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Abstract. This work is a first step in the understanding of the interaction process between internal shock
waves and the flow transition inside of a rocket nozzle during the start-up process or when it is operated
under strongly over-expanded conditions. The interaction process produces a transition in the flow pat-
tern, which in many cases generates side loads in the nozzle due to a change in the pressure distribution
on the wall, being harmful for the rocket integrity. In order to understand the process a numerical simu-
lation is carried out by solving the three dimensional Euler equations. With this tridimensional model the
computational cost significantly increases, therefore parallel processing is required. Also, an unsteady
h-adaptive refinement strategy is used jointly with a SUPG (Streamline Upwind Petrov-Galerkin) and
discontinuity capturing scheme, both to keep the mesh size bounded and to sharply resolve the shock
wave pattern. The adapted mesh is non-conforming and a smooth size transition among neighbour el-
ements with different levels of refinement is enforced by means of refinement constraints. Computed
average wall pressure distributions for various nozzle pressure ratios and at different time instants are
compared. The simulations are carried out using the PETSc-FEM software.
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1 INTRODUCTION

Nozzles with high area ratio are used in the main space launchers (Space Shuttle Main En-
gine, Ariane 5). The nozzle contour is often designed according to the theory proposed by
Rao (Rao, 1996) that results in a TOP (Thrust Optimized Parabolic or Parabolic Bell Nozzle)
nozzle, which has some advantages compared to the traditional conical shapes. These advan-
tages are the smaller length, lower weight, as well as the reduction in energy losses in the
expansion of gases (Sutton and Biblarz, 2001; Oates, 1997; Mattingly and Ohain, 2006; Tuner,
2006). These engines must work in conditions ranging from sea level to orbital altitude but an
efficient operation is only reached at high altitude, so in many cases they operate under strongly
over-expanded condition. The transition from an over-expanded condition to an ideal expansion
produces a change in the flow pattern inside the nozzle, which often produces side loads due to
a change in the pressure distribution on the wall, being harmful for the rocket integrity.

The flow pattern that develops inside the nozzle is perfectly suited for being adaptively solved
because flow features of interest usually develop in very thin regions compared to some charac-
teristic length. The adaptation of the mesh allows to reduce the computational effort required to
solve the flow problem since elements are introduced only where and when they are needed. In
this work, an unsteady h-refinement adaptation algorithm is used since it is regarded as a good
method for transient problems (Lohner and Baum, 1992).

Unsteady problems require to refine and derefine the mesh a great number of times in order
to follow discontinuities in their travel throughout the computational domain, so the adaptation
of the mesh should demand a small fraction of time compared to the solution time. Besides,
the adaptation scheme ought to minimize the geometrical quality degradation of the mesh. To
address these issues, an h-refinement strategy for linear tetrahedra and hexaedra based uniquely
on the regular 1 : 8 element subdivision is considered. No transition elements are used to
match zones with different levels of refinement so that hanging nodes on edges and faces ap-
pear and the refined mesh is non-conforming. Extension to 3-D meshes of the well known
I-irregular vertex refinement constraint is used to ensure that neighbour elements in the mesh
have a similar size. This avoids the effort of considering and managing a great number of tran-
sition templates or transition elements (Staten, 1996; Lohner and Baum, 1992; Remacle et al.,
2002) for eliminating of the hanging nodes and keeps bounded the quality degradation of the
mesh (Rios Rodriguez et al., 2005, 2009). As a consequence, the refinement algorithm used in
this work results simple, scaling almost linearly with the number of refined elements (Rios Ro-
driguez et al., 2011).

We mention that the solution procedure is partially parallelized. This means that the adapta-
tion of the mesh is sequentially performed while the solution of the flow equations is computed
in parallel on a Beowulf cluster (Storti, 2005-2010) using the PETSc-FEM software (Storti
et al., 1999-2010; Sonzogni et al., 2002). This latter is a multi physics OOP code which uses
both a finite element SUPG formulation to stabilize the advective terms of the equations and
shock capturing term for the treatment of non-linear instabilities in the neighbourhood of shocks
(Brooks and Hughes, 1980, 1982b; Hughes and Mallet, 1986a,b; Tezduyar and Senga, 2006b).
Since continuous finite element functions are considered, constraints to the solution field at ir-
regular vertices are applied. A Mach number-based gradient indicator is used to tag the cells
of the mesh that need to be refined or coarsened. The adaptation of the mesh and the solution
computation are coupled through an interface which automates the procedure. In this manner,
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the boundary conditions for the problem are specified on the starting mesh and are automati-
cally updated later. Also, a projected state on the adapted mesh is given in order to resume the
flow computation.

2 NUMERICAL MODEL

The nozzle under study corresponds to the subscale S1 parabolic contour, which was de-
signed with the geometrical contour of the Vulcain nozzle in order to study the side load phe-
nomena (Ostlund, 2002). Table(1) shows its principal characteristics

Table 1: Subscale S1 nozzle characteristics:

Area ratio(e) 20
Nozzle length (L,,) 350 [mm]
Throat diameter (D;) 67.1 [mm]

Nozzle exit diameter (D,) 300 [mm)]
Design feeding pressure (Fy) 5 [Mpa]

The fluid domain is discretized with tetrahedral elements and a linear interpolation of the
variables is used. The gasdynamics Euler equations are solved with a consistent Streamline
Upwind Petrov-Galerkin (SUPG) stabilization technique (Brooks and Hughes, 1982a; Franca
et al., 1992; Tezduyar and Senga, 2006a) together with the shock-capturing (SC) method (Tez-
duyar and Senga, 2004).

A time-varying boundary condition is imposed at the inlet of the nozzle

Table 2: Stagnation values used for the combustion chamber

Py Po T
{0.44;2.1} [MPa]  {3.8;20.4} [kg/m?®] 300 [K]

The stagnation pressure is linearly increased according to Table(2) from ¢y, = 0 [sec] to
t; = 1-1072 [sec] during 4000 time steps while p, is computed from the state equation since Ty
is constant. The time step size is set equal to Dt = 2.5-107° [sec] and the Courant Number (Co)
ranges between 1.2 and 1.5, being the stability criterion assured for an implicit #-method time
integrator. An absorbent / dynamic boundary condition is set at the outlet with non-linear con-
straints imposed via Lagrange Multipliers or a Penalty Method (Paz et al., 2010). This boundary
condition allows to reduce the extension of the computational domain therefore decreasing the
computational cost. Finally, a slip condition is applied at the wall of the nozzle.

Numerical simulations assume the nozzle is operated in over-expanded conditions because
the maximum feeding pressure used in the simulations (1.85 [Mpa]) is lower than the design
feeding pressure (5 [Mpa]). As a consequence, an internal shock wave develops. The shape and
position of the internal shock changes as a function of the feeding pressure.

Figure(1) describes the flow transition as well as the pressure ratio P,/ P in the nozzle ,
where P, is the pressure at the wall and F is the total pressure at the combustion chamber.
At low pressure ratios (Py/P,y:), the flow is detached from the wall and the outlet gases go
through the centerline of the nozzle, producing a recirculation zone near the wall.
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Figure 1: Schematic diagram of the flow transition during startup.

When the pressure ratio increases, the flow pattern changes and the strong shock forces
the outlet gases to attach to the nozzle wall. Meanwhile, the recirculation zone places at the
centerline of the nozzle and the pressure there is lower than F,,;. In this work both over-
expanded conditions will be analyzed and the pressure distributions on the wall and the axis
will be reproduced.

3 MESH ADAPTATION
3.1 Data structure for mesh representation

The data structure chosen to represent the mesh is a key aspect to be considered in the design
of the adaptation code, since it has a great influence on both the execution time and the memory
consumed. The code used in this work is written in the C++ language and makes extensive use
of the containers, iterators and algorithms of the Standard Template Library (Sil, 1993-2012)
and the Boost programming libraries (Boo, 1998-2012). These latter are specifically designed
to work well with the C++ Standard Library.

A mesh is represented by geometrical entities and its adjacencies. Each entity is uniquely
identified by an iD number and can be of the following classes: elements, faces, edges and ver-
tices. So we naturally define the ele, face and edge C++ classes to represent the corresponding
mesh entities. Instances of these classes are stored in STL vectors, since this provides random
access to each entity in the container, which is a requirement of the refinement / coarsening algo-
rithms. Vertices are stored in a 2-D dynamic-size array from the Boost Multidimensional array
library. Boost multi arrays are a more efficient way to represent n-dimensional dynamic-size
arrays than an equivalent implementation provided by nested vectors of the STL library.

For the mesh representation we use the following set of downward adjacencies: faces-of-
element, edges-of-element, vertices-of-element, edges-of-face and vertices-of-edge. Even
when we could have chosen not to use the edges-of-element set, we didn’t because of the great
number of times that we need to retrieve this information and the implicit cost that requires the
second order (indirect) access of retrieving the faces-of-an-element, then the edges-of-a-face
and finally computing the union of this final set of edges. Similar reasons lead us to manage the
vertices-of-element adjacencies. This conclusion is based on concepts and analysis developed in
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(Remacle et al.). Since the number of downward adjacencies for an entity of a given dimension
is known beforehand (i.e. a tetrahedra has four faces, six edges and four vertices), fixed size
arrays can be used to store them. Boost bidimensional array containers are used to implement
the downward adjacencies for all the entities of the same dimensionality. This allows random
access and enables to preserve the local order given by downward entity templates. This local
order would be lost if a second order access were used since the union operation does not
preserve it. Templates allow to manage the concept of “orientation” to ensure uniqueness of the
entity representation, that is they describe local relationships between downward entities of a
same entity type.

On the other hand, upward adjacencies are also requiered in different stages of the algorithm.
In this case, the number of entities of a lower dimension that “share” an entity is not known
beforehand. This means that it is not efficient to use fixed-size containers. Also, the order of
the upward adjacencies has no importance, so we use unordered multimap containers from the
Boost Unordered library. These are hashed-type multiple associative containers which allow to
access data with constant complexity on average. The upward adjacencies for a given entity are
retrieved by iterating through the range in the container whose keys are the same as the entity
iD.

For unsteady problems the adaptation of the mesh requires to insert as well as to erase entities
in the data structure. The entities that represent the current mesh are defined as “actives” and
their iDs are stored in unordered sets. If an entity is refined, it is kept in the data structure,
but its iD is replaced by those of its children in the set of active entities. In this case it is said
that the refined entity is “deactivated”. If later on the child entities are unrefined, their iDs are
erased from the active entities set and the parent entity iD is “activated” again. Unordered sets
are used because it is required to erase the iDs at any position in the container while the order is
not important. Unordered sets allow to insert and erase elements with constant complexity on
average.

Since vectors are used to store the entities, it is not efficient to explicitly erase them from the
container because this takes linear time on the size of the vector unless this is done at the end
(which is not the common situation in the unrefinement of the mesh). We consider that if an
entity is unrefined, its iD is inserted in a list of “free indexs” for that kind of entities. This means
the iD is available to be reused by a new entity of the same kind. If new entities are created
during refinement, their iDs are taken from this free indexs list until it is left empty. If the
number of requiered iDs is more than the ones affordable in the free indexs list, the remaining
iDs are sequentially created starting from the last (biggest) iD.

A data object of the element class stores the iDs of the elements that appear in the mesh
because of its refinement (children), the iD of the element from which derives (parent), the
refinement level where it belongs, the iDs of the vertices that defines it (following a local order)
and a property label that is used to associate the element to any particular property defined by
the user (geometrical, physical or both). This is useful to handle the boundary conditions for
the adapted mesh.

Objects of the face and edge classes store similar data than elements, as well as the number
of elements that share them. This information is needed when coarsening to decide whether an
entity has or not to be unrefined. If the all the elements that share a face (edge) are unrefined,
then the parent face (edge) is unrefined (if it already has a parent) by resetting the iDs of its
children to a null value and the child entities are removed from the data structure for the current
mesh by inserting their iDs in the set of free iDs for that type of entities. If not, the number of
elements that share the entity is dimished acordingly. Finally, the parent entity is “activated”
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Figure 2: Unrefinement sequence.

(see Fig.2). An edge class object also stores the iD of the vertex that appears in its middle,
which is required to apply the 1-irregular vertex refinement / coarsening constraints.

3.2 Refinement schemes

The partitioning of the elements considered in this work is the same as used in (Rios Ro-
driguez et al., 2009, 2011), (i.e. it only considers regular 1:4 and 1:8 subdivision for 2-D and
3-D elements, correspondingly). Therein it is shown that refinement through the shortest diag-
onal of the inner octaedron shows a good trade-off between the required computational effort
and the geometrical quality of the resulting elements for tetrahedra elements.

3.3 Refinement and unrefinement constraints

A smooth size change among neighbour elements in the mesh is desired because of its in-
fluence in the condition number of the stiffness matrix of the finite element method formula-
tion (Shewchuck, 2002). In this sense, we asume the 1-irregular vertex refinement constraint
(Babuska and Rheinboldt, 1978; Greaves, 2004; Popinet, 2003; Remacle et al., 2002; Rios Ro-
driguez et al., 2009, 2011). The rule states that no more than one hanging node should be shared
among neighbour elements through the common edge to which the hanging node belongs. This
means that if the element marked with an asterisk in Fig.(3.a) is to be refined, it is required that
elements marked with a cross be refined first. But this in turns implies that the element marked
with a circle be refined formerly. As it is noted, the addition of elements to be refined because
of applying this constraint makes recursive the refinement routine.

In 3-D the neighbourhood among elements through edges and faces as well as the refinement
of orphan edges on triangular faces have to be considered (Rios Rodriguez et al., 2011). An
orphan edge 1s that which is not obtained by the refinement of another edge.

Elements are selected to be unrefined based on the chosen criteria. Then it is necessary
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Figure 3: Description of the 1-irregular vertex constraint.

to guarantee that the unrefinement of these elements circumscribes to the 1-irregular vertex
constraint. As can be seen in Fig.(3.b), if any of the edges for the element selected to be
unrefined (marked with an asterisk) has an irregular vertex, then that element should be excluded
from the list of elements to be unrefined. If not, the adapted mesh would have an edge (ab in
Fig.3.b) with two irregular vertices. In conclusion, the 1-irregular vertex constraint may exclude
elements that were initially marked to be unrefined while may include some elements to be
refined. This bias the adaptation algorithm towards refinement rather than derefinement, which
is sensible on the grounds of solution accuracy.

Finally, the coarsening algorithm considers that an element can be unrefined if only all its
brothers are also marked to be unrefined. In Fig.(3.b) it is seen that because one of the brothers
cannot be unrefined, none of them can.

3.4 Adaptation algorithm

The adaptive solution of the problem begins by solving the Euler equations on a conforming
mesh, hereafter called the base mesh. After a fixed number of time steps (nsteps), the regions
of the base mesh that need to be refined are selected according to the following criterion, which
is based on the magnitude of the Mach number gradient (M) computed in an element-wise
fashion. All those elements whose gradients magnitude times theirs size are equal to or greater
than a percentage of the maximum corresponding value for all the elements in the mesh are
marked to be refined

| ViM || -hi

where c; is a constant set beforehand by the user, h; is a measure of the element size (e.g. the
length of the longest edge for the element) and || V; M || is the magnitude of the Mach gradient
computed for the element. The accurate choice of ¢; mostly depends on the user’s experience
and in this work a value of ¢; = 0.3 is chosen.

A succession of nested non-conforming meshes is generated by selecting the elements to be
refined and applying the refinement schemes and constraints described in the previous section
until a maximum level of refinement is attained. A limit on the number of refinement levels
is considered because there is no stopping criterion if discontinuities exists in the solution and
Eq.(1) is used to select the elements to be refined.

As the base mesh is refined, the last state computed by the solver is linearly interpolated and
the boundary conditions are updated by inheritance of the property flags from parent to child
entities. When the maximum level of refinement is attained the interpolated state is used as the

(1
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initial condition to resume flow computation. If it is not requiered to refine the current mesh,
flow computation is resumed from the last computed state. The strategy does not consider the
unrefinement of the base mesh.

After the solution is advanced nsteps time steps, the selection criterion given by Eq.(1)
is applied to the last computed solution and elements are marked to be refined again. Also,
elements are marked to be unrefined if

| ViM | -k
max; (|| V;M || -h;)
where ¢, must be less than c;. A value of co = 0.05 was used in all simulations. The adaptation
strategy assumes that all those elements which satisfy Eq.(2) should be unrefined as much as
possible up to the base mesh level, as long as the 1-irregular vertex unrefinement constraint
is already satisfied. An unrefinement loop is considered then. If an element can effectively
be coarsened, it is replaced by its parents in the current mesh. If it cannot, it is considered
to be possibly unrefined in the next iteration of the unrefinement loop. If it is not possible
to go further with the coarsening, the loop is interrumpted. After that, the refinement loop
begins as described for the first adaptation step. If no elements are refined or coarsened, the
flow computation resumes from the last computed state. The value for the mesh adaptation
frequency nstep is set equal to 10 time steps. Figure(4) shows the proportional cost of the
adaptive refinement as function of the total time consumed to solve 10 time steps. Also is
plotted the numbers of D.O.F after each refinement process.

(2)

Co =2
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Figure 4: Proportional cost of solver and adaptive refinement.

The proper choice of the adaptation frequency depends on different variables. Several au-
thors (Waltz, 2004; Ripley et al., 2004; Remacle et al., 2002) find in practice that the adaptation
of the mesh takes just a small fraction of the overall simulation time (approximately 5 per cent).
This result was confirmed with the current strategy in a previous work (Rios Rodriguez et al.,
2011). If the time required by the adaptation of the mesh were found to be a greater percentage
of the overall simulation time, then a lower updating frequency should be chosen. However, in
this latter case a bigger cost would be transferred to the flow computation stage since the refined
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regions of the mesh would need to be “wider” to ensure that discontinuities will be kept inside
them until the mesh is updated again. Choosing a higher frequency to adapt the mesh enables to
use narrower refined regions around discontinuities and the fluid flow problem is less expensive
to solve.

4 NUMERICAL RESULTS

To understand the transition phenomena of the flow inside of the rocket nozzle, the problems
is started from a steady condition with Py = 0.44 [MPa], py = 3.8 [kg/m?] and T = 300 [K]
computed on the base mesh. After the steady state is reached the mesh is refined with a Mach
number-based gradient indicator and then it is again converged to a steady state condition.

284

— Mach Numiber Ref
26 — Mach Number No Ref
2.4

22

06 l/‘
+ 0.4
" 0.2

0 01 02 03 0.4

Figure 5: Refinement with a Mach number-based gradient indicator.

Figure (5) shows the improvement in the sharpness of the normal shock due to the refinement
of this zone. The area to be refined can be extended or contracted by changing the parameters
c1, co and the numbers of refinement levels. In this problem two refinement levels are used with
c; = 0.3 and ¢y = 0.05.

From this condition the pressure is linearly increased in time, from ¢, = 0 [sec] to ¢y =
1-1072 [sec]. We required 4000 time steps and a time step size A = 2.5 - 107% [sec]. As a
consequence, the shock wave starts to move towards the outlet and the pressure distribution on
the nozzle wall and along the axis modify, changing the flow pattern.

At low pressure ratios (Fy = 0.44 [MPa]), the flow is detached from the wall after the shock
and the outlet gases go through the center of the nozzle, just as explained in Fig.(1). Near the
wall, the pressure rapidly reaches the ambient condition and a recirculation zone appears, as it
is shown in Fig.(6).

For a pressure value of F; = 1.1 [MPa] the flow pattern starts to change and now the pressure
in the axis, right after the shock is lower than the ambient pressure and a vortex is produced,
as shown in Fig.(7). At the nozzle wall there appears a pressure peak after the shock, thus
producing the outlet gases to go attached to the wall.

Finally, for Fy = 2.1 [MPa] the flow pattern has fully transitioned. The pressure in the axis
after the shock is lower than the ambient pressure producing a large recirculation region, as
shown in Fig.(8). On the nozzle wall there is a strong pressure peak after the shock so that the
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The flow transition can also be characterized by the relationship between the ratio P, ;/ P,
where P, ; is the total pressure ahead of the shock wave for a time instant 4, and the nozzle
pressure ratio Py/P,,;. In the work of Morinigo and Salva (2008), the internal flow of the

Pressure distributions at the wall and the axis of the nozzle (Fy, = 2.1 [MPa]).

subscale optimized J2-S nozzle is characterized analyzing the evolution of this relationship.
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Figure (9) shows the evolution of the total pressure ahead of the shock wave for the subscale
S1 nozzle. When pressure F; ; is higher than the outlet pressure, the principal flow is detached
from the wall and goes through the center of the nozzle. The onset of the flow transition occurs
when Fy/P,,; ~ 9.2 and P,; ~ P,,,. Thereafter P,; < P,,; and the recirculation zone appears.
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Figure 9: Total to outlet pressure ratio (P;;/P,,:) at the central axis, just ahead of the shock wave, for a time
varying Py/P,yz.

S CONCLUSIONS

As already mentioned, this work is a first step on the understanding of the interaction process
between internal shock waves and the flow transition inside of a rocket nozzle during the start-
up of the engine or when it is operated under strongly over-expanded conditions. The numerical
simulations were carried out using the PETSc-FEM software, which uses both a finite element
SUPG formulation to stabilize the advective terms of the equations and shock capturing meth-
ods for the treatment of non-linear instabilities in the neighbourhood of shocks. The adaptive
refinement strategy helped both to sharply resolve the shock wave pattern and to keep the com-
putational costs as low as possible. An equivalent uniform grid just as fine as the adaptive one
would have incurred in very high computational costs, considering that two levels of refinement
were used.

The pressure along the wall and the axis of the nozzle were analyzed for different pres-
sure ratios, wherewith the change in the internal flow pattern was clearly identified. Also, the
streamlines were plotted in order to characterize the internal flow. This change in the flow
pattern during over-expanded conditions has been reported as the origin of side loads.

As future work this study will be extended to a viscous 3-D case in order to analyze the
interaction of the boundary layer with the shock waves. Also, lateral loads will be obtained and
compared to some reference data.
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