
CONSIDERING PURE GPU MODEL FOR AN AUDIO
FINGERPRINTING SYSTEM

Natalia Miranda a, Fabiana Piccolia and Edgar Chávezb

a Universidad Nacional de San Luis, Ejército de los Andes 950,5700 - San Luis - Argentina

b U. Michoacana México and CICESE, México

e-mail: {mpiccoli}@unsl.edu.ar

Abstract. The demand for protecting, managing and indexing digital audio is growing quickly. As a
viable solution for this, fingerprinting is receiving increased attention. An audio fingerprinting system
extracts feature vectors (called fingerprint) from a query audio, finds matching in a database (DB), and
retrieves the appropriate audio signals associated with the matching fingerprint in the DB.

An audio fingerprint is a compact low level content-based digest of an audio signal. It provides the
ability to identify short, unlabeled audio signals in a fastand reliable way. There are several practical
requirements which a successful audio fingerprinting system should satisfy. First, it should be able
to identify corrupted audio signals in spite of degradations. Second, it should be able to identify the
signals of only a few seconds long. Finally, it should be computationally efficient, both in calculating of
the fingerprints and in searching for the best match in the DB.Besides, an audio fingerprinting system
should be scalable, i. e., it has to operate well with very large DBs. A good option is to apply high
performance techniques in the solution.

The Graphics Processing Unit (GPU) provides high performance computing through the threading
model. Its main characteristics are high computational power, constant development and low cost and
provides a kit of programming called CUDA. It provides a GPU-CPU interface, thread synchronization,
data types, among others.

CUDA supports several types of memory that can be used to achieve high execution speeds in appli-
cations. The global memory is large but slow and tends to havelong access latencies and finite access
bandwidth, whereas the shared memory is on-chip memory, small and fast. The variables that reside in
this type of memory can be accessed at very high speed in a highly parallel manner. Other memories are
constant and texture memory which are read-only.

In this work, we propose implement the whole audio fingerprint system in a pure GPU model, using
all properties offered by GPU: shared memory, constant memory, atomic functions, coalescing access,
among others. We show different optimizations through the use of CUDA memory hierarchy. We achieve
to reduce the total number of accesses to the global memory using shared memory and to improve
considerably the performance. Finally, the experimental results are presented.

Mecánica Computacional Vol XXX, págs. 3033-3044 (artículo completo)
Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.)

Rosario, Argentina, 1-4 Noviembre 2011

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Audio indexing and audio identification has received a lot ofattention in the last years.
Specially the last, that consists in the ability to pair audio signals of the same perceptual nature.
The audio identification demands an stable and persistent object representation, it is the same
although the audio suffers different natural degradation.Such representation is called an Audio
fingerprint (AFP).

A fingerprinting system basically consists of two parts: fingerprint extraction and an algo-
rithm to search for matching in a fingerprint database. In this work, we focus on the first part
only and we propose an AFP implementation applying high performance techniques.

An AFP is a compact representation of the perceptually relevant parts of audio content,
which can be used to identify an audio (or a segment) file, evenit is severely degraded due to
compression or other types of signal processing operations. The fingerprints of a large number
of audio signals are usually stored in a large database. An audio signal can be identified by
comparing the fingerprint of query with each fingerprint in the database.

Well-known applications of AFP are broadcast monitoring, connected audio and filtering
for file sharing applicationsIbarrola and Chavez(2010), Haitsma and Kalker(2002), Shin et al.
(2002), Wang(2003). The use of fingerprints has several advantages. First, thedataset to com-
pare is relatively small, because fingerprints are compact descriptions similar to hash functions.
Second, comparing fingerprints can be done efficiently, because the perceptually irrelevant parts
have been removed. One audio file, encoded using different coding schemes, gives the same
fingerprint or very similar. Fingerprints from two arbitrary selected pieces of audio signal are
very different.

In order to employ high performance computing to speedup theprocess of obtaining the
AFP, the Graphics Processing Unit (GPU) represents a good alternative. The GPU is attractive
in many application areas by its characteristics, especially their parallel execution capabilities
and fast memory access. They promise more than an order of magnitude speedup over conven-
tional processors for some non-graphics computations. Theuse of GPUs in general-purpose
computing is becoming a very accepted alternative.

A GPU computing system consists of two basic components, thetraditional CPU and one
or more GPUs (Streaming Processor Array). The connection between CPU and GPU is by
mean of PCI Express bus. The GPU can be considered as a manycores coprocessor ables to
support fine grain parallelism (a lot of threads run in parallel, all of them collaborate in the
solution of the same problem) GPU is different than other parallel architectures because it
shows flexibility in the local resources allocation (memoryor register) to the threads. In general,
a GPU multiprocessor consists of several streams, each of them has multiple processing units,
records and on-chip memory. Each stream multiprocessor canrun a variable number of threads.
The programmer decides how many threads and how they will work. These can be adjusted to
achieve improvements in the system performance.

Each GPU applies the Single Process-Multiple Data (SPMD) model, all units of computation
(thread) running the same code, not necessarily synchronously, over different data. Every thread
shares the global memory space.

The CUDA programming model proposes a model for GPU programming. It has two main
characteristics: the parallel work through concurrent threads and the memory hierarchy. A
CUDA program is written in standard C/C++ extended by several keywords and constructs.
The user supplies a single source program encompassing bothhost (CPU) andkernel(GPU)
code. Each CUDA program consists of multiple phases that areexecuted on either the CPU or

N. MIRANDA, F. PICCOLI, E. CHAVEZ3034

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

the GPU. All phases that exhibit little or no data parallelism are implemented in the CPU. In
opposition, if the phases present much data parallelism, they are implemented askernelfunc-
tions in the GPU. Akernelfunction defines the code to be executed by each threads launched
in a parallel phase.

There are several restrictions onkernel functions, they cannot: be recursive neither have
static variables declarations or a variable number of arguments. The communication between
CPU and GPU is through API calls.Kernelcode is initiated performing a function call.

Threads in the CUDA model are grouped into thread blocks. Allthreads in a block execute on
one SM and communicate among them through the shared memory.Threads in different blocks
can communicate through global memory. Besides shared and global memory, the threads have
their local variables. Thread blocks form a grid. The numberof grids, blocks per grid and
threads per block are parameters fixed by the programmer. As they can affect the performance
of the application, can be adjusted.

Respect of memory hierarchy, CUDA threads may access data from multiple memory spaces
during their execution. Each thread has private local memory and each block has shared memory
visible to all its threads. These memories have the same lifetime that thekernel. All threads have
access to the same global memory and two additional read-only memory spaces: the constant
and texture memory spaces. The constant and texture memory spaces are optimized for different
memory usages. The global, constant and texture memory spaces are persistent acrosskernel
launches by the same application. Each kind of memory has ownaccess cost, the global memory
accesses are the most expensive.

In previous workMiranda N.(2010), Miranda N. and A.(2010b), Miranda N. and A.(2010a),
we presented an audio fingerprint that was implemented through mixed model based on CPU-
GPU architecture, some task were solved in GPU and the othersin CPU.Its performance was
good despite this solution did not take advantages of all GPUresources. In this work, we pro-
pose implement the whole audio fingerprint system in a pure GPU model, using all properties
offered by GPU: shared memory, atomic functionsSanders and Kandrot(2010), coalescing ac-
cess, among others.

The paper is organized as follows: in sections2, we explain the complete process of obtaining
a sequential AFP. Next, we show all the process implemented in GPU. In section4, we analysis
the implementation and its results. Finally, the conclusions and future works are exposed.

2 SEQUENTIAL AUDIO FINGERPRINT PROCESS

The first task of an audio-fingerprinting system is to extractfeatures from the signal. The
audio signal is processed on a frame by frame basis, i.e. it issplit into frames of equal size and
the AFP process is applied to each themIbarrola(2007). A frame of signal is a short segment
of audio. The figure1 shows AFP process. In theFrame Normalizationstage, the stereo audio
signals are converted to mono aural, an amplitude normalization is frequently used to make the
AFP robust to changes in volume. When we split the signal, we considered an overlap of50%,
it ensures a slow variation of the extracted features.

Actually, there are systems that extract signal features directly in time domain as inKurth and Scherzer
(2003) where the sign of the time derivative of the signal was foundto be robust to lossy com-
pression and low-pass filtering. However, most systems extract signal features in the frequency
domain using a variety of linear transforms such as the Discrete Cosine Transform, the Dis-
crete Fourier Transform, the Modulation Frequency Transform Sukittanon and Atlas(2002)
and some Discrete Wavelet Transforms like Haar’s and Walsh-Hadamard’sSubramanya et al.
(1999). Therefore in the phaseComputation of FFT and Hanning, the signal is transformed

Mecánica Computacional Vol XXX, págs. 3033-3044 (2011) 3035

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

from time domain to frequency domain using the Fast Fourier Transform (FFT). Previuosly a
window, Hanning window, is employed to reduce edge effects and emphasize the signal near
the middle of the frame.

Entropy Calculation

Obtain the Fingerprint

Signal Normalization

Computation of FFT and Hanning

For each Frame of Audio Signal

Histogram Computation of Frame

Get the Histogram Complemet

Split Frame in Bands and Compute its Histogram

Obtain the Entropy Band

Frame Discretization
!

Figure 1: Sequential Audio Fingerprint Process

TheEntropy Calculationstage includes many tasks. First, the frame is split in two parts, the
real and imaginary parts then each part is transformed to a vector of discrete values, i. e. the
continuous values are converted to discrete values. To represent each elements of a frame have
been used 8 bits, hence each discrete data will take one of value between 0 and 255. After that
the histogram of frame is calculated to obtain the estimation of Probability Density Function
(PDF).

The histogram is a fast and simple method to estimate the entropy, it is a good method when
the online determination of the PDF of an audio stream is done. In this case, the certainty of
the histogram method is ensured by the fact that thousands ofaudio samples will be used at
building the histogram.

Besides the histogram, there are other methods like parametric and non-parametric. The first
methods are advisable when the distribution is known a priori and the amount of data involved
is not largeBercher and Vignat(2000). For non-parametric methods, no assumptions are made
about the distribution of the PDF belongs to. The PDF is shaped by the data that, in turn, are
smoothed by some kernel. They are computationally expensive and so not frequently used for
real time pattern recognition applications.

In the subtaskSplit frame in bands and compute its histogram, the frame is divided in bands
according to the Bark scaleZwicker (1961). The Bark scale defines 25 critical bands, the first
24 corresponding to the bands of hearing. The last, 25, is discarded since only the youngest
and healthiest ears are able to perceive. For any given bandb, the elements of the frame corre-
sponding tob are used to build two histograms, one for the real parts and another one for the
imaginary parts of these elements. After that get the histogram complement (it is the differ-
ence between the frame histogram and band histogram), it is used to estimate the probability
distribution function.

Finally, once the entropy of each bandb is obtained (the entropy ofb is the sum between
the corresponding entropies of real and imaginary parts). Equation (1) states how the bit corre-
sponding to bandb and framen of the AFP is determined using the entropy values of framesn

N. MIRANDA, F. PICCOLI, E. CHAVEZ3036

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

andn− 1. Only 3 bytes (i.e., 24 bits) are needed for each frame of audio signal.

F (n, b) =

{

1 if [hb(n)− hb(n− 1)] > 0
0 Otherwise

(1)

The AFP of signal is formed by many AFPs, each belongs to a frame. All of them are
calculated in sequence. The next section, we introduce how to compute AFPs using GPU.

3 AUDIO FINGERPRINT PROCESS ON GPU

Figure2 illustrates the parallel AFP process. The problem is particularly well suited for mas-
sive parallel processing. This joins with the GPU benefits: many-cores architecture, memory
hierarchy and atomic functions, we implement a faster AFP process using GPU as a parallel
computer.

. . .

. . .

. . .

. . .

Signal

Audio

Hanning

and

FFT

Entropy

AFP(Frame0)

Frame0

Fingerprinting

Hanning

and

FFT

Entropy

AFP(Frame1)

Frame1

Fingerprinting

Hanning

and

FFT

Entropy

AFP(Framen-2)

Framen-2

Fingerprinting

Hanning

and

FFT

Entropy

AFP(Fram3n-1)

Framen-1

Fingerprinting

Figure 2: Parallel Audio Fingerprint Process

The GPU AFP process has three main stages, all of these are applied sequentially on every
frame of signal. The audio signal is split into frames with fixed length of 16 KB (this size is
equivalent to a frame duration of 370ms, which is adequate for entropy computation). Like in
the sequential process, all frames are overlapped50% to ensure a slow variation of the extracted
features. Each frame is processed in parallel by a block of threads. A block calculates the AFP
of a frame using up to 256 threads. If the audio signal hasN frames thenN blocks are launched
in GPU to get together the AFP (The total number of threads isN × 256). The output of GPU
AFP process areN − 1 vectors of twenty-four bits, the each vector is AFP of a frame.

The AFP process in GPU needs two data transfers between CPU and GPU

1. From CPU to GPU: At the beginning of AFP process, the CPU saves the data global
memory of GPU. The data are the whole normalized audio signaland auxiliary data
needed for different stages of process.

2. From GPU to CPU: This transfer is made at the end of AFP process.

The GPU AFP process is implemented through threekernels, each of them corresponding to
each stages in figure2. Thekernelsare executed in sequence and no data movement is necessary
between them. For two firsts kernels, there areN blocks each has 256 threads. In the last kernel,
there areN − 1 blocks of one thread each one.

In the next sections, we discuss each stages of the processing to obtain the AFP.

Mecánica Computacional Vol XXX, págs. 3033-3044 (2011) 3037

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3.1 Hanning and FFT Stage

To compute this stage, the computing is divided in two main phases: the first is Hanning
window and Bit-reverse order. The second phase is the FFT calculus. Each phase has the next
characteristics:

• Hanning window and Bit-reverse order: Each frame of audio signal is emphasized near
the middle through the applying of Hanning window. This taskreduces de edges effects.
After, the emphasized frame is arranged according to bit-reverse vector. The bit-reverse
vector indicates where the frame component will be placed (Each even index element in
the first part of the frame is swapped with its corresponding even index element in the
second part of the frame). All frames share the bit-reverse vector, in consequence, it is
calculated in CPU and saved in GPU global memory for every threads can access it.

• FFT: In this second phase, the FFT computation takes place properly. We implemented
the FFT algorithm based on the original algorithm of Cooley and TukeyCooley and Tukey
(1965). The inverse and direct FFT can be computed changing a single parameter. The
sample is divided in two subsets of size half the original size, using the Danielson Lanc-
zos theoremDanielson and Lanczos(1942). This process is repeated recursively or itera-
tively until the trivial problem (The problem cardinality is two). In this case, it is iterative
because the CUDA does not allow the recursion.

In this phase, the GPU needs other auxiliary data: the weightvector. It has same charac-
teristic of bit-reverse vector, it is the same for all frame.Then it is calculated previously
by CPU and saved to global memory of GPU.

For each frame, a block of threads solves this stage. We fixed 256 threads to be executed in
parallel. As the number of threads is smaller than the vectorsize (16KB=16384 components),
each thread will work on a fraction of the data, it has 64 components (16384/256).

The output of FFT is the same signal frame but in the frequencydomain. It is a vector of
complex number. The next steps of AFP work with two vectors, the vector of real components
and vector of imaginary components.

3.2 Entropy Stage

As we said in section 2, the entropy based in histograms is a good choice, besides the entropy
of a signal is a measure of the amount of information that the signal carriesIbarrola(2007). The
Shannon’s entropyShannon and Weaver(1949) is a good candidate to identify a signal through
an unique value. Small perturbations on the sample values ofX produce smaller perturbations
on the measured entropy. If the sample values ofX are denoted by{xi} then entropy is defined
as

H(X) = −
255
∑

i=0

p(xi)ln(p(xi)) (2)

wherep(xi) is the probability that the signal takes valuexi. It is computed using Laplace’s
formulap(xi) =

f(xi)
N

. f(xi) is the number of times that valuexi occurs in the sequenceX and
N is the frame size.

As the entropy stage implies many tasks, we call them phases.In order, the phases are:
Translation to Discrete Vector, Final Band Histogram and Band Entropy. All phases are applied

N. MIRANDA, F. PICCOLI, E. CHAVEZ3038

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

to two vectors: vector of real components and vector of imaginary components. The figure3
shows the whole entropy stage and the all its phases.

Hanning
and FFT

To Discrete

Value

Hist.

Band0

Band24

Hist.

Hist.

-

-

Entropy

Entropy

. . .

. . .

. . .

To Discrete

Value

Hist.

Band0

Band24

Hist.

Hist.

-

-

Entropy

Entropy

. . .

. . .

. . .

+

+

B0

B24

Final
Entropy

. . . Fingerprinting AFP

Im
a
g
in
a
ry

C
o
m
p
o
n
e
n
ts

R
e
a
l

 C
o
m
p
o
n
e
n
ts

!Complement

Histogram

! ! !

Entropy StageHanning and
FFT Stage

Fingerprinting
Stage

Figure 3: Entropy stage for each frame of signal

Each phase has the next characteristics:

• Translation to Discrete Vector: The continuous values have to be converted to discrete
values. This implies to obtain the maximum and minimum values to determine the inter-
val between them. The interval is divided in 256 subintervals and each value in a frame
is assigned to one of them.

• Final Band Histogram: Many steps are needed to calculate the final histogram. Oncethe
frame is converted to two vectors (real and imaginary parts)of discrete values between 0
and 255, the histogram is calculated. It is about 256 different values.

In the previous implementations, the histograms were calculated using global memory.
Although the obtained results are good, we can improve them using shared memory to
reduce the global memory accesses (The shared memory is on-chip memory, it is shared
by all threads of a block and is faster to access than global memory). In this proposal,
the histogram is calculated directly over a 256-element vector that is allocated in shared
memory. Each thread accesses directly at its correspondinglocation, which is defined by
current discrete value of frame vector. The threads accesses to shared memory can present

Mecánica Computacional Vol XXX, págs. 3033-3044 (2011) 3039

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

conflicts (Two or more threads operate simultaneously over the same memory address).
This problem is resolved using the atomic functionsSanders and Kandrot(2010). If two
or more threads want to access the same memory address, they are serialized.

After the histogram of the whole frame is calculated, the frame is divided in 24 critical
bands according to Bark scale (see section2) and twenty four histograms are calculated,
one for each band. As the bands can be obtained with a standardfilter bank tuned with
the corresponding frequencies of the bark scale, their limits are the same for every frame,
in consequence they can be computed in advance and read by each thread of the grid. In
this proposal, the limits are calculated at the beginning and save to the constant memory
of GPU (off-chip readonly memory with cached accesses). This design decision allows
to improve the application performance.

From the total and band histograms, we calculate the complement histogram.

The whole process is applied twice, one for the real components and the other to the
imaginary components, see figure3. Consequently, the output of this phase is the real
and imaginary histograms of each band. These histograms arethe input of Band Entropy
stage

• Band Entropy: Each elementi of complement histogram represents the frequency ofi−th

element (f(i)). It is necessary to obtain the probability according to Laplace’s formula
f(i)
N

, whereN is the total elements of frame (16384) minus the quantity of elements in
the current band. Each thread calculates a probability,p(xi) and thep(xi) × ln(p(xi)).
Finally the thread results are added. This operation is a sumreduction and it is made in
parallelSanders and Kandrot(2010).

The output is a twenty-element vector, its component is the sum of real and imaginary
entropies of each band.

In this stage, a block computes the frame entropy. Each blockhas 256 threads, in con-
sequence each of them is responsible of a data subset (The same case that FFT stage). The
synchronization points are necessary between two continuous phases.

The output data of Entropy stage areN vectors, one per frame, whose 24 components are
the entropy values of each band.

3.3 Fingerprinting Stage

Once entropy is computed for every frame of audio, the AFP canbe calculated according to
equation1. The parallel implementation in GPU launches many blocks asframes exist. In this
implementation, we defineN − 1 block with one thread. Each block calculates the frame AFP
from its entropies.

Finally, all frame AFPs have to be moved to CPU.

4 ANALYSIS AND RESULTS

In the previous GPU AFP implementations, even though we reached good performance, they
did not take advantage of every characteristics of GPU. To improve the GPU AFP process, we
consider using memory hierarchy of GPU.

In the next section, first, we detail first the GPU used and characteristics of the audio signal:
size MB and frame number. Following, we show the results obtained in different GPU for each
signal.

N. MIRANDA, F. PICCOLI, E. CHAVEZ3040

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

4.1 Proof Environment

The analysis was made for four GeForce GPU: GT320M, GT330M, GTX 260 and the GTX
470 whose characteristics are:

GT 320M GT 330M GTX 260 GTX 470

Global Memory 265027584 bytes 536150016 bytes 938803200 bytes 1341325312 bytes
SM 6 6 27 14
SP 48 48 216 448

Clock rate 950 MHz 1040 MHz 1242 MHz 1215 MHz
Compute Capability 1.2 1.2 1.3 2.0

The six audio signals are songs of different sizes, the next table details the characteristic of
six songs, its size and number of frame.

Audio ID A-16MB A-26MB A-46MB A-116MB A-164MB A-218MB

size MB 16 26 45.7 116.1 164.4 218
Frames 510 831 1462 3540 5015 6654

Each reported value is the averages of many executions of corresponding algorithm that
detailed above.

4.2 Experimental Results

The first proposal resolved everything through the global memory and registers. As the GPU
has a memory hierarchy with different costs of access, this work presents the results obtained by
the use of constant and shared memory in AFP stages. The main changes were in the entropy
stage. In this stage, two tasks were improved: the histogramcomputation and division of a
frame according to Bark scale.

The histogram computation is repetitive and very costly, more exactly, it is performed fifty
times for each audio frame (twenty five times for real components and twenty five for imaginary
parts). Moreover, if it is done using a memory with high latency access, the overall performance
will be affected. In this work, the histogram is implementedusing shared memory and atomic
functions. They are necessary to manage access conflicts. Figure4 shows the time spent by
Entropy stage using memory global (GM) and using shared memory with atomic function
(SM − AF).

Results are better and the computation time is reduced drastically. These benefits are achieved
to expense of portability, GPUs with compute capability 1.2or grater are requiredNVIDIA
(2008).

Other kind of GPU memory is the constant memory, we use it to save the limits of each band.
The limits are the same for all frames, in consequence they are computed at the beginning in
CPU and saved in the constant memory of GPU. Every thread of applications can read it faster
than the global memory. The corresponding times of two implementations are detailed in the
next table, figure5. In this case we considered the three larger audio signals.

The obtained times by implementation with constant memory are a little better than the
implementation with global memory. The difference is not great because the volume of data is
small.

Mecánica Computacional Vol XXX, págs. 3033-3044 (2011) 3041

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

GPU

Time

!"#$%&'

!"($%&'

!"#$(%&'

)'
#'
*'
+'
('
,'
$'
-'
.'

%
/
0
'1
23
4
5
2'

!
63
0
'7
8
5
9/
:
'

%
/
0
'1
23
4
5
2'

!
63
0
'7
8
5
9/
:
'

%
/
0
'1
23
4
5
2'

!
63
0
'7
8
5
9/
:
'

%
/
0
'1
23
4
5
2'

!
63
0
'7
8
5
9/
:
'

+*)'
++)'

*$)'
(-)'

!"#$%&'

!"*$%&'

!"($%&'

!"##$%&'

!"#$(%&'

!"*#.%&'

!"

#"

$"

%"

&"

'"

("

)"

*"

+
,
"

-
,
./
0
"

+
,
"

-
,
./
0
"

+
,
"

-
,
./
0
"

+
,
"

-
,
./
0
"

+1%$!,"
+1%%!,"

+12$(!"
+12&)!"

/.#(,3"

/.$(,3"

/.&(,3"

/.##(,3"

/.#(&,3"

/.$#*,3"

Entropy Time

m
s

Figure 4: Global Memory Histogram vs Shared Memory Histogram

GPU Impl. Type A-116MB A-164MB A-218MB

GT320M
GM 0.0133 0.0135 0.0139
CM 0.0127 0.0124 0.0126

GT330M
GM 0.0203 0.0250 0.0197
CM 0.0181 0.0154 0.0155

GTX260
GM 0.016 0.0156 0.014
CM 0.013 0.0116 0.011

GTX470
GM 0.007 0.0077 0.0076
CM 0.0067 0.0067 0.0068

Figure 5: Time of Entropy stage using Global Memory (GM) and Constant Memory (CM)

Respect to general application, the improvements in entropy stage increased significantly the
performance GPU AFP process. The figure6 displays the total time obtained in both applica-
tions.

The table in figure7 shows the speedup of the pure computation step, without considering
data transfers. For massive audio fingerprinting a multiplebuffer strategy should be imple-
mented to take care of data transfers between disk, the CPU memory and the GPU memory. In
other words, a continuous flow of data should be ensured from the disk to the CPU and from
the CPU to the GPU. This will ensure a maximum resource usage in the GPU.

Observe the speedup increase as more of the data zone of the GPU is used.

5 CONCLUSIONS AND FUTURE WORK

In this work, we sketched the basic characteristics of theGPUAFP process. This process
obtains the AFP for an audio signal from the parallel processing of its frames. A frame is a
signal fragment of 16KB length. All frames are processed simultaneously, if the whole audio
signal can be accommodated in the GPU RAM.

Through of the use of GPU memory hierarchy, we optimized and got very well results re-
spects of process performance and resource demand, we reduced the global memory accesses
and the transfers between CPU and GPU. We obtained very good speedup, mainly for bigger
data size.

At this moment we are working over data transferring betweenCPU and GPU. The transfer-

N. MIRANDA, F. PICCOLI, E. CHAVEZ3042

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

'#!!!"

'$!!!"

'%!!!"

'&!!!"

()" *(+,-" ()" *(+,-" ()" *(+,-"

).//!(").0#%!").0$1!"

,+'%(2"

,+#%(2"

,+$%(2"

,+''%(2"

,+'%$(2"

,+#'&(2"

m
s

AFP Time

Figure 6: Total time of two GPU AFP implementation

Audio ID A-116MB A-164MB A-218MB

GT320M 443,10 762,95 832,972
GT330M 299.302 354.56 388.941
GTX260 46.03 47.77 196.94
GTX470 67.29 70.84 72.29

Figure 7: Speedup of GPU AFP

ring the WAV file to the data memory in the GPU is costly. It is usual to have the audio available
in mp3 or other compression format with size is about one tenth of the WAV file. Transfer-
ring the mp3 file to the GPU and there decompress the stream, that probably will increase the
speedup, compared to the sequential process. We will also try with a number crunching (double
precision) GPU instead of a gamer version to improve the quality of the AFP.

REFERENCES

Bercher J. and Vignat C. Estimating the entropy of a signal with applications.IEEE Transac-
tions on Signal Processing, 48(6):1687–1694, 2000.

Cooley J. and Tukey J. An algorithm for the machine calculation of complex fourier series.
Math. Comput., 19:297â̆AŞ301, 1965.

Danielson G.C. and Lanczos C. Some improvements in practical fourier analysis and their appli-
cation to x-ray scattering from liquids.J. Franklin Institute, 233:365â̆AŞ380 and 435â̆AŞ452,
1942.

Haitsma J. and Kalker T. A highly robust audio fingerprintingsystem. InInternational Sympo-
sium on Music Information Retrieval ISMIR. 2002.

Ibarrola A.C. and Chavez E. Real time tracking of musical performances. InMICAI, volume
To appear. 2010.

Ibarrola J.A.C.Análisis digital de la señal de voz. Ph.D. thesis, Universidad Michoacana de
San Nicolás de Hidalgo, México, 2007.

Mecánica Computacional Vol XXX, págs. 3033-3044 (2011) 3043

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Kurth F. and Scherzer R. A unified approach to content-based and fault tolerant music recogni-
tion. In 114th AES Convention, Amsterdam, NL.2003.

Miranda N. Piccoli F. C.E. Using gpu to speed up the process ofaudio identification. InI2TS
2010 - 9th International Information and Telecommunication Technologies Symposium.IEEE
- R9, 2010. ISBN 978-85-89264-11-2.

Miranda N. Piccoli F. C.E. and A. C.I. Fast gpu audio identification. In16vo Congreso Ar-
gentino de Ciencias de la Computacion (CACIC 2010), page 229:242. 2010a. ISBN 978-
950-9474-49-9.

Miranda N. Piccoli F. C.E. and A. C.I. Finding audio fingerprinter using gpu. InIX Congreso
Argentino de Mecanica Computacional - XXXI Congreso Iberico Latinoamericano de Meto-
dos Computacionales en Ingenieria (Mecom - Ciilamce 2010), page 3107:3126. 2010b. ISSN
1666-6070.

NVIDIA. Nvidia cuda compute unified device architecture, programming guide version 2.0. In
NVIDIA. 2008.

Sanders J. and Kandrot E.CUDA by Example, An Introduction to General Purpose GPU Pro-
gramming. 2010. ISBN 978-0-13-138768-3.

Shannon C. and Weaver W.The Mathematical Theory of Communication. University of Illinois
Press, 1949.

Shin S., Kim O., Kim J., and Choil J. A robust audio watermarking algorithm using pitch
scaling. In14th International Conference on Digital Signal Processing, volume 2, pages 701
– 704. 2002.

Subramanya S., Simha R., Narahari B., and Youssef A. Transform-based indexing of audio data
for multimedia databases. InInternational Conference on Multimedia Applications. 1999.

Sukittanon S. and Atlas E. Modulation frequency features for audio fingerprinting. InIEEE,
International Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 2,
pages 1773–1776. University of Washington USA, 2002.

Wang A. An industrial strength audio search algorithm. InInternational Conference on Music
Information Retrieval (ISMIR). 4th International Conference on Music Information Retrieval,
Baltimore, Maryland, USA, October 27-30, 2003, 2003.

Zwicker E. Subdivision of the audible frequency range into critical bands.The Journal of the
Acoustical Society of America, (33), 1961.

N. MIRANDA, F. PICCOLI, E. CHAVEZ3044

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	Introduction
	Sequential Audio Fingerprint Process
	Audio Fingerprint Process on GPU
	Hanning and FFT Stage
	Entropy Stage
	Fingerprinting Stage

	Analysis and Results
	Proof Environment
	Experimental Results

	Conclusions and Future Work

