate a new mesh in each time step,
LTensor to assembly each elemental matrix and PARDISO to solve the equation system;
parallelized with shared memory technique provided by OpenMP where it was possible to do.

This first implementation reaches the accuracy reported in others PFEM-2 papers (Idelsohn
et al., 2011), giving a promizing future in terms of computation times. To complete the shared
memory implementation, it remains to complete the parallelization of the Delaunay tesselation
in 2D, however this approach (shared memory) is not very scalable and it is needed to move
to distributed memory approach, mainly to run this implementation in multi-nodes enviroments
such as clusters. An option that recycles the actual code, is to move to hybrid computation (a
combination of shared and distributed approaches), but this option is harder and requires larger
implementation times than the other.

Finally, PFEM-2 is a new method to solve physics equations, it has accuracy and stability
and here it was rewritten to be parallelized in an easy way, reaching in this paper its first parallel
implementation.
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