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In the past years, the consumption of energy produced by wind turbines had an exponential growth. 
This requirement gave momentum to the development of larger turbines with the goal of producing 
more energy at the same site, reducing the initial investment, and the operation and maintenance costs. 
In order to achieve this objective, longer, lighter, maintenance-free blades are required so that smaller  
loads are transferred to the other,  more expensive, wind turbine components.  The resulting larger  
flexibility, imposes new challenges to the blade and controller designs;  henceforth, new concepts are  
being developed to add more intelligence into these systems. During the last few years, the electronics  
industry  had  invested  resources  into  the  research  and  development  of  practical  applications  for  
piezoelectric  ceramic  materials.  The  result  of  this  effort  was  the  development  of  high  precision 
piezoelectric actuators and sensors, which achieve forces and deformations that are compatible with  
the  ones  needed  for  the  control  of  aerodynamic  surfaces.  In  a  former  work  by the  authors,  the 
aeroservoelastic behavior of a two dimensional (2D) wind turbine typical section with an active smart  
flexible flap was studied. In that work, the potential vibration control properties of an active flexible  
flap were exposed. In the present work, the study is extended to the three dimensional (3D) space. The 
flap is modeled as a flexible trailing edge, excited by a piezoelectric actuator, which allows the active  
morphing of the aerodynamic profile. Structurally, the flap is modeled as a continuum plate, with  
fixed-free boundary conditions and a piezoelectric actuator at its surface. The flap deflection, relative  
to the blade surface, is described by the assumed modes method. The flap bending modes are excited 
actively by means of a commercial piezoelectric actuator. Aerodynamically, the blade-flap system is  
modeled using an unsteady version of the vortex lattice method. In this model it is assumed that the  
viscous effects are confined at the boundary layer attached to the surface and the wake shed by the 
surface. The wake is modeled with vortex rings and it is allowed to move force-free. To capture the 
physical aspects from the control-fluid-structure interaction, the models are combined  using a strong 
coupling  technique.  The  equations  of  motion  of  the  system  are  integrated  numerically  and  
interactively in the  time domain.  In addition,  the stability and sensitivity of the  system for input  
perturbations  are  analyzed.  The results  show the feasibility of  using this  type  of  system in large 
horizontal axis wind energy turbines.  
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1 INTRODUCTION

The  consumption  of  renewable  energy produced  by wind  turbines  had  an  exponential 
growth during last years. The development of large wind turbines producing more energy at 
the  same site  reducing the  initial  investment,  the  operation  and maintenance  costs,  is  an 
engineering challenge.  In order to  achieve this  objective,  longer,  lighter,  maintenance-free 
blades are required so that smaller loads are transferred to the other wind turbine components. 
The resulting larger flexibility imposes new challenges to the blade and controller  design. 
Therefore new concepts are being developed to obtain better systems. 

There are several studies regarding this  subject,  mostly of them applied to aircraft  and 
wind turbines.  A good review can be seen in  Barlas  and Kuik (2010). In this  work they 
highlight  that  “...trailing  edge  flap  control  seems  to  be  one  of  the  most  efficient  of  the 
proposed aerodynamic control surfaces..”. 

The  modeling of a lifting surface with an active smart flexible flap is not a simple task. 
Nonlinearities arise due to the offset of shear, tension and mass centers; but also by the Fluid 
Structure Interaction (FSI).  The aerodynamic pressure responds to the shape of the flexible 
surface; which is in turn a function of the aerodynamic pressure. Moreover the unsteady flow 
around the blade gives rise to a wake that continuously modifies the pressure field around it. 
Finally, adding a flexible trailing edge, capable of modifying its own geometry by means of a 
piezoelectric effect, reveals the full complexity of the problem. 

An efficient  way for considering the aerodynamic  effects  is  the unsteady vortex lattice 
method (UVLM) used by Preidikman (1999) and Gebhardt (2008) among others. The former 
to study the fluid structure interaction in smart wings; and the latter a large horizontal axis 
wind turbines (LHAWT) behavior. 

Embedding an  active  layer  of  piezoelectric  ceramic  material  over  a  layer  of  a  passive 
material, allows a smooth bending control surface that prevents flow detachment. Pinkerton et 
al (1997) experimented on a thin layer  composite-unimorph ferroelectric driver and sensor 
(THUNDER) piezoelectric actuator designed by NASA. Buhl et al (2007) studied the use of a 
THUNDER actuator as a trailing edge flap control for a wind turbine blade.  A study on the 
aeroservoelastic behaviour of a wind turbine blade typical section, equipped with a smart flap, 
driven by a THUNDER actuator,  has been recently presented by the authors  (Tripp et  al. 
(2011)). The potential used of piezoelectric control devices in the flap of a typical section is 
discussed. The results show that adding a simple plunge velocity feedback control law in the 
piezoelectric layers can increase bending damping up to 73% for the two dimensional case.

In this  work,  the  aeroservoelastic  behavior  of  a  three  dimensional  wind  turbine  blade 
approximation,  equipped  with  an  active  smart  flap,  is  numerically  simulated  in  the  time 
domain. The aerodynamic effects are modelled with the UVLM, and the structural behaviour 
with the assumed modes method.  The latter is widely used in the helicopter industry and in 
some of the most popular aeroelastic codes for wind turbines, such as FAST (2005). 

To capture the physical aspects from the control-fluid-structure interaction, the models are 
combined using a strong coupling technique. The equations of motion of the aeroservoelastic 
system are integrated numerically and interactively in the time domain.

First, the model is validated against an experiment found in textbooks. Next, the case of a 
100m wind turbine blade-flap undergoing plunging motion is simulated and finally, the results 
are presented and discussed.
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2 AEROSERVOELASTIC MODEL

In  this  section  the  aeroservoelastic  model  is  described.  First  the  structural  model  is 
presented  which  comprises  an  Euler-Bernoulli  beam  model  for  the  elastic  axis  and  a 
piezoelectric material model for the flap. Next the UVLM model is presented along with the 
force generalization. Then the system of equations is shown. Finally the method of solution is 
presented.

2.1 Coordinate systems and nomenclature:

n̂1, n̂2, n̂3 : inertial (Newtonian) system.
b̂1, b̂2, b̂3 : body system that rotates with the local torsion angle. 

  h is the flexural displacement.
  y is the position along the span.
  θ is the torsional displacement.
  v is the flap deflection relative to the B system.
  m is the airfoil section lumped mass.
  d1 is the offset of the center of mass from the shear center.

Figure 1: Model Layout

2.2 Structural model

2.2.1 Blade model:

The blade is structurally modeled as a slender beam with its mass lumped at the mass axis. 
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displacement are modeled. 
The position vector of a point at the mass axis ( R⃗ ) is given by:

R⃗=d 1b̂1+ y n̂2+h n̂3=d 1 cosθ n̂1+ y n̂2+(h−d 1 sinθ) n̂3  (1)

And its velocity:
⃗̇R=−d 1 θ̇sinθ n̂1+( ḣ−d 1θ̇cosθ) n̂3  (2)

The flexural (h) and the torsional (θ) displacements are described with the assumed modes 
method, where qh and qθ are the modal factors and ψh and ψθ are the shape functions, for the 
flexural and torsional modes respectively:

h( y , t)=qh(t )ϕh( y)
θ( y , t)=qθ(t )ϕθ( y )

(3)

The blade kinetic energy is:

T blade=
1
2
∫blade

⃗̇R⋅⃗̇R dm  (4)

where dm is a differential mass of the blade.     

Hence, introducing (2) and (3) into (4):

T blade=
1
2

q̇θ
2∫blade

ϕθ
2 d 1

2 dm+
1
2

q̇h
2∫blade

ϕh
2 dm− q̇h q̇θ∫blade

ϕhϕθd 1 cos(qθϕθ)dm (5)

     
The potential energy for elastic beams with bending and torsion is:

U blade=
1
2
∫blade

σεdvol+
1
2
∫blade

τ γdvol (6)

where:
σ and ε are the axial stress and strain of the beam.
τ and γ are the torsional stress and angular distortion of the beam.

Considering Euler-Bernoulli hypothesis and torsion of solid bars:

U blade=
1
2

qh
2∫ EJ ( ∂

2

∂ y2 ϕh)
2

dy+
1
2

qθ
2∫GJ ( ∂

∂ y
ϕθ)

2

dy  (7)

where EJ and GJ are the section flexural and torsional stiffnesses.

2.2.2 Flap model:

The  flap  is  modeled  as  a  mass-less  surface,  with  fixed-free  boundary  conditions. 
The flap deflection, relative to the body of the blade, is described using the assumed modes 
method, where the displacement  field can be described by the superposition of an infinite 
number of shape functions weighted by coefficients that are functions of time. In this work 
only one mode is used, as follows:

 v (x ,t )=ϕv(x)qv(t )=x2 qv( t)                                    (8)
where qv and ψv are the modal factor and shape function respectively, and x is the coordinate 
along the b1 axis..
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2.2.3 Piezoelectric material model:

In this  work,  following  Preidikman  et  al  (2006), a  simple  linear  model  is  used.  It  is 
assumed  that  the  piezoelectric  layer  is  polarized  in  its  thickness  direction.  The  free 
deformation (Λ) is given by:

Λ=
d
t c

V                                                                  (9)

where:
d is a material constant that defines the piezoelectric strength;
tc is the thickness of the layer; and
V is the control voltage.

The actuator is a composite material where the bottom layer is made from steel and  the 
upper layer is made from a piezoelectric PZT ceramic.  The beam has fixed-free boundary 
conditions and its bending deflection is approximated by equation (8).

Figure 2: Flap Layout

The strain energy of the flap is given by, 

U flap=
1
2
∫flap

σεdvol=
1
2
∫0

Lblade

∫0

c
( y)

∫zmin

zmax

E (z)ε( x , z ,t )
2 dz dx dy

                                  (10)

Euler-Bernoulli  slender  beam hypotheses  are  considered and only the strain from pure 
bending is included.

ε( x , z ,t )=−(z−ze)
∂

2

∂ x2
v(x , t )+Λ=−(z−z e)v( x ,t )

' '
+Λ

ze=

E c t c(t b+
t c

2
)+Eb tb(

tb

2
)

Ec tc+Eb tb

                                 (11)

where z is a coordinate along the b3 axis and ze is the section centroid.

Combining (8) and (11) results in:
ε( x , z ,t )

2 =( z−ze )
2(ϕv (x)

' ' qv (t ))
2−2( z−ze )ϕ v(x)

' ' qv(t)Λ+Λ2     (12)

L

tb,Eb

tc,Ec

x

z

PZT Layer
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And finally:

U flap=
qv

2

2
EJ∫0

Lblade

∫0

c( y)

ϕv (x)
' ' 2 dx dy−qv ΛES∫0

Lblade

∫0

c (y)

ϕv(x)
' ' dx dy+Λ

2
E e∫0

Lblade

∫0

c ( y)

dx dy

EJ=∫zmin

zmax

E (z )( z−z e)
2 dz

ES=∫t b

t c+tb

E(z )(z− ze)dz

E e=∫tb

tb+ tc

E (z)dz

(13)

2.3 Unsteady Aerodynamics:

A thorough explanation of this model can be found in Katz and Plotkin (1991).
The surface is modeled assuming the hypotheses of thin airfoil theory; that is, as a vortex 

sheet attached to the airfoil mean camber line. Since only the out of plane bending moment 
and torsional  moment  are of  interest,  the thickness  effect,  which induce in-plane bending 
moment is not taken into account. It is assumed that the flow surrounding the surface and its 
wake is inviscid, irrotational and incompressible, hence there is a velocity potential  Φ that 
fulfills the Laplace equation, which describes its spatial distribution:

∇
2
Φ=0                                                                     (14)

In order to have a unique solution, three additional conditions must also be satisfied:
1. The flow is tangent to the airfoil boundaries (zero normal flow): 

(∇Φ+ v⃗ )⋅⃗n=0
v⃗=−[ v⃗∞+ ⃗vbody]

 (15)

where v∞ is the inflow velocity vector and vbody is the surface velocity. 
n⃗ is the surface normal vector.

2. The flow disturbances vanish far from the body:
lim
d →∞

∇Φ=0 (16)

3. The total circulation is constant for all t:
d
dt

Γ=0          (17)

The second and third conditions are fulfilled by selecting the vortex ring solution, where 
the surface and wake sheet are discretized with panels as the one shown in figure 3.

Figure 3: Panel element

Γ
e

1

e
2

G

N.G. TRIPP, S. PREIDIKMAN, A.E. MIRASSO828

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The induced velocity is evaluated at the control point located at the ring center. The 
velocity induced by a single vortex segment at the control point can be written in the 
following matrix form:

∇Φ=(
u
v
w)= Γ

4π

L×r1

∥L×r 1∥2

2 (L⋅(e1−e2))=a⃗ ijΓ                                  (18)

     where Γ is the segment vortex strength,e1 and e2 are diretor cosines, r1 is the distance in the 
e1 direction and L is the segment length. a⃗ ij Is the aerodynamic influence coefficient which 
represents the induced velocity for a vortex of a unitary strength. The ring vortex strength is 
defined as G.

Now the velocity potential can be divided into an airfoil potential and a wake potential.
Φ=Φairfoil+ Φwake                                                        (19)

Replacing (19) into (15) results:

(∇Φairfoil+ ∇ Φwake−v⃗∞− ⃗vbody)⋅⃗n=0
→∇Φairfoil⋅⃗n=−(∇Φwake+ v⃗∞+ ⃗vbody)⋅⃗n

                                    (20)

And taking into account that the total potential at any point is the sum of all the vortex 
contributions:

∇Φairfoil(i )=∑ j
a⃗ ijΓairfoil(i)                                               (21)

Results in the following algebraic system:
AΓairfoil=−(∇Φwake+ v⃗∞+ ⃗vbody)⋅n⃗                                     (22)

where A is the matrix of aerodynamic influence coefficients:
 A(ij )=(∑ j

a⃗ ij)⋅n⃗i                                                      (23)

At each time step, the linear system of algebraic equations is solved in order to evaluate the 
circulation around the surface. Having defined the system completely, the induced velocities 
at the surface and its wake are then calculated. Having this information, the airfoil tangential 
velocities and pressures are determined using the unsteady version of the Bernoulli equation. 

Δ p j=ρ(U ∞

Γ j

Δ l j

+ ∂
∂ t
∑

1

j

Γk )                                               (24)

where ρ is the air density.
Once the panel pressures are calculated the wake is reconfigured using the total velocity 

field; then, time is incremented, and all the previous steps are repeated.
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2.3.1 Generalized forces

Figure 4: Pressure loads

The virtual work done by the pressure field acting on the blade surface is given by:
̄δW=∫blade

d f⃗ ( x , y , t)⋅δ R1(x , y , t)+∫flap
d f⃗ ( x , y , t)⋅δ R2( x , y , t)

(25)
where:
d⃗f ( x , y , t)=dp(x , y ,t )b̂3=dp( x , y , t)(sinθ n̂1+cosθ n̂3)

R1=xcosθ n̂1+ y n̂2+(h− xsinθ) n̂3

→δR1=−x sinθδθ n̂1+(δ h−x cosθδθ) n̂3

R2=( xcosθ+vsinθ) n̂1+ y n̂2+(h−x sinθ+vcosθ) n̂3

→δR2=((−x sinθ+vcosθ)δθ+δvsinθ) n̂1+(δh− xcosθδθ+δ vcosθ−v sinθδθ) n̂3

 (26)

Replacing (26) into (25) yields:

δ W̄=δW̄ 1+δW̄ 2=Q h⋅δh+Qθ⋅δθ+Qv⋅δqv

Qh=∫blade+ flap
cosθϕh pdA

Qθ=−∫blade+ flap
xϕθ p dA

Qv=∫flap
ϕv p dA

     (27)

R2

R1f1

f2

Airfoil Flap
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2.4 Combining the models - equations of motion

The equations of motion are derived using Lagrange equations

d
dt

∂
∂ q̇i

(T blade)−
∂
∂q i

(T blade)+
∂
∂q i

(U blade+U flap)=Qi (28)

The expressions for the kinetic (equation 5) and potential (equations 7 and 13) energies, 
along with the expression for the generalized forces (equation 27) are now replaced into 
equation (28), which can be written in the following matrix form:

[
mhh mhθ 0
mθh mθθ 0
0 0 0]⋅(

ḧ
θ̈
q̈v
)+[

khh 0 0
0 kθθ 0
0 0 k v v

]⋅(h
θ
qv
)=(

Qh

Qθ

Qv+Q piezo
)−(

bh

0
0 )

where
mhh=∫blade

ϕh
2 dm

mhθ=−∫blade
ϕhϕθ xcosθ dm

mθθ=∫blade
ϕθ

2 x2 dm

k hh=∫blade
EJ (ϕh

' '
)

2 dy

k θθ=∫blade
GJ (ϕθ' )

2 dy

k vv=EJ flap∫0

Lblade

∫0

c( y)

(ϕv(x)
' '

)
2 dx dy

bh=q̇θ
2∫blade

ϕhϕθ
2 xsinθ dm

Q piezo=Λ ES flap∫0

Lblade

∫0

c (y)

ϕv(x)
' ' dx dy

EJ flap=∫zmin

zmax

E (z )(z−z e)
2 dz

ES flap=∫t b

t c+tb

E( z)(z−ze)dz

(29)

2.5 Numerical integration

This system is integrated in the time domain using an explicit-implicit one-step algorithm.

M q̈+K q̇=Q−B
q̈ t
=M −1

(Q−B−K q̇)
q̇ t+1

=q̇t
+q̈ t

ΔT
q t+1

=q̇t
+q̈ t+1

ΔT

(30)
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The complete algorithm flowchart is as follows:

Figure 5: Flowchart
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3 RESULTS

3.1 Rigid rectangular wing

A  sudden  acceleration  of  an  uncambered,  rigid,  rectangular  wing  into  constant-speed 
forward flight is considered. The wing has an aspect ratio of 20. The surface is meshed with 4 
chordwise and 13 spanwise panels. The wind inflow is set at 10m/s and 5º of angle of attack. 
This problem is presented in Katz and Plotkin (1991).

In figure 6 the wing geometry and the wake shed are shown. In figure 7 the results from the 
present model are compared to the reference one showing a close agreement.

Figure 6: Aerodynamic test model.

Figure 7: Aerodynamic test results.
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3.2 Wind turbine blade

Since the aerodynamic model has been validated in the previous section, a wind turbine 
blade proposed by the NREL as a reference has been analyzed in this section. The blade chord 
distribution and structural properties were taken from  Griffith and Ashwill  (2011), and its 
length is 100 meters. The blade surface is modeled as an untwisted flat surface with a variable 
chord. The blade normal  modes were extracted from the data using a finite  element  code 
written by Bir G. (2012) and distributed by NREL. The modal shapes are shown in figures 8 
and 9. For the bending mode there is a good agreement with y3 but, for the torsional one, the 
y2 function was chosen.

Figure 8: Bending mode.

Figure 9: Torsional mode.
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For the aerodynamic model the blade is meshed with 10 chordwise and 12 spanwise panels. 
Since the natural bending frequency is 0.45Hz; while the torsional one is 3.54Hz, the chosen 
time step for the integration of the coupled systems is 0.03s. 

In all  the cases an initial  displacement of 1m was set in order to force a plunging free 
motion. The air inflow was set at 10m/s parallel to the X axis. The system setup at the first  
time step is shown in figure 10.

Figure 10: Blade initial configuration, inertial axes are in meters.

3.2.1 Plunging motion for the case without flap

The simulation results are shown in figure 11. The blade geometry and the wake shed by it  
at the final time step are shown in figure 12.

Figure 11: test results.
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Figure 12: plunging of blade without flap.

3.2.2 Plunging motion for the case with an active deformable flap

In this case, the 100m blade is simulated in the same initial conditions but with the active 
flap. A simple plunge velocity feedback was defined for controlling the flap. 

V=−β⋅ḣ (31)
where:
   V is the input voltage for the piezoelectric actuator.
   β is the feedback gain.In this test β was taken as 100.

ḣ is the plunge velocity

The properties of the piezoelectric and support layers were taken from a data sheet of a 
commercially available actuator (see THUNDER datasheet). The flap length was defined to be 
10% of the local chord for the complete blade span.

The simulation results are shown in figure 13. The blade geometry and the wake shed by it 
at the final time step are shown in figure 14.

Figure 13: test results.
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Figure 14: plunging of smart blade.

3.3 Results comparison

The results from the plunge tests are shown as time series in figure 15 and state-space in 
figure 16. For comparison, the blade response without the flap and without  the UVLM is also 
shown and is designated as “in vacuum”, since the aerodynamic effect is not modeled. Due to 
the system natural frequencies and the simulation length, the system response in vacuum does 
not  complete  a  full  cycle  in  bending.  The  results  are  shown  through  the  generalized 
coordinates, qh (bending) and qθ (torsion).

When comparing the blade response in vacuum to the ones including the UVLM, it can be 
seen that there is a considerable damping effect from the aerodynamics. Most of the torsional 
oscillation vanishes in 4-5 cycles depending whether the flap is present or not. In the bending 
mode there is no oscillation. Therefore damping seems to be larger for the bending mode than 
for the torsional mode.

From the state-space representation (figure 16) two effects are seen. First, the blade without 
flap describes a trajectory that is farther from the equilibrium point, than the one with the 
active flap. This gives a measure of the energy within the system, so the blade with an active 
flap is dissipating more energy at each cycle. The second effect is that each system converges 
to  a  different  equilibrium  point.  Comparing  figures  12  and  14,  the  difference  in  the 
equilibrium point is observed in the wake at the blade root. The blade with the deformed flap 
produces a wake rollup and the other does not. 

Figure 15: Temporal data.
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Figure 16: Space-state data.

4 Conclusions

In this work, the aeroservoelastic behavior of a wind turbine blade equipped with an active 
smart flexible flap is numerically simulated. The unsteady aerodynamic is modeled by means 
of UVLM. The geometry of the wake is found, iteratively, using a time-stepping technique. 
The flap is modeled as a multilayered flexible beam with some layers having piezoelectric 
properties.  This allows a control  law to be applied evenly over the entire  flap.  The blade 
structural response is modeled by the assumed modes method. In this model, the structural 
damping is not taken into account. The equations of motion of the aeroservoelastic system are 
integrated numerically and interactively in the time domain using a step-by-step algorithm. 
The aerodynamic model is validated against a reference case found in textbooks for a rigid flat 
rectangular wing in steady state condition. 

Next, a reference wind turbine blade proposed by NREL with and without an active flap, is 
simulated in a uniform flow, after an initial displacement is imposed. First, the results show 
that  the  three  dimensional  problem differs  from the  two  dimensional  one  studied  by the 
authors in a previous work (Tripp et al. (2011)). Bending damping seems to be greater than 
the one found in the two dimensional version. For the torsional mode, adding a uniform flap 
with a length of 10% of the local chord, driven by a simple plunge velocity feedback control 
law, seems to be an effective tool for altering the vibrational response of the blade. There 
seems to be a difference in the equilibrium points for each case analyzed. This difference 
could be the result  of comparing a blade with a rigid,  local  chord against  one that  has a 
flexible trailing edge and modifies its  camber.  Observing the state-space visualization,  the 
blade with an active flap seems to be more dampened than the other one. 

These results show the feasibility of using this type of system in large horizontal axis wind 
turbines. 
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