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Abstract. Stratified currents are generated by action of gravity (beotvolumetric force) on changes
in fluid density. When they appear in turbulent regime, gieak currents are of a non-linear nature and
have a wide range of temporal and spatial scales. In thesensyghere is a strong coupling between
turbulence and stratification effects, with important @npgences in the exchange of mass, momentum
and energy. When these type of flows happen in geophysicld, sba analysis is further complicated
by the influence of rotation effects, as is the case for exarmpVolcanic plumes influenced by Coriolis
forces originated by earth’s rotation. In this work we sttiatified currents in a channel with rotation
effects by direct numerical simulations. We compare d#if¢érconditions of rotation, and report on the
maximum length of the leading edge of the successive outpaoiagating fronts, the pulse frequency,
and the different phases of spreading.
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1 INTRODUCTION

Stratified currents manifest as a horizontal current of 2éland running below light fluid, or
as a current of light fluid running above heavy fluid. Theseanis are buoyancy-driven flows
and can be produced with very small density differencesthat may become powerful and
strong flows Garcia 1992. These types of flows are also known as density or gravityeots.

On a large scale, stratified currents play an important roflee circulation of the atmosphere
and hydrosphere over a large range of scales and geometfigwations Droegemeier and
Wilhelmson 1986 1987). Stratified currents are also the mean by which oil spilésspread
in the oceanKay, 1969 Fannelop and Waldmai971;, Hoult, 1972. In all these examples
the effect of earth rotation is important and manifests tydy the Coriolis force affecting the
flows Ungarish(2009. On a smaller scale, the deliberate (and generally mord)regtation of
fluids in certain industrial processes can have either adgaous or detrimental consequences
for the desired process.

A large amount of research has been conducted to addrespraesg characteristics of
stratified currents (seBenjamin 1968 Fannelop and Waldmari 971, Hoult, 1972 Huppert
and Simpson198Q Choi and Garcig2002 Cantero et a).2007h for example).Huppert and
Simpson(1980 described the spreading of gravity currents in three phaseinitial slumping
phase where the current moves at nearly constant speenyéallby an inertial phase in which
the current moves under the balance of buoyancy and inéstiads, and a final viscous phase
where viscous effects dominate and balance buoya@antero et al(2007h revisited the
different scaling laws for the all the phases of spreading, &y means of direct numerical
simulations and experimental data, explained in detaitrdnesition between them.

This work addresses the characteristics of currents sioiggadder the influence of rotation
effects by direct numerical simulation. More precisely thiork focuses on the behavior of
planar stratified currents, produced in a rectangular bat& rotating channel, and describes
the time evolution of front location and velocity for thefdifent phases of spreading.

2 MATHEMATICAL AND NUMERICAL FORMULATION
2.1 Mathematical for mulation

The system under consideration is depicted schematicaligl. 1. The system consists of a
periodic channel that rotates with constant angular vgidei along the vertical axisz). The
channel is of height/ and the periodic boundaries are placed at 0 andy = D. At the start
of the computation the region with heavy fluid of density(the gray shaded region in Fit)
is separated from the light ambient co-rotating fluid of digng,. The heavy fluid is a slab of
half-width x4 along the flow directionx). In the present simulations, the slab of heavy fluid
extends over the entire height of the channel (full-depth release) and along the spanwise (
direction.

We consider flows in which the density difference is smallugtothat the Boussinesq ap-
proximation is valid. Under these circumstances and in tesy®f reference attached to the
channel, the flow is governed by the following equations

Nouvu = v vt 22 g 20 xu—Qx (@ x1) . 1)
ot Po Po

V.ou = 0, )
9p _ 2
E—FU'V/) = wVp, (3)
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Figure 1: Schematic of the configuration for the planar syste

whereu = {u,v,w} is the velocity vectorr = =X + yy + 2z is the position vectorp is the
pressurey is the kinematic viscosityg = {0,0, —g.} is the acceleration due to gravifythe
density of the mixturey the diffusivity, and = {0, 0, 2.} the constant angular velocity.

2.2 Dimensionless equations

For the dimensionless form of the equatiod¥-(3), we employ the length scald, the
velocity scaleU = /RgH with R = (p1 — po)/po, and the time scald” = H/U. The
dimensionless density is given by

5= P—Po. (4)
P1— Po
Then, for Q) - (3) we have
~ ) ) 1. ) )
%ﬂj-vu = —vp+§v2a—,§z—(1+Rﬁ)2€(~f<—ay)—Rc2,3(:z>z+gy), (5)
Vi = 0, (6)
op . = J IS
—_= . - . 7
g TV T Rege VP @

Here,u = {a,0,w} is the dimensionless velocity, the dimensionless pressure, and the
dimensionless parameters are the Reynolds, Schmidt, amali€aumbers defined as
~UH v OH

Re = , Se== and C=—"—. (8)
v K U

Because we consider flows in which the density differencenialissnough that the Boussi-
nesq approximation is valigh ~ p, for inertial forces, it follows thatRC? < 1 and(1+Rp) ~
1. With these approximations the centrifugal term5hié negligible, and}) - (7) yield

oa o~ e 5

aJru-Vu = —Vp+§Vu—pz—2C(vx—uy), 9)
V.o o= 0, (10)

7 R
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The ratiozy/H is an additional geometric parameter that controls the naelwf initial
release. In our simulations, we consider the cas¥ ef x.

2.3 Numerical formulation

The governing equations are solved in a dimensionlessngalar box of sizel, x D x
H. Periodic boundary conditions are employed along the sinése (i) and spanwiségy)
directions. The periodic channel is taken to be long enolghgathe streamwise direction in
order to allow free unhindered development of the currenaflong time.

In this work, we have employed a fully de-aliased pseuda@tspkcode Canuto et a].1988,
in which Fourier expansions are employed for the flow vagalalong the horizontal directions
(z andy). In the inhomogeneous vertical directiof),(a Chebyshev expansion is used with
Gauss-Lobatto quadrature poin@ahuto et a].1988. The flow field is time advanced using
a Crank-Nicolson scheme for the diffusion terms. The aderderms are handled with the
Arakawa methodQurran 1999 and advanced with a third-order Runge-Kutta scheme. The
buoyancy term is also advanced with a third-order Rungdekstheme. At the top and bot-
tom walls, no-slip and zero-gradient conditions are erd@drfor velocity and concentration,
respectively. Detailed implementation can be founddargtero et aJ.2006 2007ha).

3 THEORETICAL BACKGROUND

In this section, we present a brief description of the motieds predict the front velocity
during the slumping, inertial and viscous phases for the chson-rotating flows.

3.1 Slumping phase

In the slumping phase, the front of the current moves at pearistant speed. The hydraulic
theories for non-rotating currents givg- = 0.5 (Benjamin 1968 Shin et al, 2004 where
ur is the front velocity. Based on laboratory experimehtsppert and Simpso(l980 report
ur =~ 0.45, andCantero et al(2007h, based on DNS simulations and experimental data, report
ur = 0.45. Cantero et al(2007h argued that the departure from hydraulic theories owesdo t
expenditure of energy to set up internal motion of the curren

3.2 Inertial phase

Transition from the slumping to the inertial phase occuremvthe reflected back- propa-
gating wave catches up with the froRRdttman and Simpsri983. It is accepted that for
a planar current in non-rotating systems the transitiorpbap after the front has traveled be-
tween 5 and 9 lock length®Rk6ttman and Simpseri983 Metha et al. 2002 Marino et al,
2005. The asymptotic behavior of the current in the inertialgghlaas been established to be
(Fay, 1969 Fannelop and Waldmaa971; Hoult, 1972 Huppert and Simpsqri98Q Rottman
and Simpson1983

N = N 2 = . -
Tp = fp(hoxofz)l/?’ s Up = ggp(hoﬂfo)l/gt 1/3 . (12)

Here, i, 7, andh, are the dimensionless streamwise location of the front efctirrent,
the initial height of the release, and the initial length ellease, respectively. The difference
between the theories is in the constgntin our study, we use the valgg = 1.47 proposed by
Cantero et al(20078.
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3.3 Viscous phase

By balancing the buoyancy and viscous forces over the exterbetween the heavy and light
fluids and a rigid horizontal surfaceuppert(1982 obtained the resulting self-similar solutions
for the viscous phase

,3/5 3/5R61/5t~1/5 B35 3/5Rel/5f_4/5. (13)

xF - ngp uF - _ngp

In our study, we use the valggy, = 3.2 proposed byCantero et al(2007h.

4 RESULTSAND DISCUSSION

The dimensions of the domains in all simulations with ratatiC = 0) presented in this
work areL, x D x H = 18 x 1 x 1, with a resolutionV, x N, x N, =768 x 64 x 128. For
the simulation without rotatiorC(= 0), we usel, x D x H = 25 x 1 x 1, with a resolution
N, x Ny x N, =924 x 56 x 110. The rest of the parameters are shown in Table.

case| C | Re | Sc| %y | Tmae | @y
0 0 2000 1 | 1 - -
1 0.1 12000 1|1 7.5 10.20
2 0.15| 2000| 1 11|525]|0.31
3 10252000, 1| 11| 3.38|0.50

Table 1: Numerical simulations performed for this papersoAthown are the values of the maximum distance
attained by the first propagating fromt,(...) and the frequency of the subsequent fronts for the rotatimgents,
Wp.

4.1 Current height

The height of the current can be defined in a few different waykin et al.(2004 and
Marino et al.(2005 define a local equivalent height in an unambiguous way as

1
Wa.d) = [ iz, (14)
0
and this definition is adopted herein. Thus, at locationsre/tiee entire layer is occupied by the
heavy fluid, the dimensionless height is unity, whereascatlons where the light fluid fills the

entire layer, the height is zero. The local current heighttb@n be averaged over the spanwise
direction. We define the span-averaged current height as

_ - 1 Ly
RET) = / hdg. (15)
y JO
(Any variable with an overbar is to be understood as dimeresgs span-averaged quantity).

4.2 Mean front location and velocity

The mean front location; -, can be unambiguously defined as the location where the span-
averaged equivalent heigfit, becomes smaller than a small threshl@recise definition can
be found inCantero et al(2007h. The mean front velocity is computed as
dTr
urp di (16)
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_ The front velocityur as a function of time for all cases with different Coriolis parameter
C are shown in figure® and3 together with the different scaling laws. We can observesarcl
influence of rotation in all the phases of spreading.

GXlOl T T T
i o i
~i
X0 T [ -
- @Q@%}:\ g4 ]
1L ; g, |
a0 2 Re g0y
/ VTR Beeg
L # A N \ © o
A \ Q
3x10" @ A O -
,', \ <> \ ‘\‘
= i @ Z? ‘\ QGED \‘._
. Re=20007=0 @ @
2107 -6- Re=2000=0.1 » @ i
@ -&- Re=20008=0.15 ‘\\ &
-A- Re=20000=0.25 A < Q
B . theory - SP - F=0.5 i \ [
- theory - VP - Huppert (1982) for Re = 2000} ¢ o
4 Lo 9
leOl T 2 R R | R R R P\ VP | @
10 10° i
F

10
Figure 2: Front velocityz as a function of time. Figure also include the scaling laws for the slumping asdais
phases.

4.2.1 Acceleration phase

After the heavy fluid is released, the front velocity incesasintil a maximum, and then
drops to the slumping phase constant velocity, as showngn2FiThis initial phase is called
the acceleration phase. The location where the peak weloajipens is insensitive & The
same happens for the time at which the peak velocity is relhcFige maximum velocity occurs

at aboutty — T, = 0.3 and att = 1.1 for all cases.
The value of the peak, however, is influenced and a signifibiapt is observed with increas-
ing C. The peak values are 0.451, 0.449 and 0.43%fe0.1, 0.15 and 0.25, respectively.

In our simulations we study the idealized initial conditiohinstantaneous release of the

dense fluid. During the acceleration phase, three-dimeakiisturbances has not grown to
sufficient amplitude, and because of this, the current isti;mtso-dimensional.

4.2.2 Slumping phase

As we mentioned in the previous section, after the acceberahase, the velocity of the front
drops until it gets to a state of constant velocity. In figRikee can clearly see the dependence of
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Figure 3: Front velocity: as a function of time during the viscous phase. The figure also include the sclaling
for the slumping and viscous phases with the best fit to thecitglpeaks for the three cases with rotation.

this phase with the Coriolis parametérAs C increases, the constant slumping phase velocity
drops. This variation is more noticeable in case 3dor=0.25, and the period of constant
velocity is very small. Based on this trend, we can expecetamore rapid variation in the
front velocity as we increas® with an eventual absence of the slumping phase.

For our simulations, we calculate the mean velocity for teqal of constant velocity, and
in case 3, for the period of slower variation in velocity. $hevalues are 0.399, 0.388, 0.377
and 0.337 fo€ = 0, 0.1, 0.15 and 0.25, respectively.

The dimensionless front velocities of our simulations awedr in comparison with the value
predicted by the hydraulic theories for full depth releas@); This is in good agreement with
simulations of planar currents presented@gntero et al(20078, Necker et al(2002, and
laboratory experiments byottman and Simpsof1983 andMarino et al.(2005.

Although the mean velocity in the slumping phase drops withihcrease of the Coriolis
parameter, the near constant velocity is observed in the sat@rval of time2.5 < ¢ < 4.7
for cases with rotation. As expected, the correspondingt fimcation interval decreases with
the increase of the Coriolis force produced by the rotatibthe system. The front location
intervals for constant velocity in the slumping phase @fe < T — T, < 1.8 for C =0.1,
0.9 < Tp — Ty < 1.7 for C =0.15, and).9 < Tp — Ty < 1.6 for C =0.25.

4.2.3 Inertial and viscous phases

After the interval of constant velocity at= 4.7 where the fronts have traveled between 1.6
and 1.8 lock lengths, we observe in all cases with rotatiee (Sig.2) a rapid drop in front
velocity, until it gets to a value of zero, from when the frgtdrts to propagate inward (negative
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Figure 4: Location of the front relative to the initial pasit T — T, as a function of time.

values ofi ). This phenomenon will be studied in the next section.

We then observe successive pulses of the front locatiorHge4), with corresponding front
velocity oscillations (see Fig3). The value of these peaks decreases, following a decaying
law with a slope in good agreement with predictions madélbppert(1982 for the viscous
phase in planar currents, witke = 2000 and§,n, = 3.2 (see Eq.13). Figure3 shows an
overestimation made by these predictions owing to the poesef rotation in our simulations.
The best fit to the values of the peaks in velocity giggs,= 1.12, 1.04 and 0.79 fa#= 0.1,
0.15 and 0.25, respectively (see F3).

In case 0=0), the drop in velocity after the slumping phase is in gogeament with the
predictions made biduppert(1982 andCantero et al(2007h (see Fig2). The absence of an
inertial phase in all our simulations will be discussed i tiext section.

4.3 Transition between phases

Following Cantero et al(2007D, the transition points between phases of spreading can be
computed by matching the front velocity of the correspogdicaling laws at the time of tran-
sition. The constants of the scaling laws we usefgrel.47 andi,;,= 3.2 (see equationd®)
and (L3)), determined byCantero et al(2007h from experimental data.

First we match the constant velocity of the slumping ph&gg with the front velocity of
the inertial phase (see Ef§2). The time of transition from slumping to inertial phasehsn

given by
N 2 \*Zoho
- (2e) 2

p,sl

(17)

The values off), ;; for C =0, 0.1, 0.15 and 0.25 are 0.399, 0.388, 0.377 and 0.337,aespe
tively. For these values and with, = hy = 1, the times of transition from slumping to inertial
phase aréq;= 14.84, 16.01, 17.41 and 24.32 f6r=0, 0.1, 0.15 and 0.25, respectively. The
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location of where this transition occur can be determined as

2

Tsr  uplsy 2¢ ’ Fp s

e () (5) as)
hy

and using the values df, ,, obtained for our simulations argl= 1.47 , we getrs;= 5.918,
6.25, 6.58 and 8.23 faf =0, 0.1, 0.15 and 0.25, respectively.

The second transition time of our interest is from the slurgghase directly to the viscous
phasetsy, obtained by matching the constant front velocity of thergling phase and the
velocity of the viscous phase (see H®). This gives

7 1 o (5050)3/4 1/4
tSV = <5§pHp) WR@ / , (19)

p,sl

and with the values of), ,; presented earlier and the constg,= 3.2 obtained byCantero
et al.(20071), the times of transition between slumping to viscous phdseC =0, 0.1, 0.15
and 0.25 arég, = 12.08, 12.49, 12.91 and 14.84, respectively. Compariesgivalues with the
values obtained fots;, we can see thdt, is smaller tharts; in all cases. This evidence the
absence of the inertial phase seen in our simulations. Ear @4 =0), {5, = 12.08 is in good
agreement with figur8, where we can see the departure from constant velocity ait a0l 2.

The slumping to inertial phase transition time (E@) has a weak Reynolds-number depen-
dence througl#), ;, and becomes independent only at lafge In contrast, the transition time
between slumping to viscous phages will increase withRe. Thus, at lowerRe, ts,, become
smaller thans;, and a direct transition between the slumping and the vis@hiase occurs.
Cantero et al(2007Dh studied in detail the transition time dependence with and matching
(17) with (19) estimated that the criticae for the inertial phase to exist Be,, = 2000Zhq.
This is in good agreement with our results.

For our simulations, the increasing difference betwggrandis, asC increase, suggest a
dependence between the existence of the inertial phasdéasgeed of rotation of the system.

4.4 Maximum distance of propagation

After the release of the dense fluid, the initial behaviorhaf totating currents is similar to
that of the non-rotating current. After a certain time, tleeeleration of the rotating currents is
evident until the velocity of the frontgs becomes zero. We define the location in the stream-
wise direction were velocity becomes zerozs,,. The location of the front relative to the
initial positionz — @, as a function of time is displayed in Fig4.

The maximum distances of propagation of the fronts are sHowwn Fig. 5 for cases (1) to
(3). As we can see, the maximum distance of propagation ofifdteoutward pulse of dense
fluid is influenced by the rotation of the system. With the @age of the Coriolis parameter,
less propagation of the front occurs. Also, this steadtestappens before in case 3 (with larger
Coriolis parameter) than in the other cases. The valueg,gf are shown in Tablé.

Figure6 shows the relation between the maximum distance of projamgat the first out-
ward pulse of dense fluidz(,., — T,) and the Coriolis parametéh. The best fit to the data
yields

Tmae = 1+ —— ) (20)
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Best fit €nay—X) = 0.64¢

™~

Figure 6: Maximum distance of propagati@p,.. — Zo in the streamwise direction as a function of Coriolis
parameteC.

4.5 Frequency of thefronts

Prior to the arrest of the initial front, a reverse flow in thg of the current, and a contraction
and increase of thickness of the current towards 0 is observed. This accumulation of fluid
relaxes and produces a second outward propagating pulemsé duid that exceed,,.,, of the
first propagating pulse of fluid. This behavior repeats fitseVveral times.

Figure7 shows the results for density functigrcontours agj = 0.5 for case (2) at various
time instances. At = 5, the first outward pulse of fluid is visible. At time= 10 and soon
after att = 15, the reverse flow advance towards- 0.

The mean pulse peridf, for each case, defined as the averaged time interval on winéch t
successive outward pulses reagh= 0. The pulse frequenay, is defined as

. 2T
wp:T—.

P

(21)

The values ofv, are shown in Tablé. Figure8 suggest a linear dependence®gfwith the
Coriolis paramete€ )
w, = KC. (22)

The best-fit yieldsK' = 2.02. Similar results were found bifallworth et al.(2001) with
laboratory experiments of axisymmetric gravity curreigiure9 shows the mean pulse period
and frequency for cases (1) to (3).
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Figure 9: Mean pulse peridfl, and the pulse frequeney, for cases 1 to 3a) Velocity of the frontur as a
function of timet for case 1b) Location of the front relative to the initial positiafy — T, as a function of time
t for case 1.c) Velocity of the frontur as a function of timé for case 2.d) Location of the front relative to the
initial positionZy — T, as a function of time for case 2.e) Velocity of the frontur as a function of time for
case 3.f) Location of the front relative to the initial positiafr — 7, as a function of time for case 3.
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5 CONCLUSIONS

In the present work we studied stratified currents in a periodannel with rotation effects
by direct numerical simulation. The flow was initiated frors@id rotating state at a constant
velocity 2.

We compared cases with different Coriolis paramefeasd found significant differences in
the different phases of spreading. The maximum velocithéndcceleration phase drops when
C is increased, however, the location and time where this pegkens is insensitive . A
similar relation was found between the constant velocitheslumping phase and the Coriolis
parameter, where the velocity dropscamcreases, but the time interval when it happens is the
same for cases with > 0. Based on the trend of the constant velocity, a more rapiidt@n
is expected as we increase the Coriolis parameter with teeteal absence of the slumping
phase.

After the phase of constant velocity, the rotation of theaexysproduces a rapid drop in front
velocity, until it gets to a value of zero, from when the fratérts to propagate inward and
outward repeatedly. The values of peak velocity follow aayétg law with a slope in good
agreement with predictions made bipppert(1982 for the viscous phase, but overestimated
by this predictions owing to rotation.

The absence of an inertial phase is evidenced by the relatitdme times of transition be-
tween each phase. For all our simulations, the transitrae thetween the slumping to viscous
phase {sy) is smaller than that of the slumping to inertial phasg)( and the increase of the
difference suggests a dependence of the existence of thiphase with the Coriolis param-
eter.

The maximum distance of propagation of the first pulse in thatf where the velocity of
the front becomes zero, is restricted by rotation, and asarease’, less propagation in the
streamwise direction occurs.

Before the arrest of the first propagating front, a reverse ftothe tail of the current is
observed, generating an accumulation of fluid towards tiialiposition of the dense fluid that
relaxes and produces a second outward front. The mean petgeshcy appears to be linearly
dependent of the Coriolis factor with a relatiop = 2.02C.
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