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Abstract. Stratified currents are generated by action of gravity (or other volumetric force) on changes
in fluid density. When they appear in turbulent regime, stratified currents are of a non-linear nature and
have a wide range of temporal and spatial scales. In these systems there is a strong coupling between
turbulence and stratification effects, with important consequences in the exchange of mass, momentum
and energy. When these type of flows happen in geophysical scale, the analysis is further complicated
by the influence of rotation effects, as is the case for example of volcanic plumes influenced by Coriolis
forces originated by earth’s rotation. In this work we studystratified currents in a channel with rotation
effects by direct numerical simulations. We compare different conditions of rotation, and report on the
maximum length of the leading edge of the successive outwardpropagating fronts, the pulse frequency,
and the different phases of spreading.
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1 INTRODUCTION

Stratified currents manifest as a horizontal current of heavy fluid running below light fluid, or
as a current of light fluid running above heavy fluid. These currents are buoyancy-driven flows
and can be produced with very small density differences, yetthey may become powerful and
strong flows (García, 1992). These types of flows are also known as density or gravity currents.

On a large scale, stratified currents play an important role in the circulation of the atmosphere
and hydrosphere over a large range of scales and geometric configurations (Droegemeier and
Wilhelmson, 1986, 1987). Stratified currents are also the mean by which oil spills are spread
in the ocean (Fay, 1969; Fannelop and Waldman, 1971; Hoult, 1972). In all these examples
the effect of earth rotation is important and manifests mainly by the Coriolis force affecting the
flowsUngarish(2009). On a smaller scale, the deliberate (and generally more rapid) rotation of
fluids in certain industrial processes can have either advantageous or detrimental consequences
for the desired process.

A large amount of research has been conducted to address the spreading characteristics of
stratified currents (seeBenjamin, 1968; Fannelop and Waldman, 1971; Hoult, 1972; Huppert
and Simpson, 1980; Choi and García, 2002; Cantero et al., 2007b, for example).Huppert and
Simpson(1980) described the spreading of gravity currents in three phases: an initial slumping
phase where the current moves at nearly constant speed, followed by an inertial phase in which
the current moves under the balance of buoyancy and inertialforces, and a final viscous phase
where viscous effects dominate and balance buoyancy.Cantero et al.(2007b) revisited the
different scaling laws for the all the phases of spreading and, by means of direct numerical
simulations and experimental data, explained in detail thetransition between them.

This work addresses the characteristics of currents spreading under the influence of rotation
effects by direct numerical simulation. More precisely, the work focuses on the behavior of
planar stratified currents, produced in a rectangular horizontal rotating channel, and describes
the time evolution of front location and velocity for the different phases of spreading.

2 MATHEMATICAL AND NUMERICAL FORMULATION

2.1 Mathematical formulation

The system under consideration is depicted schematically in Fig.1. The system consists of a
periodic channel that rotates with constant angular velocity Ωz along the vertical axis (z). The
channel is of heightH and the periodic boundaries are placed aty = 0 andy = D. At the start
of the computation the region with heavy fluid of densityρ1 (the gray shaded region in Fig.1)
is separated from the light ambient co-rotating fluid of density ρ0. The heavy fluid is a slab of
half-width x0 along the flow direction (x). In the present simulations, the slab of heavy fluid
extends over the entire heightH of the channel (full-depth release) and along the spanwise (y)
direction.

We consider flows in which the density difference is small enough that the Boussinesq ap-
proximation is valid. Under these circumstances and in a system of reference attached to the
channel, the flow is governed by the following equations

∂u
∂t

+ u · ∇u = − 1

ρ0
∇p + ν∇2u +

ρ− ρ0
ρ0

g − 2Ω× u −Ω× (Ω× r) , (1)

∇ · u = 0 , (2)

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ , (3)

J.S. SALINAS, M.I. CANTERO, D. ARNICA306

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 1: Schematic of the configuration for the planar system.

whereu = {u, v, w} is the velocity vector,r = xx̂ + yŷ + zẑ is the position vector,p is the
pressure,ν is the kinematic viscosity,g = {0, 0,−gz} is the acceleration due to gravity,ρ the
density of the mixture,κ the diffusivity, andΩ = {0, 0,Ωz} the constant angular velocity.

2.2 Dimensionless equations

For the dimensionless form of the equations (1)-(3), we employ the length scaleH, the
velocity scaleU =

√
RgH with R = (ρ1 − ρ0)/ρ0, and the time scaleT = H/U . The

dimensionless density is given by

ρ̃ =
ρ− ρ0
ρ1 − ρ0

. (4)

Then, for (1) - (3) we have

∂ũ
∂t̃

+ ũ · ∇̃ũ = −∇̃p̃+
1

Re
∇̃2ũ − ρ̃ ẑ − (1 +Rρ̃)2C̃(ṽx̂ − ũŷ)−RC̃2ρ̃(x̃x̂ + ỹŷ) , (5)

∇̃ · ũ = 0 , (6)

∂ρ̃

∂t̃
+ ũ · ∇̃ρ̃ =

1

ReSc
∇̃2ρ̃ . (7)

Here, ũ = {ũ, ṽ, w̃} is the dimensionless velocity,̃p the dimensionless pressure, and the
dimensionless parameters are the Reynolds, Schmidt, and Coriolis numbers defined as

Re =
U H

ν
, Sc =

ν

κ
and C̃ =

ΩH

U
. (8)

Because we consider flows in which the density difference is small enough that the Boussi-
nesq approximation is valid(ρ ≈ ρ0 for inertial forces), it follows thatRC̃2 ≪ 1 and(1+Rρ̃) ≈
1. With these approximations the centrifugal term in (5) is negligible, and (5) - (7) yield

∂ũ
∂t̃

+ ũ · ∇̃ũ = −∇̃p̃+
1

Re
∇̃2ũ − ρ̃ ẑ − 2C̃(ṽx̂ − ũŷ) , (9)

∇̃ · ũ = 0 , (10)

∂ρ̃

∂t̃
+ ũ · ∇̃ρ̃ =

1

ReSc
∇̃2ρ̃ . (11)
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The ratiox0/H is an additional geometric parameter that controls the volume of initial
release. In our simulations, we consider the case ofH = x0.

2.3 Numerical formulation

The governing equations are solved in a dimensionless rectangular box of sizẽLx × D̃ ×
H̃. Periodic boundary conditions are employed along the streamwise (x̃) and spanwise(ỹ)
directions. The periodic channel is taken to be long enough along the streamwise direction in
order to allow free unhindered development of the current for a long time.

In this work, we have employed a fully de-aliased pseudo-spectral code (Canuto et al., 1988),
in which Fourier expansions are employed for the flow variables along the horizontal directions
(x̃ and ỹ). In the inhomogeneous vertical direction (z̃), a Chebyshev expansion is used with
Gauss-Lobatto quadrature points (Canuto et al., 1988). The flow field is time advanced using
a Crank-Nicolson scheme for the diffusion terms. The advection terms are handled with the
Arakawa method (Durran, 1999) and advanced with a third-order Runge-Kutta scheme. The
buoyancy term is also advanced with a third-order Runge-Kutta scheme. At the top and bot-
tom walls, no-slip and zero-gradient conditions are enforced for velocity and concentration,
respectively. Detailed implementation can be found in (Cantero et al., 2006, 2007b,a).

3 THEORETICAL BACKGROUND

In this section, we present a brief description of the modelsthat predict the front velocity
during the slumping, inertial and viscous phases for the case of non-rotating flows.

3.1 Slumping phase

In the slumping phase, the front of the current moves at nearly constant speed. The hydraulic
theories for non-rotating currents givẽuF = 0.5 (Benjamin, 1968; Shin et al., 2004) where
ũF is the front velocity. Based on laboratory experiments,Huppert and Simpson(1980) report
ũF ≈ 0.45, andCantero et al.(2007b), based on DNS simulations and experimental data, report
ũF = 0.45. Cantero et al.(2007b) argued that the departure from hydraulic theories owes to the
expenditure of energy to set up internal motion of the current.

3.2 Inertial phase

Transition from the slumping to the inertial phase occurs when the reflected back- propa-
gating wave catches up with the front (Rottman and Simpson, 1983). It is accepted that for
a planar current in non-rotating systems the transition happens after the front has traveled be-
tween 5 and 9 lock lengths (Rottman and Simpson, 1983; Metha et al., 2002; Marino et al.,
2005). The asymptotic behavior of the current in the inertial phase has been established to be
(Fay, 1969; Fannelop and Waldman, 1971; Hoult, 1972; Huppert and Simpson, 1980; Rottman
and Simpson, 1983)

x̃F = ξp(h̃0x̃0t̃
2)1/3 , ũF =

2

3
ξp(h̃0x̃0)

1/3t̃−1/3 . (12)

Here, x̃F , x̃0 and h̃0 are the dimensionless streamwise location of the front of the current,
the initial height of the release, and the initial length of release, respectively. The difference
between the theories is in the constantξp. In our study, we use the valueξp = 1.47 proposed by
Cantero et al.(2007b).
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3.3 Viscous phase

By balancing the buoyancy and viscous forces over the interface between the heavy and light
fluids and a rigid horizontal surface,Huppert(1982) obtained the resulting self-similar solutions
for the viscous phase

x̃F = ξpHph̃
3/5
0

x̃
3/5
0

Re1/5 t̃1/5 , ũF =
1

5
ξpHph̃

3/5
0

x̃
3/5
0

Re1/5t̃−4/5 . (13)

In our study, we use the valueξpHp = 3.2 proposed byCantero et al.(2007b).

4 RESULTS AND DISCUSSION

The dimensions of the domains in all simulations with rotation (C̃ 6= 0) presented in this
work areL̃x × D̃ × H̃ = 18× 1× 1, with a resolutionNx ×Ny ×Nz = 768× 64× 128. For
the simulation without rotation (̃C = 0), we usẽLx × D̃ × H̃ = 25 × 1 × 1, with a resolution
Nx ×Ny ×Nz = 924× 56× 110. The rest of the parameters are shown in Table.1 .

case C̃ Re Sc x̃0 xmax ωp

0 0 2000 1 1 - -
1 0.1 2000 1 1 7.5 0.20
2 0.15 2000 1 1 5.25 0.31
3 0.25 2000 1 1 3.38 0.50

Table 1: Numerical simulations performed for this paper. Also shown are the values of the maximum distance
attained by the first propagating front (xmax) and the frequency of the subsequent fronts for the rotatingcurrents,
ωp.

4.1 Current height

The height of the current can be defined in a few different ways. Shin et al.(2004) and
Marino et al.(2005) define a local equivalent height in an unambiguous way as

h̃(x̃, ỹ, t̃) =

∫

1

0

ρ̃ dz̃ , (14)

and this definition is adopted herein. Thus, at locations where the entire layer is occupied by the
heavy fluid, the dimensionless height is unity, whereas at locations where the light fluid fills the
entire layer, the height is zero. The local current height can then be averaged over the spanwise
direction. We define the span-averaged current height as

h(x̃, t̃) =
1

L̃y

∫ L̃y

0

h̃ dỹ . (15)

(Any variable with an overbar is to be understood as dimensionless span-averaged quantity).

4.2 Mean front location and velocity

The mean front location,xF , can be unambiguously defined as the location where the span-
averaged equivalent height,h, becomes smaller than a small thresholdδ. Precise definition can
be found inCantero et al.(2007b). The mean front velocity is computed as

uF =
dxF

dt̃
. (16)
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The front velocityuF as a function of timẽt for all cases with different Coriolis parameter
C̃ are shown in figures2 and3 together with the different scaling laws. We can observe a clear
influence of rotation in all the phases of spreading.
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– u F

~tF
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Re=2000 ~C =0

Re=2000 ~C =0.1

Re=2000 ~C =0.15

Re=2000 ~C =0.25

theory - SP - Fp,sl = 0.5

theory - VP - Huppert (1982) for Re = 2000

Figure 2: Front velocityu as a function of timẽt. Figure also include the scaling laws for the slumping and viscous
phases.

4.2.1 Acceleration phase

After the heavy fluid is released, the front velocity increases until a maximum, and then
drops to the slumping phase constant velocity, as shown in Fig. 2. This initial phase is called
the acceleration phase. The location where the peak velocity happens is insensitive tõC. The
same happens for the time at which the peak velocity is reached. The maximum velocity occurs
at aboutxF − x0 = 0.3 and at̃t = 1.1 for all cases.

The value of the peak, however, is influenced and a significantdrop is observed with increas-
ing C̃. The peak values are 0.451, 0.449 and 0.439 forC̃ =0.1, 0.15 and 0.25, respectively.

In our simulations we study the idealized initial conditionof instantaneous release of the
dense fluid. During the acceleration phase, three-dimensional disturbances has not grown to
sufficient amplitude, and because of this, the current is mostly two-dimensional.

4.2.2 Slumping phase

As we mentioned in the previous section, after the acceleration phase, the velocity of the front
drops until it gets to a state of constant velocity. In figure2 we can clearly see the dependence of
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Figure 3: Front velocityu as a function of timẽt during the viscous phase. The figure also include the scalinglaws
for the slumping and viscous phases with the best fit to the velocity peaks for the three cases with rotation.

this phase with the Coriolis parameterC̃. As C̃ increases, the constant slumping phase velocity
drops. This variation is more noticeable in case 3 forC̃ =0.25, and the period of constant
velocity is very small. Based on this trend, we can expect to see a more rapid variation in the
front velocity as we increasẽC, with an eventual absence of the slumping phase.

For our simulations, we calculate the mean velocity for the period of constant velocity, and
in case 3, for the period of slower variation in velocity. These values are 0.399, 0.388, 0.377
and 0.337 forC̃ = 0, 0.1, 0.15 and 0.25, respectively.

The dimensionless front velocities of our simulations are lower in comparison with the value
predicted by the hydraulic theories for full depth release (1/2). This is in good agreement with
simulations of planar currents presented byCantero et al.(2007b), Necker et al.(2002), and
laboratory experiments byRottman and Simpson(1983) andMarino et al.(2005).

Although the mean velocity in the slumping phase drops with the increase of the Coriolis
parameter, the near constant velocity is observed in the same interval of time2.5 < t̃ < 4.7
for cases with rotation. As expected, the corresponding front location interval decreases with
the increase of the Coriolis force produced by the rotation of the system. The front location
intervals for constant velocity in the slumping phase are0.9 < xF − x0 < 1.8 for C̃ =0.1,
0.9 < xF − x0 < 1.7 for C̃ =0.15, and0.9 < xF − x0 < 1.6 for C̃ =0.25.

4.2.3 Inertial and viscous phases

After the interval of constant velocity att̃ = 4.7 where the fronts have traveled between 1.6
and 1.8 lock lengths, we observe in all cases with rotation (see Fig.2) a rapid drop in front
velocity, until it gets to a value of zero, from when the frontstarts to propagate inward (negative
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Figure 4: Location of the front relative to the initial position xF − x0 as a function of timẽt.

values ofuF ). This phenomenon will be studied in the next section.
We then observe successive pulses of the front location (seeFig.4), with corresponding front

velocity oscillations (see Fig.3). The value of these peaks decreases, following a decaying
law with a slope in good agreement with predictions made byHuppert(1982) for the viscous
phase in planar currents, withRe = 2000 andξpHp = 3.2 (see Eq.13). Figure3 shows an
overestimation made by these predictions owing to the presence of rotation in our simulations.
The best fit to the values of the peaks in velocity givesξpHp= 1.12, 1.04 and 0.79 for̃C= 0.1,
0.15 and 0.25, respectively (see Fig.3).

In case 0 (̃C=0), the drop in velocity after the slumping phase is in good agreement with the
predictions made byHuppert(1982) andCantero et al.(2007b) (see Fig.2). The absence of an
inertial phase in all our simulations will be discussed in the next section.

4.3 Transition between phases

Following Cantero et al.(2007b), the transition points between phases of spreading can be
computed by matching the front velocity of the corresponding scaling laws at the time of tran-
sition. The constants of the scaling laws we use areξp= 1.47 andξpHp= 3.2 (see equations (12)
and (13)), determined byCantero et al.(2007b) from experimental data.

First we match the constant velocity of the slumping phaseFp,sl with the front velocity of
the inertial phase (see Eq.12). The time of transition from slumping to inertial phase is then
given by

t̃SI =

(

2

3
ξp

)3
x0h0

F 3

p,sl

. (17)

The values ofFp,sl for C̃ =0, 0.1, 0.15 and 0.25 are 0.399, 0.388, 0.377 and 0.337, respec-
tively. For these values and withx0 = h0 = 1, the times of transition from slumping to inertial
phase arẽtSI= 14.84, 16.01, 17.41 and 24.32 forC̃ =0, 0.1, 0.15 and 0.25, respectively. The
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location of where this transition occur can be determined as

xSI

x0

=
uF tSI
x0

=

(

2ξp
3

)3
(

Fp,sl

h
1/2

0

)

−2

, (18)

and using the values ofFp,sl obtained for our simulations andξp= 1.47 , we get̃xSI= 5.918,
6.25, 6.58 and 8.23 for̃C =0, 0.1, 0.15 and 0.25, respectively.

The second transition time of our interest is from the slumping phase directly to the viscous
phaset̃SV , obtained by matching the constant front velocity of the slumping phase and the
velocity of the viscous phase (see Eq.13). This gives

t̃SV =

(

1

5
ξpHp

)5/4
(

x0h0

)3/4

F
5/4
p,sl

Re1/4 , (19)

and with the values ofFp,sl presented earlier and the constantξpHp= 3.2 obtained byCantero
et al.(2007b), the times of transition between slumping to viscous phases for C̃ =0, 0.1, 0.15
and 0.25 arẽtSV = 12.08, 12.49, 12.91 and 14.84, respectively. Comparing these values with the
values obtained for̃tSI , we can see that̃tSV is smaller thañtSI in all cases. This evidence the
absence of the inertial phase seen in our simulations. For case 0 (̃C=0), t̃SV = 12.08 is in good
agreement with figure3, where we can see the departure from constant velocity at about t̃ = 12.

The slumping to inertial phase transition time (Eq.17) has a weak Reynolds-number depen-
dence throughFp,sl and becomes independent only at largeRe. In contrast, the transition time
between slumping to viscous phasest̃SV will increase withRe. Thus, at lowerRe, t̃SV become
smaller thañtSI , and a direct transition between the slumping and the viscous phase occurs.
Cantero et al.(2007b) studied in detail the transition time dependence withRe, and matching
(17) with (19) estimated that the criticalRe for the inertial phase to exist isRecr = 2000x0h0.
This is in good agreement with our results.

For our simulations, the increasing difference betweent̃SI and t̃SV asC̃ increase, suggest a
dependence between the existence of the inertial phase and the speed of rotation of the system.

4.4 Maximum distance of propagation

After the release of the dense fluid, the initial behavior of the rotating currents is similar to
that of the non-rotating current. After a certain time, the deceleration of the rotating currents is
evident until the velocity of the frontsuF becomes zero. We define the location in the stream-
wise direction were velocity becomes zero asxmax. The location of the front relative to the
initial positionxF − x0 as a function of timẽt is displayed in Fig.4.

The maximum distances of propagation of the fronts are shownfrom Fig.5 for cases (1) to
(3). As we can see, the maximum distance of propagation of thefirst outward pulse of dense
fluid is influenced by the rotation of the system. With the increase of the Coriolis parameter,
less propagation of the front occurs. Also, this steady-state happens before in case 3 (with larger
Coriolis parameter) than in the other cases. The values ofxmax are shown in Table1.

Figure6 shows the relation between the maximum distance of propagation of the first out-
ward pulse of dense fluid (xmax − x0) and the Coriolis parameter̃C. The best fit to the data
yields

xmax = 1 +
1

1.56C̃
, (20)
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Figure 5: Maximum distance of propagation relative to the initial position for cases 1 to 3.a) Velocity of the front
uF as a function of timẽt for case 1;b) Location of the front relative to the initial positionxF − x0 as a function
of time t̃ for case 1;c) Velocity of the frontuF as a function of timẽt for case 2;d) Location of the front relative
to the initial positionxF − x0 as a function of timẽt for case 2;e) Velocity of the frontuF as a function of timẽt
for case 3;f) Location of the front relative to the initial positionxF − x0 as a function of timẽt for case 3.
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Figure 6: Maximum distance of propagationxmax − x0 in the streamwise direction as a function of Coriolis
parameter̃C.

4.5 Frequency of the fronts

Prior to the arrest of the initial front, a reverse flow in the tail of the current, and a contraction
and increase of thickness of the current towardsx = 0 is observed. This accumulation of fluid
relaxes and produces a second outward propagating pulse of dense fluid that exceedxmax of the
first propagating pulse of fluid. This behavior repeats itself several times.

Figure7 shows the results for density functioñρ contours at̃y = 0.5 for case (2) at various
time instances. At̃t = 5, the first outward pulse of fluid is visible. At timẽt = 10 and soon
after att̃ = 15, the reverse flow advance towardsx = 0.

The mean pulse periodT p for each case, defined as the averaged time interval on which the
successive outward pulses reachuF = 0. The pulse frequencyωp is defined as

ωp =
2π

T p

. (21)

The values ofωp are shown in Table1. Figure8 suggest a linear dependence ofωp with the
Coriolis parameter̃C

ωp = KC̃ . (22)

The best-fit yieldsK = 2.02. Similar results were found byHallworth et al.(2001) with
laboratory experiments of axisymmetric gravity currents.Figure9 shows the mean pulse period
and frequency for cases (1) to (3).
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Figure 7: Results for the density functioñρ at ỹ = 0.5 for case (2) at different times.
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Figure 8: Mean pulse frequencyωp as a function of the Coriolis parameterC̃.
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Figure 9: Mean pulse periodT p and the pulse frequencyωp for cases 1 to 3.a) Velocity of the frontuF as a
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t̃ for case 1.c) Velocity of the frontuF as a function of timẽt for case 2.d) Location of the front relative to the
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5 CONCLUSIONS

In the present work we studied stratified currents in a periodic channel with rotation effects
by direct numerical simulation. The flow was initiated from asolid rotating state at a constant
velocityΩ.

We compared cases with different Coriolis parametersC̃ and found significant differences in
the different phases of spreading. The maximum velocity in the acceleration phase drops when
C̃ is increased, however, the location and time where this peakhappens is insensitive tõC. A
similar relation was found between the constant velocity inthe slumping phase and the Coriolis
parameter, where the velocity drops asC̃ increases, but the time interval when it happens is the
same for cases with̃C > 0. Based on the trend of the constant velocity, a more rapid variation
is expected as we increase the Coriolis parameter with the eventual absence of the slumping
phase.

After the phase of constant velocity, the rotation of the system produces a rapid drop in front
velocity, until it gets to a value of zero, from when the frontstarts to propagate inward and
outward repeatedly. The values of peak velocity follow a decaying law with a slope in good
agreement with predictions made byHuppert(1982) for the viscous phase, but overestimated
by this predictions owing to rotation.

The absence of an inertial phase is evidenced by the relationof the times of transition be-
tween each phase. For all our simulations, the transition time between the slumping to viscous
phase (̃tSV ) is smaller than that of the slumping to inertial phase (t̃SI), and the increase of the
difference suggests a dependence of the existence of the inertial phase with the Coriolis param-
eter.

The maximum distance of propagation of the first pulse in the front, where the velocity of
the front becomes zero, is restricted by rotation, and as we increaseC̃, less propagation in the
streamwise direction occurs.

Before the arrest of the first propagating front, a reverse flow in the tail of the current is
observed, generating an accumulation of fluid towards the initial position of the dense fluid that
relaxes and produces a second outward front. The mean pulse frequency appears to be linearly
dependent of the Coriolis factor with a relationωp = 2.02C̃.

J.S. SALINAS, M.I. CANTERO, D. ARNICA318

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



REFERENCES

Benjamin T. Gravity currents and related phenomena.Journal of Fluid Mechanics, 31:209–248,
1968.

Cantero M., Balachandar S., and García M. Highly resolved simulations of cylindrical density
currents.Journal of Fluid Mechanics, 590:437–469, 2007a.

Cantero M., Balachandar S., García M., and Ferry J. Direct numerical simulations of planar
and cyindrical density currents.Journal of Applied Mechanics, 73:923–930, 2006.

Cantero M., Lee J.R., Balachandar S., and García M. On the front velocity of gravity currents.
Journal of Fluid Mechanics, 586:1–39, 2007b.

Canuto C., Hussaini M., Quarteroni A., and Zang T.Spectral Methods in Fluid Dynamics.
Springer-Verlag, New York, 1988. 557 pages.

Choi S.U. and García M. k-ǫ turbulence modeling of density currents developing two dimen-
sionally on a slope.Journal of Hydraulic Engineering, 128(1):55–63, 2002.

Droegemeier K. and Wilhelmson R. Kelvin-Helmholtz instability in a numerically simulated
thunderstorm outflow. Bulletin of the American Meteorological Society, 67(4):416–417,
1986.

Droegemeier K. and Wilhelmson R. Numerical simulation of thunderstorm outflows dynamics.
Part I: Outflow sensitivity experiments and turbulence dynamics.Journal of the Atmospheric
Sciences, 44(8):1180–1210, 1987.

Durran D. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer,
1999.

Fannelop T. and Waldman G. The dynamics of oil slicks – or ’creeping crude. A.I.A.A. J.,
41:1–10, 1971.

Fay J. The spreads of oil slicks on a calm sea. In D.P. Hoult, editor, Oils in the sea, pages
53–63. Plenum, 1969.

García M. Turbidity currents. In L. Brekhovskikh, K. Turekian, K. Emery, and C. Tseng,
editors,Encyclopedia of Earth System Science, volume 4, pages 399–408. Academic Press,
Inc., New York, 1992.

Hallworth M., Huppert H., and Ungarish M. Axisymmetric gravity currents in a rotating system:
experimental and numerical investigations.Journal of Fluid Mechanics, 447:1–29, 2001.

Hoult D. Oil spreading in the sea.Ann. Rev. Fluid Mechanics, 4:341–368, 1972.
Huppert H. The propagation of two-dimensional and axisymmetric viscous gravity currents

over a rigid horizontal surface.Journal of Fliud Mechanics, 121:43–58, 1982.
Huppert H. and Simpson J. The slumping of gravity currents.Journal of Fluid Mechanics,

99:785–799, 1980.
Marino B., Thomas L., and Linden P. The front condition for gravity currents.Journal of Fluid

Mechanics, 536:49–78, 2005.
Metha A., Sutherland B., and Kyba P. Interfacial gravity currents. II. Wave excitation.Physics

of Fluids, 14(10):3558–3569, 2002.
Necker F., Härtel C., Kleiser L., and Meiburg E. High-resolution simulations of particle-driven

gravity currents.International Journal of Multiphase Flow, 28:279–300, 2002.
Rottman J. and Simpson J. Gravity currents produced by instantaneous releases of a heavy fluid

in a rectangular channel.Journal of Fluid Mechanics, 135:95–110, 1983.
Shin J., Dalziel S., and Linden P. Gravity currents producedby lock exchange.Journal of Fluid

Mechanics, 521:1–34, 2004.
Ungarish M.M.An introduction to gravity currents and intrusions. CRC Press, 2009.

Mecánica Computacional Vol XXXI, págs. 305-319 (2012) 319

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	MATHEMATICAL AND NUMERICAL FORMULATION
	Mathematical formulation
	Dimensionless equations
	Numerical formulation

	THEORETICAL BACKGROUND
	Slumping phase
	Inertial phase
	Viscous phase

	RESULTS AND DISCUSSION
	Current height
	Mean front location and velocity
	Acceleration phase
	Slumping phase
	Inertial and viscous phases

	Transition between phases
	Maximum distance of propagation
	Frequency of the fronts

	CONCLUSIONS

