
MULTI-OBJECTIVE OPTIMIZATION OF THE DYNAMIC OF A
BRIDGE PILLAR AND A TRUSS STRUCTURE SUBJECTED TO

RANDOM LOAD BY A NEW HYBRIDIZED METHOD

Emmanuel Pagnaccoa, Hafid Zidania,b, Rubens Sampaioc, Rachid Ellaiab and Jose E.
Souza de Cursia

aLMR, EA 3828, INSA Rouen BP 8, 76801 Saint-Etienne du Rouvray, France,
emmanuel.pagnacco@insa-rouen.fr

bLaboratory of Study and Research for Applied Mathematics, Mohammed V-Agdal University,
Engineering Mohammadia School, Rabat, BP. 765, Ibn Sina avenue, Agdal, Morocco,

ellaia@emi.ac.ma, hafidzidani@yahoo.fr

cPUC-Rio, Mechanical Eng. Dept. Rua Marquês de São Vicente, 225 22453-900 Rio de Janeiro RJ.
Brazil, rsampaio@puc-rio.br

Keywords: Representation formula, Nelder-Mead, Multi-objective optimization, Structural
dynamics, Mechanical design, Random process, Normal Boundary Intersection approach, Pareto
front.

Abstract. In this paper two linear dynamic mechanical problems involving random Gaussian load-
ing are considered for their design through multi-objective optimization problems involving the mean
and the standard deviation. It is also presented a new hybridization, called Representation Formula
Nelder-Mead, RFNM, for solving global optimization problems. This new hybridization, motivated by
the Pincus representation formula hybridized with Nelder-Mead Algorithm, is proposed to solve the two
multi-objective optimization problems. The Pincus representation formula gives a good approximation
of the global minimum and once one is near the minimum the Nelder-Mead algorithm converges to it
rather quickly. The Pincus representation is obtained generating through an uniform distribution a se-
quence of points and computing an approximation of the minimum; this is done a certain number of
times until convergence is achieved.

The first problem is a design of a pillar geometry with respect to a compressive random load process.
The second problem is the design of a truss structure with respect to a vertical random load process for
several frequency bands. In both problems, the load is characterized by an ergodic, stationary, Gaussian
random process. To generate the Pareto front, the Normal Boundary Intersection (NBI) method is used
to produce a series of constrained single-objective optimizations. The penalty method is introduced to
deal with the new constrains introduced by NBI and in order to put the problems in the framework of
the RFNM algorithm used in the single-objective optimizations. The second problem, depending on
the frequency band of excitation, can have as Pareto curve a single point, a standard Pareto curve, or a
discontinuous Pareto curve. Hence, it is showing through this simple example that difficult situations can
occur for designing the mechanical systems when considering their dynamic responses due to random
loads, even for this simple situation. But the strategy proposed here have shown its ability to give
valuable results, able to help designers to choose for the best compromise between the mean and the
standard deviation for this kind of problems.
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1 INTRODUCTION

Engineering optimization problems can be very complex and quite difficult to be approx-
imated. They usually are multi-objective and have some stochastic part associated with the
parameters or the load. For a multi-objective problem the solution can be viewed as the Pareto
front of the problem and an engineering design requires some trade-off among different opti-
mization criteria. In this work, we treat two structural dynamic problems with random loads.
Due to the normality of the load process and the linearity of the mechanical problem, the random
design problem will be transformed into a deterministic multi-objective optimization problem
for the moments of the displacement, hence eliminating the randomness. In this paper only
two moments will be considered, the mean and the standard deviation of the temporal dis-
placement. The first problem is somewhat standard and the resulting Pareto curve presents no
novelty. The second problem is more interesting and the position of the optimal point for the
variance changes with the frequency band chosen for the load. For some frequency bands the
Pareto curve is discontinuous, see Fig. 10. To construct the Pareto curve of the multi-objective
optimization problem the strategy is first to transform the problem into a sequence of single-
objective with constraints problems using the NBI methodology.

The existing literature on Optimization presents intensive research effort to solve some diffi-
cult points, which remain still incompletely solved and for which only partial response has been
obtained. Among these, we may cite : handling of non-convexity - specially when optimization
restrictions are involved, working with incomplete or erroneous evaluation of the functions and
restrictions, increasing the number of optimization variables up to those of realistic designs in
practical situations, dealing with non-regular (discontinuous or non-differentiable) functions,
determining convenient starting points for iterative methods (Floudas et al., 2009; Davidor,
1990).

We observe that the difficulties concerning non-convexity and the determination of starting
points are connected: efficient methods for the optimization of regular functions are often de-
terministic and involve gradients, but depend strongly on the initial point - they can be trapped
by local minima if a non convenient initial guess is used. Alternatively, methods based on the
exploration of the space of the design variables to search for global solutions, not local ones,
usually involve a stochastic aspect - thus, a significant increase in the computational cost - and
are less dependent of the initial choice, but improvements in their performance request combina-
tion with deterministic methods and may introduce a dependence on the initial choice. Methods
designed to find global solutions tend to the use of hybrid procedures, a random search of the
space of parameters and, when near the optimum point using methods of quick convergence.
They try to benefit from the best of each method - by these reasons, the literature about mixed
stochastic-deterministic methods has grown in the last years (Chelouah and Siarry, 2005; Fan
and Zahara, 2007; Lee and El-Sharkawi, 2008; Ivorra et al., 2011).

In this paper such a hybrid algorithm is introduced to deal with single-objective optimization
problems. By using the penalty method, the problem is put in a framework that allows the use of
the modified Pincus algorithm to find a good initialization and then the Nelder-Mead algorithm
is used to find a better approximation. This strategy leads to a new algorithm named Represen-
tation Formula Nelder-Mead, RFNM. Hence, the RFNM algorithm use a representation formula
to provide a convenient initial guess of the solution. It is a hybrid method for solving optimiza-
tion problems using a coupling of the representation formula proposed by Pincus (1968) and
Nelder-Mead algorithm. The representation formula is used first to find the region containing
the global solution, and then Nelder-Mead is used to obtain a more accurate approximations.
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In this paper, two practical engineering multi-objective optimization problems are presented.
One concerning the design of pillar geometry and another the design of a truss structure. In
both problems, the load is characterized by an ergodic, stationary, Gaussian random process.
To obtain their Pareto front, the NBI methodology is involved with the penalty method, and the
resulting subproblems are solved with the help of the RFNM algorithm.

The paper is organized as follows: Section 2 presents the NBI method to generate Pareto
front, and the penalty method is recalled in order to deal with constrained subproblems gener-
ated by NBI. The representation formula will be mentioned in Section 3, as well as the Nelder-
Mead algorithm. Finally, the pillar design and the truss structure design problems are demon-
strated in Section 4, followed by some concluding remarks in Section 5.

2 MULTI-OBJECTIVE OPTIMIZATION

2.1 Normal Boundary Intersection method

Multi-objective optimization involves the simultaneous optimization of several incommen-
surable and often competing objectives. In the absence of any preference information, a non-
dominated set of solutions is obtained, instead of a single optimal solution. These optimal
solutions are termed as Pareto optimal solutions. Stated in another way, Pareto optimal sets
are the set of solutions that cannot be improved in one objective function without deteriorating
their performance in at least one of the other objectives (Collette and P., 2003). In general, a
Multi-objective problem consists of a vector-valued objective function to be minimized, and of
some equality or inequality constraints, i.e.,

min F(x) = (f1(x), ..., f`(x))T

subject to di(x) ≤ 0 , i = 1, ....,m,
dj(x) = 0 , j = m+ 1, ...., p,

(1)

where x ∈ IRn is the vector of decision variables, f1, ..., f` are objective functions, d1, .., dm and
dm+1, .., dp are possible sets of inequality and equality constraints, respectively, which represent
the process model. This set of constraints defines the feasible space Ω, while the set of all
possible values of the objective function constitutes the objective space.

In this work, we are interested with the Normal Boundary Intersection (NBI) method (Das
and Dennis, 1998), which could produce an even spread of points on the Pareto front. NBI
works by transforming the non-linear Multi-objective optimization problem into a set of non-
linear programming subproblem. This recent strategy can be considered as the state of the art
regarding deterministic methods. NBI has a number of advantages over other existing methods,
including the possibility to obtain an even spread of points in the Pareto set (Das and Dennis,
1998). It uses a geometrically intuitive parameterization to produce a set of points on the Pareto
surface, giving an accurate picture of the whole surface. Given any point generated by NBI,
it is usually possible to find a set of weights such that this point minimizes a weighted sum of
objectives, as described above. Similarly, it is usually possible to define a goal programming
problem for which the NBI point is a solution. NBI can also handle problems where the Pareto
surface is discontinuous or non-smooth, unlike homotopy techniques. Unfortunately, a point
generated by NBI may not be a Pareto point if the boundary of the attained set in the objective
space containing the Pareto points is non-convex or ’folded’ (which happens rarely in prob-
lems arising from actual applications). NBI requires the individual minimizers of the individual
functions at the outset, which can also be viewed as a drawback. The formulation (1), however,
must be interpreted as an alternative way. Instead of one objective function, we have ` objec-
tive functions which we want to reduce subject to the constraints. Since some of the objective
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functions may conflict with others, one has to find an appropriate compromise depending on
priorities of the user. The ideal situation would be the existence of a vector x∗ with

(f1(x
∗), ..., f`(x

∗)) = (f ∗1 , ..., f
∗
` )

where each f ∗i , i = 1, ..., `, the individual minima of the corresponding scalar problem{
min fi(x)
subject to x ∈ Ω

(2)

for i = 1, ..., `. But of course this is an ideal situation and normally the individual minimum f ∗i
will be attained at different points. NBI essentially works by solving sequentially a set of single
nonlinear problems (NBI subproblems), which are defined as:

max
x,s

s

subject to Φ.w + s.n̂ = F (x)− f∗,
x ∈ Ω

(3)

Φ be the ` × ` pay-off matrix in which ith column is F(x∗i ) − f∗, where f∗ is the vector of
the individual minima (i.e., the utopia point or shadow minimum) and x∗i is the minimizer of

objective fi (i.e., minimizers of problem (2)). w is a vector of weights such that
∑̀
i=1

wi = 1,

wi ≥ 0, and n̂ is the quasi-normal direction which has negative components, i.e. it points
towards the origin. Φw defines a point on the so-called Convex Hull of Individual Minima
(CHIM). Then the set of points in IRn that are convex combinations of f ∗i − f∗, i.e, Φw, is
referred to as the CHIM.
Now let us illustrate algebraically how any such boundary point can be found by solving an
optimization problem. Given barycentric coordinates w, Φw represents a point in the CHIM.
Let n̂ denote the unit normal to the CHIM simplex pointing towards the origin, then Φ.w+s.n̂,
s ∈ IR represents the set of points on the normal. Thus, in traditional NBI, n̂ is chosen to
be −Φ.e where e is the column vector of all ones. The intersection between the normal to
the CHIM from the point and the boundary of the objective space F closest to the origin is
expected to be Pareto-optimal. This is done for various w, so that an equally distributed set of
them produces an equally distributed set of non-dominated points, which is an useful feature
for the decision-making process. If the Pareto set is convex and the individual minima of the
objective are the global ones, the solution to this problem is Pareto optimal.
The subproblem (3) shall be referred as the NBI subproblem and written as NBIw, since w
is the characterizing parameter of the subproblem. The solution of these subproblems will be
referred to as NBI points. The idea is to solve NBIw for various w and find several points on
the boundary of F , effectively constructing a point-wise approximation of the efficient frontier.
As indicated earlier, all NBI points are not Pareto optimal points. In bi-objective problems, for
every Pareto optimal point, there exists a corresponding NBI subproblem of which it is solution.

2.2 Penalty method

One common approach to deal with the constrained optimization problems such as the one
given by the problem (3) is to introduce a penalty term into the objective function to penalize
constraint violations (Luenberger, 1973; Avriel, 1976). The introduction of the penalty term
enables us to transform a constrained optimization problem into an unconstrained one, such as:
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minimize Fr,p = s+ rϕp (x)

with penalty

ϕp(x) =| Φ.w + s.n̂− F (x) + f∗ |p

where r > 0 is a positive penalty parameter and p the penalty exponent. If p = 1 it can
be proved that the penalty function is exact, i.e. for some sufficiently large value of r > 0
any global minimum is a global minimum. However, the exact penalty function is not always
differentiable at all points. For that reason the values p > 1, which guarantee differentiability,
are also used. In this case the solutions under mild conditions converge to a global minimum
when r −→ ∞, see ref. (Luenberger, 1973; Avriel, 1976). If r is too small, an infeasible
solution may not be penalized enough. If r is too large, a feasible solution is very likely to be
found, but could be of very poor quality. A large r discourages the exploration of infeasible
regions even in the early stages of evolution. This is particularly inefficient for problems where
feasible regions in the whole search space are disjoint. In this case it is difficult to move from
one feasible region to another unless they are very close to each other. Reasonable exploration
of infeasible regions may act as bridges connecting two or more different feasible regions. The
critical issue here is how much exploration of infeasible regions (i.e., how large r is) should be
considered as reasonable.

3 RFNM ALGORITHM

In order to find the Pareto front of optimization problems, we propose in this work to solved
the set of nonlinear programming subproblem obtained from the NBI method by means of a
hybrid Nelder-Mead simplex search with integral representation formula.

Nelder-Mead (Nelder and Mead, 1965) algorithm is well known for its popularity and ease
of use and does not need the derivation of the function under exploration. In this study, one in-
teresting feature of this algorithm is its ability to handle difficult to minimize objective functions
such that the one obtained here by using the penalty method. However, it is a local approach,
and is very sensitive to the choice of initial points and does not ensure to attain the global opti-
mum. Hence, It would be interesting to hybridize it with the formula method of Pincus (1970)
to generate the initial point. This hybrid method is proposed here and called RFNM. It is an
improvement of the Nelder-Mead algorithm by using first the representation formula to find the
region containing the global solution, based on the generating of finite samples of the random
variables involved in the expression and an approximation of the limits.

3.1 About the Representation Formula of Pincus

Let S denote a closed bounded regular domain of the n-dimensional Euclidean space IRn,
and let f be a continuous scalar function defined on S and taking its values on IR. A constrained
optimization problem can be formulated, in general, as follows :

x∗ = arg min
x∈S

f(x) (4)

In the literature, representation formulas have been introduced in order to characterize explicitly
solutions of the problem 4. In general, these representations assume that S contains a single
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optimal point x∗ (but many local minima may exist on S). For instance, Pincus (1968, 1970)
has proposed the representation formula :

x∗ = lim
%→+∞

´
S
x e−%f(x)dx´
S
e−%f(x)dx

. (5)

An extension to multiple minima may be found in Charnes and Wolfe (1989) and an approach
based on the boundedness of a sequence of integrals has been proposed by Falk (1973). More
recently, the original representation proposed by Pincus has been reformulated by Souza de
Cursi (2007) as follows: let X be a random variable taking its values on S and g : IR2 −→ IR
be a function. If these elements are conveniently chosen, then :

x∗ = lim
λ→+∞

E (X g (λ, f(X)))

E (g (λ, f(X)))
(6)

where E (•) denote the expected operator. The formulation of Pincus corresponds to g (λ, s) =
e−λs, which is a convenient choice. The general properties of X and g are detailed, for instance,
in Bez et al. (2004); Souza de Cursi et al. (2008). X is a convenient random variable (see, for
instance, (Souza de Cursi, 2007)) and these conditions are fulfilled, for instance, when X is
uniformly distributed or Gaussian.

This equation may be interpreted as a weighted mean of the points x ∈ S , where the weight
decreases when f(x) increases. The term g (λ, f(x)) in the representation formula vanishes
for points having values higher than f(x∗) when λ → +∞. Although this mathematical result
seems to be very attracting, it is very difficult to implement codes using this representation. In
this paper we suggest to use a numerical approximation based of finite samples of the random
variables involved in the expression and an approximation of the limit.

A numerical implementation can be performed by taking a large fixed value of λ in order to
represent the limit λ → +∞. In order to prevent an overflow, λ should be increased gradually
up to the desired value and it may be convenient to use positive functions f (for instance, by
adding a constant to the original f ). A finite sample of X is generated, according to a given
probability - this consists simply in generating N admissible points (x1, x2, ..., xN) ∈ S - and
estimations of the means are used to approximate the exact means, what leads to :

x∗ ' x∗c =

N∑
i=1

xi g (λ, f(xi))

N∑
i=1

g (λ, f(xi))

(7)

3.2 Nelder-Mead Algorithm

The Nelder-Mead algorithm (NM), or downhill simplex algorithm, has been proposed by
Nelder and Mead (1965). It is a simple direct search technique that has been widely used in
unconstrained optimization problems. One of the reasons for its popularity is that this method
is easy to use and does not need any derivative information. This is a very important feature in
cases where gradient information is not available. However, we should be very careful when
using this method since it is very sensitive to the choice of initial points and not guaranteed
to obtain the global optimum. This algorithm makes use of four scalar parameters: coefficient
of reflection (ϑ), expansion (χ), contraction (γ), and shrinkage (δ). According to the original
Nelder-Mead paper (Nelder and Mead, 1965), these parameters should satisfy :
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Figure 1: Sketch and dimensions of the pillar

ϑ > 0, χ > 1, χ > ϑ, 0 < γ < 1, and 0 < δ < 1.

In the standard Nelder-Mead algorithm, this coefficient are chosen as follows :

ϑ = 1, χ = 2, γ =
1

2
, and δ =

1

2
. (8)

This method starts with a simplex of n + 1 vertices, each of which is a point in IRn. These
vertices are labeled x1, x2, . . . , xn+1, such that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1). Since f is
to be minimized, x1 is the best point and xn+1 is the worst point. At each step in the iteration,
the current worst point xn+1 is discarded, and another point is accepted into the simplex. This
process continues until convergence is achieved.

4 TWO DESIGN PROBLEMS

4.1 Pillar Design Problem

The first problem considered is a design of a little bridge pillar having length L and made
from two parts (see Figure 1). The first part is made out of concrete, and the second is made of
steel. We denote the Young’s modulus and density by E1 and ρ1 for the concrete and E2 and
ρ2 for the steel. The concrete pillar geometry have a length L1 with a constant cross-section
area S1 while the steel pillar have a constant area S2 with a length L2 such that L = L1 + L2.
For the numerical application, we have chosen E1 = 3.6 × 1010 Pa, E2 = 2.1 × 1011 Pa,
ρ1 = 2500 kg/m3, ρ2 = 7800 kg/m3 and L = 15 m, while other quantities have to be found by
the optimization procedure. However, S1 and S2 have to be greater than some prescribed values
to ensure that the pillar is not irreversibly deformed and the material remains in the elastic range,
while L1 has to be greater or equal to 1 m in order to ensure the feasibility of the concrete pillar
foundation.

In this study, only the axial movement of the pillar is of interest, assuming the bottom at
y = 0 is fixed while the tip at y = L is subjected to a mean plus a fluctuating or a moving load.
From the linear continuum mechanic, when the damping, the gravity load and the transverse
effects are not considered, equations to be verified in the pillar are (Géradin and Rixen, 1996): −E1

∂2u
∂y2

= ω2ρ1u (y, ω) for 0 ≤ y ≤ L1

−E2
∂2u
∂y2

= ω2ρ2u (y, ω) forL1 ≤ y ≤ L
(9)
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with the boundary and compatibility conditions:
u (y, ω) = 0 for y = 0
−E2S2

∂u
∂y

= p (ω) for y = L

−E1S1
∂u
∂y

= E2S2
∂u
∂y

for y = L1

(10)

where u (y, ω) and p (ω) denotes respectively the deterministic longitudinal displacement field
and the tip load in the frequency domain, ω being the circular frequency. Moreover, the field u
has to be continuous everywhere in the pillar, thus also at the interface between the two parts
(which constitutes a second compatibility condition). Introducing the wave speeds c1 =

√
E1

ρ1

and c2 =
√

E2

ρ2
, the solution is sought in the form

u (y, ω) =

 C1 cos
(
ωy
c1

)
+D1 sin

(
ωy
c1

)
for 0 ≤ y ≤ L1

C2 cos
(
ωy
c2

)
+D2 sin

(
ωy
c2

)
for L1 ≤ y ≤ L

where Ci and Di are constants to be determined from the four boundary and compatibility
conditions. However, only the displacement u at the extremity y = L of the pillar is of interest
for the design. Introducing variables αi = ωLi

ci
and βi = EiSi

Li
αi for i = {1, 2}, it is found after

some manipulations that:

u (y, ω) =


sin

(
α1

x
L1

)
sin(α1)

u (y = L1, ω) for 0 ≤ y ≤ L1

sin

(
α2

L−x
L−L1

)
sin(α2)

u (y = L1, ω) +
sin

(
α2

L1−x
L1−L

)
sin(α2)

u (y = L, ω) for L1 ≤ y ≤ L

with:

u (y = L1, ω) =

(
β1

tan (α1) tan (α2)
− β2

)−1
p (ω)

sin (α2)

and
u (ω, y = L) = h (ω)× p (ω)

where h (ω) is the frequency response function of the pillar tip at x = L and is such that:

h (ω) =
1

β2

(
β1

tan (α1) tan (α2)
− β2

)−1 (
β1

tan (α1)
+

β2
tan (α2)

)

However, since real structures are damped, we added some light hysterectic damping in this
model by replacing real speed sound constants ci by complex speed sounds c̃i such that c̃i =
ci (1 + jηi) with the damping factors ηi having the arbitrary value ηi = 0.07.

In this problem, we are interested to design the pillar geometry in respect to a compressive
random load process P (t), where t denotes the time. This load is supposed to be a Gaussian er-
godic and stationary random process (Lin, 1967; Wijker, 2009). Thus, it could be describe by its
mean µp = E (P (t)) and its covariance function Σpp (τ) = E ((P (t)− µp) (P (t+ τ)− µp))

or its power spectral density (PSD) function Φpp (ω) =
´ +∞
−∞ Σpp (τ) e−jωτdτ . Hence, its prob-

ability density function is given by:

φ(p) =
1√

2πσ2
p

exp

(
−(p− µp)2

2σ2
p

)
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Figure 2: PSD and PDF of the load applied to the pillar

where σ2
p = Σpp (0) = 1

2π

´ +∞
−∞ Φpp (ω) dω is named the zero-th spectral moment or the variance

load. For the present example, the load of interest has a mean µp = 25, 000 N due to the roadway
and a PSD which can be represented by a generalized logistic function in order to modeled
experimental data (for instance, reference (Gillespie, 1992) shows some of these data):

Φpp (ω) =
κ

(1 + κ exp (−ζ (ω/2π − τ)))
1/ν

with κ = 150, 000, ζ = −0.15, τ = 150 and ν = 1.4. This PSD is plotted on Figure 2.
Since we consider a linear structure, the random response is also Gaussian for a Gaussian

load. It is thus sufficient to characterize this response by its mean µu and variance σ2
u. We have

µu = h (ω = 0)× µp

or
µu =

(
L1

E1S1

+
L2

E2S2

)
× µp

and σ2
u = 1

2π

´ +∞
−∞ Φuu (ω) dω with:

Φuu (ω) = h (ω) Φpp (ω)h (ω)

where • stands for the complex conjugate operator.
For the formulation of the optimization problem, the total mass of the pillar given by

m = ρ1S1L1 + ρ2S2L2

is fixed at a value m̂. This limitation about the mass is due to the allowable bearing capacity
which is the capacity of the soil to support the loads applied to the ground and is given by an
experimental geotechnical study. While this experimental study is not achieved, it would be
interesting to find the optimal design solution for several arbitrary value m̂. In addition, there is
a lower limitation for the two areas S1 and S2 to ensure the pillar will rest in the elastic range.
Such limitations have to be evaluated from the allowable stress which is issue of compressive
yield strength of the considered materials and when considering a safety margin. In this study,
this is ensure if both areas are greater than 0.0002 m2.
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Engineering with a classical one goal optimization strategy consist generally in finding pa-
rameters which minimize the mean displacement plus a given amount of the standard deviation
(three times the standard deviation is usually chosen for a Gaussian random variable). In this
study, we examine instead the Pareto front of a two-objective optimization, the first being the
mean and the second being the standard deviation. This enable to choose the best design from
additional engineering constraints, such as a best compromise between the mean stress which
has to be supported by materials and a prescribe level of vibration, knowing it is an acceptable
level of human comfort.

Finally, the optimization problem is formulated in the following form:
min F (S1, S2, L1) = (µu (S1, S2, L1) , σu (S1, S2, L1))

T

subject to Si ≤ 0.0002, i = 1, 2,
1 ≤ L1 ≤ 15,
ρ1S1L1 + ρ2S2 (L− L1) = m̂

where m̂ is a parameter to be chosen.
For all optimization with fixed mass m̂, limitations on area are not active since optima are

found for L1 = 1 m, meaning that the pillar have to be made with steel is the best one (except
for the imposed concrete foundation). This have a good physical sense when considering the
density of each material and the limitation imposed for the mass. However, the best mean dis-
placement and the best standard deviation are obtained for different values of design variables
S1 and S2. For instance, when the total mass is fixed at m̂ = 1, 000 kg, the best mean displace-
ment, which has a value of 0.219 mm, is achieved for S1 = 0.036 m2 and S2 = 0.0083 m2,
while the best standard deviation displacement, which has a value of 0.0513 mm, is achieved
for S1 = 0.056 m2 and S2 = 0.0079 m2. When the total mass is fixed at m̂ = 1, 500 kg, the
best mean displacement, which has a value of 0.146 mm, is achieved for S1 = 0.053 m2 and
S2 = 0.0125 m2, while the best standard deviation displacement, which has a value of 0.0342
mm, is achieved for S1 = 0.082 m2 and S2 = 0.0118 m2. As it is expected, all the objectives
have best values when considering a higher total mass. The PDF of the tip displacement for
these two mass cases are presented on the Figure 3. Two curves are plotted for each situation,
one (for the best standard deviation) with a thick line and the other (for the best mean) with a
dashed line to show both optima.

Finally, optimization results are easily found from the NBI methodology with the RFNM
algorithm and the Pareto front obtains for the two mass cases are presented on the Figure 4.
These graphics shows that the Pareto front has a standard continuous and convex shape, which
help to choose for the best compromise between the mean and the standard deviation of the tip
of the pillar.

4.2 Truss structure design

As a second application, we consider a two-bar truss (see Figure 5). Both bars are made of
steel. We denote E and ρ the deterministic material properties (Young’s modulus and density)
of the steel. The horizontal bar have a length L1 with a constant area S1 while the other bar have
a constant area S2 with a length L2 such that L2 = L1

cos(θ)
where θ = π

4
rd. is the angle between

the two bars. For the numerical application, we have chosen E = 2.1 × 1011 Pa, ρ = 7800 m3

and L1 = 1 m, while other quantities have to be found by the optimization procedure. However,
arbitrary bounds for the areas are defined such that 2.2 < S1 < 20 and 5 < S2 < 10 if there are
expressed in mm2.
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Figure 3: Tip response displacement PSD and PDF for a 1,000 (left) and a 1,500 kg (right) pillars
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Figure 5: Sketch and dimensions of the two-bar truss

In this study, left ends of the two bars are clamped while the right end is subjected to a mean
plus a fluctuating load. First-order finite elements are used to model the bar. From the assembly
of the two finite element and when boundary conditions are taken into account, we obtain the
discrete global equilibrium (Géradin and Rixen, 1996):(

K− ω2M
)

u (ω) = p (ω) (11)

having two degrees of freedoms u =

[
u
v

]
with u and v are the horizontal and vertical dis-

placement (respectively) and with the stiffness matrix K and mass matrix M such that:

K =

[
k1 + k2 cos2 (θ) k2 cos (θ) sin (θ)
k2 cos (θ) sin (θ) k2 sin2 (θ)

]
and M = m

[
1 0
0 1

]

where k1 = ES1L1 and k2 = ES2L2 and m = ρ
3

(S1L1 + S2L2). In this equation, the load

vector acts only in the vertical direction. It is such that p (ω) =

[
0

p (ω)

]
. The system (11) can

be inverted to leads to the vertical displacement, which is the displacement of interest:

v (ω) = h (ω)× p (ω)

where h (ω) is the frequency response function of truss and is such that:

h (ω) =

(
k2 (k1 − ω2m) sin2 (θ)

k1 − ω2m+ k2 cos2 (θ)
− ω2m

)−1

Notice that this response function can have both poles and zeros for some values of the design
parameters, leading to resonant and anti-resonant frequencies.

In this second problem, we are interested to design the truss in respect to a vertical load pro-
cess P (t) having a 200 Hz frequency band. This load is supposed to be a Gaussian, stationary
random process, and ergodic. Thus, it could be describe by its mean µp = 10, 000 N and its
PSD which can be modeled by a constant function over the limited range of frequencies:

Φpp (f) =

{
2000 if f1 ≤ f ≤ f2
0 if not
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Three frequency bands are investigated here: (f1, f2) = (0, 200), (100, 300) or (600, 800) Hz.
The last one, i.e. (600, 800) Hz, can include an anti-resonant frequency for some values of the
design parameters.

Since we consider a linear structure, the random response is also Gaussian for a Gaussian
load. It is thus sufficient to characterize this response by its mean µv and standard deviation σv.
We have

µv = h (ω = 0)× µp

or

µv =

(
1

k1 tan2 (θ)
+

1

k2 sin2 (θ)

)
× µp

and σ2
v = 1

2π

´ +∞
−∞ Φvv (ω) dω with:

Φvv (ω) = h (ω) Φpp (ω)h (ω)

In this problem, we are again interested to find the Pareto front of a two-objective optimiza-
tion, namely the mean and the standard deviation. The optimization problem is thus formulated
in the following form:

min F (S1, S2) = (µv (S1, S2) , σv (S1, S2))
T

subject to 22 ≤ S1 ≤ 200
50 ≤ S2 ≤ 100

Notice that for this problem µv is a convex function whereas σv is not. See Figures 7, 8, 9 for
a contour plot of these two functions in the frequency bands 0− 200, 100− 300, and 600− 800
Hz. The optimum of the mean, in all three cases, is located at the boundaries for the design
variables, for their maximum values; it is the point a in Figures 7, 8, 9. From the mechanical
equations, it is trivial since one can observe that the mean displacement is related to the static
deflexion mode. Hence it is a highly logical design, since using more material leads to a higher
truss stiffness, reducing consequently its global displacement. On the other hand, the variance
function has two minimum, located at the boundary of the domain. One of these minimum,
point a, being a local minimum for the design (S1, S2) = (200, 100), the other one being a
global minimum, point c, for the design (S1, S2) = (22, 100). Moreover, notice that this global
optimum is located in a deep valley. The physical reason of such a behavior comes from the
presence -or not- of the anti-resonant frequency in the range of interested (excited) frequencies.
In order to better understand this explanation, the complete PSD over a large frequency range
is presented on the Figure 6, showing the location of the resonant and anti-resonant frequencies
for the two optimal design.

In the first step, to obtain the utopia point, or, equivalently, the two extremal points of the
Pareto Front, the RFNM algorithm is used. Initial guess points for the NM algorithm are evalu-
ated with the Pincus representation formula presented in this work from a uniform distribution
having a one hundred sample size. Next, in the second step, other Pareto front point of this prob-
lem are given by the NBI method using n̂ = −Φ.e with e = (1, 1)T (by taking the proposal
of Das and Dennis (1998)) and a penalty parameter chosen to be r = 105. Each NBI points
are then given by the RFNM algorithm with the same parameters as in the first step. Depend-
ing on the stating point given by the Pincus representation formula, the Nelder-Mead algorithm
takes approximately 150 to 300 function evaluations to converge with relative stopping criteria
fixed at the value 10−3 for the improvement in both the performance function and the design
parameters.
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the frequency band (0, 200) Hz
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Figure 9: Response surfaces of the two-bar truss for the mean (left) and the standard deviation (right) over
the frequency band (600, 800) Hz

The Pareto front of this two-bar truss for the frequency band (0, 200) Hz is not presented
on some Figure, since it is reduces to only one, single point, indicating that both the mini-
mum mean and the minimum variance are achieve with same values for the parameters design,
namely the one with the maximum values for the both parameters. The Pareto front of this two-
bar truss for the frequency band (100, 300) and (600, 800) Hz are presented on the Figure 10.
For the frequency band (100, 300) Hz, the Pareto front has a standard continuous and convex
shape, since both function to be minimized has only one minima, locating at different design
parameters values for each one.

For the frequency band (600, 800) Hz, it can be observing that the Pareto front is discontin-
uous. Starting from the leftmost point, a = (1.58, 0.605), that is a Pareto point, the next Pareto
point in the curve is the one immediately below the first Pareto point. The intervening points are
not Pareto points. From a, that corresponds to (S1, S2) = (200, 100), the next point in Figure
10, b = (2.73, 0.65) corresponds to (S1, S2) = (200, 54) and the curve is for S1 = 200. The
discontinuity occurs and the point b′ = b, that now corresponds to (S1, S2) = (34.4, 100) and
begins another curve just to point c = (3.51, 0.472) that corresponds to (S1, S2) = (22, 100)
and this curve has S2 = 100. As one sees, the discontinuity in Pareto’s curve corresponds to a
discontinuity in the design variables. This is clearly seen on the Figure 9.

Results presented on the Figure 10-down-left shows also that the choice for n̂ is not adequate
for this problem and failed to give the even spread set of distributed points. In fact, Pareto front
points can be better distributed being careful to choose adequately the normal (e = (1, 0.3)T

for instance, in order to produce the Pareto front presented on Figure 10-down-right ).
These Pareto’s curves helps to choose the best compromise between the mean and the stan-

dard deviation of the truss vertical displacement.

5 CONCLUSIONS

Optimization of dynamical linear structures with Gaussian loading is investigated here through
two simple examples of mechanical design. Dimensioning these structures is generally a multi-
objective task in order to achieve a robust design. Moreover, it appears here for the second
example, which involves the minimization of the standard deviation of a simple two bars truss,
that the function is not convex with multiple minima for the frequency band (600, 800) Hz,
since it involves an anti-resonance frequency for some values of the design parameters.

Multi-objective problems are treated via a Pareto front. In order to construct this front, the
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Figure 10: Pareto front of the two-bar truss for the frequency band (100, 300) Hz (up) and (600, 800) Hz
(down)

NBI method in conjunction with the penalty method are applied successfully to transform the
two multi-objective problems of interest into unconstrained single-objective problems, while
the RFNM algorithm is proposed to solve them. The RFNM algorithm is a new hybridization
approach, based on the combination of a modified Pincus representation formula and the Sim-
plex (Nelder-Mead) algorithm. The main advantage of this hybridization is the high reliability
and stability of the algorithm, even when the penalty method is applied.

The results showed that RFNM is able to locate the global optimum with accuracy and it is
simple to be applied to general design problems although it is slightly expensive. They also
shows that the NBI method can produce an even spread set of Pareto points for an adequate
choice of the normal to the convex hull of the minima of the objective functions. While the
first problem is somewhat standard and the resulting Pareto curve presents no novelty, the sec-
ond problem is more interesting and the position of the optimal point for the variance changes
with the frequency band chosen for the load. Indeed, this simple two bar truss problem has a
remarkable shape for the Pareto front for the frequency band (600, 800) Hz since it is discontin-
uous, due to multiple minima involved within this situation and the presence of an anti-resonant
frequency.

Thus, it is shown through this example that some difficult situations can occur for designing
the mechanical systems when considering their dynamic responses due to random loads, even
for a simple case as of a linear systems subject to Gaussian load. But the strategy proposed here
has shown its ability to give valuable results and it can help designers to choose for the best
compromise between the mean and the standard deviation for this kind of problems.
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