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Abstract. A parametric study is performed in this work in order to investigate the computational 
performance of a numerical model based on isogeometric analysis for applications in nonlinear 
elastodynamics. It is well known that finite element models cannot represent accurately the higher 
vibration modes of a dynamic response due to deficiencies associated with the spatial discretization 
procedure. In addition, time integration algorithms with unconditional stability in the linear range are 
frequently subject to numerical instability when they are applied to nonlinear problems. In this sense, 
it is expected that a formulation utilizing isogeometric analysis and a dissipative energy-momentum 
conserving scheme for time discretization can significantly improve numerical stability. In the present 
paper, a numerical model for dynamic analysis is presented considering the isogeometric formulation 
based on NURBS (non-uniform rational B-splines). The kinematical description is performed using 
the corotational approach formulated in the context of isogeometric analysis and the constitutive 
equation is written in terms of corotational variables according to the hypoelastic theory, where the 
small strain hypothesis is adopted. Large displacements and large rotations may be also considered in 
the present scheme. A dissipative energy-momentum conserving algorithm is adopted to solve the 
equation of motion by using the generalized-α method and algorithmic conservation of energy as well 
as linear and angular momentum. Numerical examples are analyzed with the numerical formulation 
proposed in this work and results are compared with predictions obtained from a finite element model 
in order to quantify computational aspects such as efficiency and accuracy. 
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1 INTRODUCTION 

Isogeometric analysis can be interpreted as a numerical procedure to unify numerical 
techniques associated with geometrical design and analysis by employing a single 
parameterization framework, where the same basis functions are utilized throughout the 
numerical modeling. Geometrical design and analysis have been performed independently 
with pre-processing programs based on computer aided design (CAD) technologies and 
numerical solvers based on the finite element method (FEM). However, it is frequently 
observed that the finite element model obtained after mesh generation cannot match the 
geometric shape of complex models reproduced with CAD tools, since insufficient 
approximations may be utilized depending on the basis functions adopted in the finite element 
formulation and the number of elements used in the spatial discretization. Extending this 
remark to the field of dynamic analysis, one can also observe that the higher vibration modes 
of a dynamic response cannot be accurately represented due to modeling errors introduced 
when the spatial discretization procedure is applied to infinite-dimensional continuum 
systems, which may give rise to numerical instabilities if numerical dissipation is not 
adequately employed. In order to circumvent this drawback, isogeometric analysis may be 
utilized, where B-splines and NURBS are adopted to build the geometric models and to 
approximate the solution field. 

Numerical models with controllable dissipation were firstly developed to stabilize time 
discretization procedures referring to dynamic systems, especially for linear applications. The 
Newmark’s method, for instance, presented no numerical dissipation in its standard form, but 
a formulation with controllable numerical damping was also proposed in Newmark (1959). 
By studying the Newmark’s method and other early algorithms with numerical dissipation, 
such as the Wilson’s method and the Houbolt’s method, Goudreau and Taylor (1973) 
concluded that some amount of damping must be introduced in the numerical schemes to 
reduce the spurious action of higher vibration modes. However, it is well known that second-
order accuracy is lost when numerical dissipation is considered. In this sense, Hilber et al. 
(1977) proposed a numerical scheme combining unconditional stability, second-order 
accuracy and numerical dissipation of higher modes. Similar improvements were also 
obtained with the formulation introduced by Wood et al. (1980) and a generalization of the 
methods presented by Hilber et al. (1977) and Wood et al. (1980), the so-called generalized-α 
method, was formulated by Chung and Hulbert (1993). The generalized-α method leads to 
second order accuracy and optimized numerical dissipation can be obtained when linear 
problems are analyzed. Moreover, minimal dissipation is observed in the lower modes as well 
as maximal dissipation is achieved in the higher modes. 

The development of energy-conserving algorithms was motivated from the work presented 
by Belytschko and Schoeberle (1975), where a stability condition based on energy variables 
was proposed. Earlier investigations already indicated that algorithms presenting 
unconditional stability for applications in linear dynamics are subject to numerical instability 
when the corresponding nonlinear case is analyzed. Following the energy criterion introduced 
by Belytschko and Schoeberle (1975), many algorithms were presented for applications 
involving nonlinear dynamics, such as the energy-conserving scheme introduced by Hughes 
et al. (1978), where the Lagrange multiplier method is adopted to enforce energy 
conservation. Nevertheless, Ortiz (1986) demonstrated that energy conservation is not 
sufficient for maintaining numerical stability in the nonlinear range. Kuhl and Ramm (1996) 
also observed that the energy method presented by Hughes et al. (1978) conserves the total 
energy perfectly, but leads to failure in the iteration procedure related to the Newton-Raphson 
linearization. 

L.R. ESPATH, A.L. BRAUN, A.M. AWRUCH900

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

Indeed, Simo and Tarnow (1992) had already noticed the importance of momentum 
conservation by proposing the energy-momentum method, which conserves total energy as 
well as linear and angular momentum. Furthermore, second-order accuracy is also preserved. 
The energy-momentum method was developed considering the mid-point rule to evaluate the 
internal forces in every time step of the time integration process in order to reach energy 
conservation algorithmically, since it was concluded that the stress update procedure is 
crucial to obtain a numerical algorithm with energy-momentum conservation. An energy-
momentum conserving algorithm for hypoelastic constitutive models was developed by Noels 
et al. (2004) by using a new expression for evaluating the internal forces at element level. 
Braun and Awruch (2008) also utilized a hypoelastic formulation for applications in nonlinear 
elastodynamics using the eight-node hexahedral element with one-point quadrature 
techniques. According to Romero (2012), there are infinite ways of obtaining second order 
accuracy as well as energy and momentum conservation algorithms, whereas the 
characterization of the conserving stress as a minimization problem leads to that conclusion. 

Although the conservation of energy and momentum is mandatory in order to obtain a 
stable numerical algorithm, it was also realized that some amount of numerical dissipation 
must be introduced in the model to damp out spurious contributions of the high-frequency 
range to the dynamic response. This situation motivated the development of energy 
dissipative momentum conserving algorithms, where momentum is conserved, energy 
dissipation is controlled and order of accuracy is maintained. Kuhl and Ramm (1996) 
proposed the constraint energy-momentum method, a time-stepping scheme combining 
conservation and dissipation properties, where energy and momentum are enforced 
considering the constraint energy methodology proposed by Hughes et al. (1978) and the 
generalized-α method (Chung and Hulbert, 1993) is utilized in order to obtain a dissipative 
time integration model. Optimized parameters for the α methods were determined leading to 
an integration procedure with less numerical dissipation for lower frequencies and more 
dissipation on higher frequencies of the energy spectrum. An algorithm based on controllable 
numerical dissipation and the energy-momentum method introduced by Simo and Tarnow 
(1992) was presented by Kuhl and Crisfield (1999) considering a nonlinear version of the 
generalized-α method. Reviews on energy-momentum and dissipative methods may be found 
in Khul and Crisfield (1999), Armero and Romero (2001a) and Erlicher et al. (2002). 

In the present work, a numerical model based on isogeometric analysis is developed for 
applications in nonlinear elastodynamics. The kinematic description of the continuum is 
performed using the corotational approach in the context of isogeometric analysis. A 
hypoelastic constitutive model is adopted utilizing corotational stress and strain tensors, 
where the small strain hypothesis and large displacements and rotations are considered. The 
numerical model is obtained by applying the Bubnov-Galerkin weighted residual method on 
the Cauchy’s equation of motion and a Newton-Raphson scheme is adopted for linearization 
of the residual vector in the nonlinear range. Geometry and solution fields are approximated 
using NURBS basis functions according to the isoparametric concept. The generalized 
energy-momentum method is implemented into the isogeometric formulation in order to 
obtain a stable and dissipative scheme for time integration. The influence of aspects related to 
the isogeometric discretization is investigated for numerical applications where numerical 
instabilities are expected when standard finite element models are utilized 

2 GOVERNING EQUATIONS FOR LINEAR AND NONLINEAR 
ELASTODYNAMICS 

Problems on elastodynamics may be formulated considering the Cauchy’s equation of 
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motion, where mass and energy conservation must be also enforced over the volume 
enclosing the body analyzed (see, for instance, Malvern, 1969). Considering a classical 
Lagrangian kinematical description in the Cartesian coordinate system and in the absence of 
temperature changes, the system of governing equations are reduced to the following 
expressions: 

 ( ) ( )0, d , dt tρ ρ
0Ω Ω

Ω = Ω∫ ∫X x  (1) 

 0 f.          in , ]t t t
t

ρ ρ ∂
∇ ( ) + = Ω ; ∈[

∂
vu bσ  (2) 

 u 0 f            on  ; [ , ]t t tΓ ∈u = u  (3) 

 f 0 f            on  ; [ , ]t t tΓ ∈n = tσ.  (4) 

 0 0 0 0( , ( )    ;    ( , ( )    t t
t

∂
= ∈Ω

∂
uu x ) = u x v x ) = u x x  (5) 

where Eqs. (1) and (2) represent mass and momentum balances over the spatial domain Ω(t) 
corresponding to the body, respectively, with the vectors X and x containing components of 
the material (Xi) and spatial (xi) coordinates in the Cartesian coordinate system, t denotes 
time, ρ is the specific mass of the body, ∇ is the differential operator, b is the vector of body 
forces per unit mass, σ contains components of the Cauchy stress tensor and u and v are the 
displacement and velocity vectors. The boundary conditions are given according to Eqs. (3) 
and (4), where u  is the vector of prescribed displacements, t  is the prescribed traction vector 
and n is the unit outward normal vector defined at a point on boundary Γf. Equation (5) 
specifies the initial conditions (t = t0; Ω = Ω0) for the displacement and velocity fields. The 
Cauchy’s equation of motion (Eq. 2) is derived considering the current deformed 
configuration of the body (Ω), which boundary Γ is composed by the subsets Γu and Γf, such 
that Γ = Γu ∪ Γf. 

In the present model, geometrically nonlinear problems are analyzed taking into account 
the corotational approach, where stress and strain are described according to a coordinate 
system locally attached to every element of the computational mesh. Consequently, a linear 
constitutive model restricted to small strains can be adopted in order to relate strain and stress 
measures, which may be written as: 

 ( )ˆ ˆ ˆˆ 2trλ µ= +C Iσ ε = ε ε  (6) 

where σ̂  and ε̂  are the Cauchy stress tensor and the small strain tensor, respectively, both 
defined in the corotational system, C is the fourth-order isotropic elastic tensor, which is 
described in terms of the Lamé constants λ and µ. It is important to notice that when 
infinitesimal displacements and rotations are observed, the geometrical linear approach can be 
utilized and the undeformed configuration of the body (Ω0) is taken as reference throughout 
the numerical analysis. 

Corotational formulations adopted in finite element models are usually defined considering 
local coordinate systems positioned at the quadrature points of the elements constituting the 
finite element mesh. The same procedure is employed in isogeometric analysis, taking into 
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account that the motion at element level is now described in terms of displacements defined at 
the control points. Assuming that all kinematical variables at the previous configuration tn of 
the body are known, the displacement field at the end of the current time step can be obtained 
from integration of the strain rate tensor over the time interval defining the present time 
increment [tn, tn+1]. In addition, this integration to obtain the strain increment must be 
performed in the corotational coordinate system, where only the deformational part of the 
displacement increment is considered. The strain rate tensor in the corotational system is 
defined as follows: 

 
Tdef defˆ ˆ1ˆ

ˆ ˆ2

⎡ ⎤⎛ ⎞∂ ∂
= +⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

v v
x x

ε  (7) 

where defv̂  represents the velocity field associated with the deformation part of the motion in 
the corotational coordinate system x̂ . In order to obtain strain increments, some methodology 
must be adopted to integrate the strain tensor over the time interval [tn, tn+1]. According to the 
mid-point integration (see Hughes and Winget, 1980), the strain increment may be obtained 
from: 

 
1

T
def def

1 2 1 2

ˆ ˆ1ˆ ˆ
ˆ ˆ2

n

n

t

n nt

dτ
+

+ +

⎡ ⎤⎛ ⎞∂∆ ∂∆⎢ ⎥∆ = = + ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∫

u u
x x

ε ε  (8) 

where defˆ∆u  is the deformation part of the displacement increment in the corotational system 
and 1 2ˆ n+x  is the intermediate configuration of the body defined in the corotational system, 
which can be determined according to the following expression: 

 ( )1 2 1 2 1 2 1 2 1
1ˆ
2n n n n n n+ + + + += =x R x R x + x  (9) 

where Rn+1/2 is the orthogonal transformation matrix performing rotation from the global 
system to the corotational system defined locally at the intermediate configuration tn+1/2. 

The displacement increment referring to the present time interval [tn, tn+1] can be 
decomposed as follows: 

 def rot∆ = ∆ + ∆u u u  (10) 

where ∆udef and ∆urot are, respectively, the deformation and rotation parts of the displacement 
increment defined in the global coordinate system. It is important to notice that the 
decomposition described in Eq. (10) is locally performed at element level. The deformation 
displacement increment in the corotational system can be obtained from the following 
expression: 

 def def
1 2 1ˆ ˆ ˆn n n+ +∆ = ∆ = −u R u x x  (11) 

where the transformation matrix is evaluated at the intermediate configuration tn+1/2 of the 
current time interval [tn, tn+1], since the strain rate tensor must be referred to the body 
configuration at tn+1/2. Coordinates corresponding to the previous and current configurations 
of the body in the corotational system are obtained with following transformations: 

 1 1 1ˆ ˆ;           n n n n n n+ + += =x R x x R x  (12) 

where Rn and Rn+1 are orthogonal transformation matrices performing rotations from the 
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global system to the corotational system defined locally at tn and tn+1, respectively. 
A hypoelastic constitutive formulation is very effective for corotational descriptions, since 

the nonlinear problem can be posed in rate form by considering the small strain hypothesis 
and an objective rate of the Cauchy stress tensor. Consequently, after determining the strain 
increment in the corotational system, strain and stress updates can be performed with the 
following equations: 

 1

1

ˆ ˆ ˆ
ˆ ˆ ˆ

n n

n n

+

+

+ ∆
+ ∆

ε = ε ε
σ = σ σ

 (13) 

where n and n+1 denote the previous and current configurations in the corotational system, 
respectively. In order to obtain an incrementally objective constitutive formulation, the 
Truesdell rate tensor is adopted in this work, which may be described as follows: 

 Tˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
TR

tr∇ = − − +L Lσ σ σ σ σ ε  (14) 

where ˆ ˆ ˆ= +L ε ω  is the spatial velocity gradient tensor defined in the corotational system. The 
corotational spin tensor ω̂  must be also integrated over the time interval [tn, tn+1] considering 
the same mid-point rule adopted in Eq. (8). 

In the present work, a classical polar decomposition is utilized to obtain the orthogonal 
transformation matrix R, where spectral decomposition of the right Cauchy-Green 
deformation tensor C is adopted to obtain the right stretch tensor U. The right Cauchy-Green 
deformation tensor is defined as function of the deformation gradient tensor F as follows: 

 T=C F .F  (15) 

where the polar decomposition theorem F = Q.U is invoked in order to obtain the relation 
between C and U, that is: 

 T T 2= =C U .Q .Q.U U  (16) 

By using spectral decomposition of C, the following expression is obtained: 

 2 2

1
i i i

i
λ

=

= ⊗ =∑C N N U  (17) 

where λi and Ni are, respectively, the eigenvalues and the eigenvectors of C. Consequently, 
the rotation tensor Q can be evaluated from: 

 ( )1 1

1
i i i

i

λ− −

=

= = ⊗∑Q F.U F. N N  (18) 

The transformation matrix utilized in the corotational formulation is obtained considering 
that R = QT. 

3 THE NUMERICAL MODEL 

A numerical model based on isogeometric analysis may be constructed using variational 
principles in the same form as that utilized by the FEM, which are equivalent to consider the 
corresponding weak forms obtained from the Galerkin method applied to the governing 
equations. In elastodynamics, the Hamilton’s principle can be adopted according to the 
following expression: 
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 ( )
f f

0 0

D 0
t t

t t

K dt W dtδ π δ− + =∫ ∫  (19) 

with: 

 
1 d    ;   d
2

K Kρ δ ρ δ
Ω Ω

= Ω = Ω∫ ∫T Tu .u u . u  (20) 

 f

f

T T

T T

( ) d d d

d d d

Uπ ρ

δπ δ ρδ δ

Ω Ω Γ

Ω Ω Γ

= Ω − Ω − Γ

= Ω − Ω − Γ

∫ ∫ ∫

∫ ∫ ∫

u .b u .t

u .b u .t

ε

σ ε
 (21) 

 T T
D Dd    ;   dW Wδ δ

Ω Ω

= − Ω = − Ω∫ ∫u .d u .d  (22) 

where K and π are the kinetic energy and the total potential energy, respectively, with δK and 
δπ denoting its corresponding variations, WD is the work done by any nonconserving force of 

the system and δWD is the respective variation, 
0

( ) dU = ∫
ε

ε

ε σ ε  is the strain energy density 

function and d is the vector of nonconserving forces, including damping. The displacement 
variations δu must vanish at the time limits t0 and tf and also on boundary Γu, where 
displacements are imposed. 

The semidiscrete system of momentum equations is obtained taking into account they are 
discrete in space but continuous in time. The space discretization is performed here 
considering the Bubnov-Galerkin method applied into the context of isogeometric analysis, 
where the displacement variations associated with the variational form (see Eq. 19) assume 
the role of weight functions. By integrating by parts the kinetic energy variation presented in 
Eq. (19) and considering the restrictions imposed on the displacement variations δu at the 
time limits t0 and tf, the following expression is obtained: 

 T T T T Td d ( ) d d dδ ρ δ δ δ ρ δ
Ω Ω Ω Ω Γ

Ω + Ω + ∇ Ω = Ω + Γ∫ ∫ ∫ ∫ ∫u u u d u u b u tσ  (23) 

where the time integrals were omitted for the sake of clarity. 

3.1 Spatial discretization – the isogeometric formulation using NURBS 

In order to define the element concept in the context of isogeometric analysis, geometry, 
displacements and displacement variations must be discretized with the following 
expressions: 

 1 1

1

( , ) ( ) ( );           ( , ) ( ) ( );

( , ) ( ) ( )

cp cp

cp

n n

a a a a
a a

n

a a
a

t R t t R t

t R t

ξ,η ,ζ ξ,η ,ζ ξ,η ,ζ ξ,η ,ζ

δ ξ,η ,ζ ξ,η ,ζ δ

= =

=

= =

=

∑ ∑

∑

x x u u

u u
 (24) 

where Ra is the NURBS basis function related to control point a, which is defined as function 
of the parametric coordinates (ξ,η,ζ), and ncp is the number of global control points. Knot 
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vectors corresponding to the different directions in the parametric space must be also 
specified defining the non-zero knot spans where elements are then identified. A three-
dimensional knot vector (Ξ, Λ, Ψ) may be written as follows: 

 

1 1
1 1

1 1
1 1

1 1
1 1

( ) 0,...,0 , ,..., ,1,...,1

( ) 0,..., 0 , ,..., ,1,...,1

( ) 0,..., 0 , ,..., ,1,...,1

p

q

r

p s p
p p

q s q
q q

r s r
r r

ξ ξ

η η

ζ ζ

+ − −
+ +

+ − −
+ +

+ − −
+ +

⎧ ⎫⎪ ⎪Ξ = ⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪Λ = ⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪Ψ = ⎨ ⎬
⎪ ⎪⎩ ⎭

ξ

η

ζ

 (25) 

with sp = n + p + 1, sq = m + q + 1 and sr = l + r + 1, where p, q and r are the polynomial 
degrees of the basis functions over the parametric directions ξ, η and ζ, respectively, and the 
corresponding numbers of basis functions are specified by n + 1, m + 1 and l +1, respectively, 
which are also associated with the number of control points in the different directions of the 
physical space. Depending on the geometric topology of the problem, the knot vector may be 
reduced to two- or one-dimensional vectors, i.e. (Ξ, Λ) and (Ξ). 

The NURBS basis functions for three-dimensional applications are defined by: 

 , , , , ,, ,
, ,

ˆ ˆ ˆ ˆˆ ˆ, , , , ,
ˆ ˆ ˆ0 0 0

( ) ( ) ( )
( , , )

( ) ( ) ( )

i p j q k r i j kp q r
i j k n m l

i p j q k r i j k
i j k

N N N w
R

N N N w

ξ η η
ξ η ζ

ξ η η
= = =

=

∑∑∑
 (26) 

where the subscripts i, j and k indicate the position of the control point in the index space and 
the superscripts p, q and r define the polynomial degree of the basis functions. The weight 
term wi,j,k is related to the weight associated with the control point defined by the subindices i, 
j and k, considering that if the weights are specified with unit values, then p

iR  = Ni,p. Details 
on evaluation of weight functions may be found in Piegl and Tiller (1997) and Cotrell et al. 
(2009). For one- and two-dimensional problems, the following NURBS functions are utilized: 

 ,

,
0

( )
( )

( )

i p ip
i n

j p j
j

N w
R

N w

ξ
ξ

ξ
=

=

∑
 (27) 

 , , ,,
,

ˆ ˆ ˆ ˆ, , ,
ˆ ˆ0 0

( ) ( )
( , )

( ) ( )

i p j q i jp q
i j n m

i p j q i j
i j

N N w
R

N N w

ξ η
ξ η

ξ η
= =

=

∑∑
 (28) 

The Cox-de Boor recursive formulation (Cox, 1971; De Boor, 1972) is usually adopted to 
evaluate B-spline basis functions, which are obtained considering a given one-dimensional 
knot vector Ξ (ξ) defined over the parametric space ξ, the number of control points defined 
along the corresponding direction in the physical space and the polynomial order of the 
corresponding basis functions. According to the Cox-de Boor formulation, the B-spline basis 
functions may be expressed as: 
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 1
, , 1 1, 1

1 1

( ) ( ) ( )i pi
i p i p i p

i p i i p i

N N N
ξ ξξ ξξ ξ ξ

ξ ξ ξ ξ
+ +

− + −
+ + + +

−−
= +

− −
 (29) 

where p is the polynomial degree of the basis function N (ξ), which is valid for p ≥ 1, and i is 
the knot index. The recursion is performed over the polynomial degree until p = 0, when the 
following equation is utilized: 

 { 1
,0

1 for ( ) 0 otherwise
i i

iN ξ ξ ξξ +≤ <=  (30) 

Equations (29) and (30) are straightforwardly extended to the basis functions associated 
with the parametric directions η and ζ. For additional information on the isogeometric 
formulation utilized in this work see Espath et al. (2011). 

 The isogeometric model for the equation of motion given by Eq. (23) can be written as: 

 t T T T

1 1 1

d ( ) d d d
el el el

e e e e

n n n

e e e e
e e e

δ ρ δ δ δ
= = =Ω Ω Ω Γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Ω + ∇ Ω = Ω + Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑∫ ∫ ∫ ∫u u u u b u tσ  (31) 

where Ωe and Γe are, respectively, volume and boundary surface corresponding to element e 
in the physical mesh. Considering n + 1, m + 1 and l + 1 as the number of basis functions 
related to the parametric directions ξ, η and ζ, respectively, and their respective polynomial 
degrees denoted by p, q and r, element e is defined by determining the indices at which the 
corresponding non-zero knot span begins in the index space, that is: 

 [ ] [ ]1 1 1, , ,i i j j k ke ξ ξ η η ζ ζ+ + +⎡ ⎤∈ × ×⎣ ⎦  (32) 

where p+1 ≤ i ≤ n, q+1 ≤ j ≤ m and r+1 ≤ k ≤ l (see Eq. 25). The total number of elements in 
which the spatial field is discretized in the parametric domain is defined as: 

 ( 1)( 1)( 1)eln n p m q l r= − + − + − +  (33) 

By substituting the NURBS approximation related to the displacement field (see Eq. 24) 
into the constitutive equation (see Eq. 6), an element level approximation of the stress-strain 
relation is obtained, where the strain components in the corotational system are given by: 

 ˆˆ ˆ= Buε  (34) 

where B̂  and û  are the gradient matrix and the displacement vector, which are evaluated 
referring to the current configuration of the body in the corotational coordinate system. When 
infinitesimal displacements and rotations are observed, Eq. (34) is described in terms of the 
undeformed configuration of the body (Ω0). Derivatives of the B-spline basis functions are 
represented in terms of B-spline lower order bases owing to the recursive definition of the 
basis functions. Algorithms for numerical evaluation of derivatives of B-spline basis 
functions may be found in Piegl and Tiller (1997). 

Introducing the expansions shown in Eq. (24) and the relationship given by Eq. (34) into 
Eq. (31), a matrix equation representing a system of algebraic equations is obtained for the 
equation of motion, which may be expressed as: 

 
1 1 1

el el eln n n

e e e= = =

+ =∑ ∑ ∑e e eM u K u f  (35) 

where Me and Ke are the element mass and element stiffness matrices, respectively, and fe is 
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the force vector at element level. The matrix and vector dimensions associated with Me and 
Ke, and fe, are specified as (neq.neq.neq) and (neq), respectively, where neq = nen.ndf, with ndf 
denoting the number of degrees of freedom at the control point level. The summation symbol 
indicates the assembling procedure to evaluate the global system of equations, considering the 
element contributions given according to connectivity relations established among the control 
points. The global stiffness matrix is always sparse because the support of each basis function 
is highly localized. 

In the geometrically nonlinear regime, the system of equations represented by Eq. (35) 
must be iteratively satisfied using the incremental approach (see Bathe, 1996), since internal 
forces are given now as functions of the current configuration of the body. The nonlinear 
equation of motion is obtained employing a linearization procedure given by the Newton-
Raphson method, where the residual vector is submitted to a Taylor series expansion within 
the increment interval [tn, tn+1]. Consequently, Eq. (35) must be rewritten as follows: 

 ( ) ( )
1 1 1 1

nel nel nel nel

e e e e= = = =

+ ∆ = −∑ ∑ ∑ ∑e e e e e e
tan intM u K u u f f u  (36) 

where Ktan is the tangent stiffness matrix. At each iterative step, the tangent stiffness matrix 
and the internal force vector are initially evaluated in the corotational coordinate system with 
the following expressions: 

 T T

ˆ ˆ

ˆˆ ˆ ˆ ˆˆ( ) d ;      d
e e

e e
Ω Ω

= + Ω = Ω∫ ∫e e
tan intK B C D B f B σ  (37) 

where ˆ
eΩ  is referred to the current configuration of element e in the corotational coordinate 

system, D̂  and σ̂  are stress tensors related to the Truesdell rate tensor and the corotational 
Cauchy stress tensor, respectively, with both evaluated in the corotational coordinate system. 
See Duarte Filho and Awruch (2004) and Braun and Awruch (2008) for further details. 

In order to solve the system of nonlinear equations, the tangent stiffness matrix and the 
internal force vector must be obtained in the global coordinate system through objective 
transformation from the corotational system, that is: 

 ˆˆ ;      e T e e T e
tan tan int intK = R K R f = R f  (38) 

where R is the transformation matrix defined in the previous section. 
When a numerical model based on isogeometric analysis is formulated with the Galerkin 

method and NURBS basis functions, homogeneous boundary conditions are exactly enforced 
by setting the corresponding control variables as zero. A trivial procedure for imposition of 
essential boundary conditions is then obtained, which is similar to that utilized by finite 
element models. In the present model, the Kroenecker delta property of the NURBS basis 
functions can be applied on the displacement field as follows: 

 
1

( ) ( , , ) 0            with            ( )
ncp

B A A A B AB
A

R RΒ Β Βξ η ζ δ
=

= = =∑u x u x  (39) 

where vector xB specifies Cartesian coordinates of control points with parametric coordinates 
defined by ξB, ηB and ζB, which are located at boundary knots with essential boundary 
conditions. 
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3.2 Temporal discretization – the generalized energy-momentum method 

The time interval during which the dynamic analysis is carried out [t0, tf] is subdivided into 
time steps ∆t = tn+1 - tn in order to define the time discretization process for implicit 
algorithms, where the incremental approach is adopted. The kinematic variables are assumed 
to be known at the beginning of every time step of the time integration and the same variables 
are obtained at the end of the respective time step considering the solution of the equation of 
motion, which is given in terms of displacement increments, and time approximations 
provided by a specific method, such as the Newmark’s method. Although the Newmark’s 
algorithm is unconditionally stable for linear problems, it may be unstable in the nonlinear 
range. In this sense, the generalized-α method may be utilized, where the equilibrium of the 
equation of motion is verified at some intermediate point of the time increment instead of the 
end point employed by the classical Newmark scheme. The kinematic variables are defined in 
the generalized-α method by using the following functions: 

 

( )
( )
( )

m

f

f

n+1 m n+1 m n

n+1 f n+1 f n

n+1 f n+1 f n

1

1

1

α

α

α

α α

α α

α α

= +

= +

= +

-

-

-

u - u u

u - u u

u - u u

 (40) 

with subscripts denoting time positions within the time interval [tn, tn+1] as functions of the 
time integration parameters αm and αf, where n and n+1 correspond to initial and end points 
of the time interval ∆t, respectively. 

Introducing Newmark approximations for n+1u  and n+1u  (see, for instance, Bathe, 1996) 
into the expressions given by Eq. (40), the number of unknowns is reduced to the 
displacement vector n+1u , as it is demonstrated below: 

 ( )
f

f f f
n+1- n+1 n n n

(1 ) (1 ) ( 2 )(1 )
2

t
tα

α δ α δ α δ α α
α α α
− − − − −

= − − − ∆
∆

u u u u u  (41) 

 ( )
m

m m m
n+1- n+1 n n n2

1 1 1 2
2t tα

α α α α
α α α
− − − −

= − − −
∆ ∆

u u u u u  (42) 

where α and δ are time integration parameters specified by the Newmark’s method.  
However, it is well known that the generalized-α method cannot maintain numerical 

stability, whereas the total energy within each time step of the time integration is not 
controlled. In order to satisfy the stability condition, the ideas proposed by Simo and Tarnow 
(1992) are included in the present formulation by considering the generalized energy 
momentum method presented by Kuhl and Crisfield (1999). Consequently, the corotational 
stress tensor utilized in the internal force vector (see Eq. 37) is substituted by the algorithmic 
stress tensor defined in the corotational system, i.e.: 

 
fn+1- f n+1 f nˆ ˆ ˆ( ) (1 ) ( ) ( ) ( )α ν α ν α ν+ = − + −u u uσ + σ σ  (43) 

where ν denotes a numerical damping parameter, which is also considered in the algorithmic 
stress to introduce numerical dissipation according to the formulation presented by Armero 
and Petocz (1998). Moreover, the internal and external force vectors are approximated by the 
following expressions: 
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( )

( ) ( )
f

f

ext ext ext
n+1- f n+1 f n

int int int int int
n+1- f n+1 f n f n+1 f n

1

1- 1- ( ) ( )
α

α

α α

α α α α

= +

= + = +

f - f f

f f f f u f u
 (44) 

 The modified equation of motion, including damping effects, is finally presented as 
follows (see, for instance, Khul and Crisfield, 1999): 

 
m f f f

int ext
n+1 n+1 n+1- n+1-α α α α+ + =- -Mu Du f f  (45) 

Substituting Eqs. (41) and (42) into the modified equation of motion (Eq. 45), the effective 
dynamic equation can be obtained, i.e.: 

 ( )

f

f f

tangm f
n+1-2

ext int k m m
n+1- n+1- n+1 n n

f f
n n

1

1 1 2
2

2

t t

t

t

α α δ
α α

α α α
α α

α δ α δ α α
α α

α

α α

⎧ − (1− ) ⎫⎡ ⎤ ⎡ ⎤ ∆⎨ ⎬⎢ ⎥ ⎢ ⎥∆ ∆⎣ ⎦ ⎣ ⎦⎩ ⎭
− − −⎡ ⎤− − + −⎢ ⎥∆⎣ ⎦

(1− ) − ( − 2 )(1− )⎧ ⎫+ ∆⎨ ⎬
⎩ ⎭

M + D + K u =

f f u M u u

D u u

 (46) 

where: 

 
f

tang tang k
n+1- f n 1(1- ) ( )αα +=K K u  (47) 

The time integration parameters α, δ, αm and αf are defined as functions of the spectral 
radius r∝ ( 0 r 1∞≤ ≤ ) according to: 

 ( )2
m f m f m f

2r 1 r1 11 ; ; ;
4 2 r 1 r 1

α α α δ α α α α∞ ∞

∞ ∞

−
= − + = − + = =

+ +
 (48) 

where the expressions presented above are obtained considering the formulation presented by 
Chung and Hulbert (1993), which leads to optimized dissipation for high and low frequencies 
as well as second order accuracy. 

An algorithm referring to the numerical model proposed in this work is presented in Table 
1, where TOL is identified as a tolerance criterion and a0, a1, a2, a3, a4 and a5 are constants of 
the generalized-α method, which are obtained from the time integration parameters α, δ, αm 
and αf defined in Eq. (48). 

1. Specify the spectral radius r∝ ( 0 r 1∞≤ ≤ ) and the time increment ∆t. 
2. Compute the time integration parameters α, δ, αm and αf 
3. Compute the time integration constants a0, a1, a2, a3, a4 and a5: 

m f m
0 1 22

m f f
3 4 5

1 1a ; a ; a

1 2a ; a ; a
2 2

t t t

t

α α δ α
α α α

α α α δ α δ α α
α α α

− (1− ) −
= = =

∆ ∆ ∆
− − (1− ) − ( − 2 )(1− )

= = = ∆
 

4.   Solve:  
t1 t+∆t−⎡ ⎤∆ ⎣ ⎦u = fΚ  
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with:                                 t t
0 1a a= +K K M + D  

and:        
tt+∆t ext, t+∆t t t

2 3 4 5( ) a a a a⎡ ⎤= − + +⎣ ⎦
intf f Mu + Du + f u M( u + u) D( u + u)

5. Update the displacement, velocity and acceleration vectors using Newmark 
approximations (see, for instance, Bathe, 1996). 

6. Compute the residual load vector: 
t+∆tt+∆t ext, t+∆t ( )⎡ ⎤= − ⎣ ⎦

intQ f Mu + Du + f u  

7. Check convergence: if t+∆t ext, t+∆t TOL≤Q f  go to the next time step (4), 
else go to (8). 

8. Compute: 
t t+∆t−1⎡ ⎤δ ⎣ ⎦u = QΚ  

9. Update the displacement, velocity and acceleration vectors using: 
k+1 k
t t t t 0
k+1 k
t t t t 1

k+1 k
t t t t

a

a
+∆ +∆

+∆ +∆

+∆ +∆

⎧ = δ
⎪

= δ⎨
⎪ = δ⎩

u u + u

u u + u

u u + u

 

10. Compute the residual load vector (step 6) with the new state of motion. 
11. Check convergence: if t+∆t ext, t+∆t TOL≤Q f  go to the next time step (step 

4), else go to step 8. 
Table 1. Numerical algorithm for the model proposed in this work. 

4 NUMERICAL APPLICATIONS 

4.1 Cantilever beam 

A two-dimensional cantilever beam subject to pressure loading and undergoing large 
displacements is analyzed in this example, where plane strain state is also assumed. 
Geometrical and load description for the present simulation are shown in Fig. 1 and material 
properties of the structure as well as the time step adopted in the time integration procedure 
are found in Table 2. Information on computational parameters utilized in the set of numerical 
analyses carried out here, which correspond to the isogeometric formulation and the time 
discretization scheme proposed in this work, are summarized in Table 3. Number and 
distribution (Lxhxz) of elements over the physical space referring to the cantilever beam are 
given according to the continuity class, where the element configurations (16x1x1), (21x1x1), 
(31x1x1) and (61x1x1) correspond to the continuity classes C1, C2, C3 and C4, respectively. 
The energy variables are evaluated here utilizing the following expressions: 

 { }
1

d
e e

nel

x y z e
V

J J J ρ
Ω =

= = ⊗ Ω∑ ∫J x x  (49) 
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1 1

1E d ;             E d
2

e ee e

nel nel

e e
V V

ρ
Ω = Ω =

= ⋅ Ω = Ω∑ ∑∫ ∫x x σ : ε  (50) 

where Epot, Ekin and Etot are the strain, kinetic and total energies, respectively, Wext is the work 
done by external forces, Jx is angular momentum around x axis, Jy is angular momentum 
around y axis and Jz is angular momentum around z axis. The symbols (:), (.) and ( ⊗ ) denote 
tensor, scalar and vector products, respectively. The vectors x and x  are the position vector in 
global coordinates and its respective time derivative, nel is the total number of elements, Ωe is 
the element volume and σ and ε are stress and strain energetically conjugated tensors. 

 
L = 0.4 m; h = 0.001 m 

Figure 1. Geometrical and load characteristics for the cantilever beam analysis. 

Young modulus – E [N/m2] 7x1010 
Poisson coefficient – ν 0.33 

Specific mass – ρ [Kg/m3] 2.7x103 
Damping coefficient – φ 0.0 

Time step – ∆t [s] 4.0x10-3 

Table 2. Material properties and time step utilized in the cantilever beam analysis. 

Control mesh (Lxhxz) Continuity class Spectral radius - r∞ Polinomial degrees (p, q, r) 
66x3x2 C1 0.95; 0.99; 1.00 5, 2, 1 
66x3x2 C2 0.95; 0.99; 1.00 5, 2, 1 
66x3x2 C3 0.95; 0.99; 1.00 5, 2, 1 
66x3x2 C4 0.95; 0.99; 1.00 5, 2, 1 

Table 3. Computational parameters employed in the cantilever beam analysis. 

The dynamic responses obtained from the numerical analyses performed here are shown in 
Figs. 2 and 3, which correspond to results presented in terms of vertical displacements 
evaluated at the tip of the cantilever beam during the numerical simulation and time histories 
referring to the respective energy variables. The present results demonstrate that the time 
integration process is suddenly interrupted when the amount of numerical dissipation is 
insufficient (r∞ = 0.99) or inexistent (r∞ = 1.00), unlike the finite element predictions obtained 
by Braun and Awruch (2008), where numerical instabilities are clearly identified from the 
typical increase observed in the energy response. It is important to notice that Braun and 
Awruch (2008) adopted a finite element formulation for eight-node hexahedral elements with 
one-point quadrature techniques. By increasing the continuity class, one can see that the 
interruption of the time integration procedure is postponed. It is also observed that the range 
of spectral radii with stable responses is significantly enlarged when results obtained 
considering the isogeometric formulation proposed in this work are compared with those 
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obtained by Braun and Awruch (2008) (r∞ ≤ 0.3). The displacement responses referring to r∞ = 
095 are in agreement with numerical predictions presented by Bathe and Baig (2005). In 
addition, excessive dissipation is not observed, since the total energy of the system is 
perfectly conserved. 

  
r∞ = 0.95 and C1; r∞ = 0.99 and C1; r∞ = 1.00 and C1 

   
r∞ = 0.95 and C2; r∞ = 0.99 and C2; r∞ = 1.00 and C2 

   
r∞ = 0.95 and C3; r∞ = 0.99 and C3; r∞ = 1.00 and C3 

   
r∞ = 0.95 and C4; r∞ = 0.99 and C4; r∞ = 1.00 and C4 

Figure 2. Energy responses of the cantilever beam given as function of the spectral radius (r∞) and continuity 
class (Cn). 

    
r∞ = 0.95 and C1; r∞ = 0.99 and C1; r∞ = 1.00 and C1 
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r∞ = 0.95 and C2; r∞ = 0.99 and C2; r∞ = 1.00 and C2 

   
r∞ = 0.95 and C3; r∞ = 0.99 and C3; r∞ = 1.00 and C3 

   
r∞ = 0.95and C4; r∞ = 0.99 and C4; r∞ = 1.00 and C4 

Figure 3. Displacement responses of the cantilever beam given as function of the spectral radius (r∞) and 
continuity class (Cn). 

The motion of the cantilever beam during the period of oscillation [0.07s, 0.15s] can be 
visualized in Fig. 4, where the highly nonlinear behavior of the present application is 
evidenced. 

 
∆t = 0.01s 

t = 0.07s 
 
 
 
 
 
 
 
 
t = 0.15s 

Figure 4. Deformed configurations of the beam during the time interval [0.07s, 0.15s]. 

4.2 Toss rule 

A numerical investigation of the plane movement of a toss rule is performed in this 
example, where a geometrically nonlinear dynamic analysis is carried out. Geometry and load 
information for the present application are described in Fig. 5 and material properties of the 
structure as well as the time step adopted in the time integration procedure are presented in 
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Table 4. It is important to notice that distributed loads are applied to the structure to produce 
the plane motion of the rule, which is free to fly in the absence of displacement restrictions 
and gravity action. Computational parameters regarding the numerical analyses performed 
here are presented in Table 5. Number and distribution (Lxhxz) of elements over the physical 
space referring to the cantilever beam are again given according to the continuity class, where 
the element configurations (16x1x1), (21x1x1), (31x1x1) and (61x1x1) correspond to the 
continuity classes C1, C2, C3 and C4, respectively. 

 
h = 0.002 m; l = 0.3 m; b = 0.06 m 

Figure 5. Geometrical and load characteristics for the toss rule analysis. 

Young modulus – E [N/m2] 2.06x1011 
Poisson coefficient – ν 0.3 

Specific mass – ρ [Kg/m3] 7.8x103 
Damping coefficient – φ 0.0 

Time step – ∆t [s] 1.0x10-4 
Table 4. Material properties and time step adopted in the toss rule analysis. 

Control mesh (Lxhxz) Continuity class Spectral radius - r∞ Polinomial degrees (p, q, r) 
66x3x2 C1 0,50; 0,95; 0,99;1,00 5, 2, 2 
66x3x2 C2 0,50; 0,95; 0,99;1,00 5, 2, 2 
66x3x2 C3 0,50; 0,95; 0,99;1,00 5, 2, 2 
66x3x2 C4 0,50; 0,95; 0,99;1,00 5, 2, 2 

Table 5. Computational parameters employed in the toss rule analysis. 

In Fig. 6, the evolution of the different energy variables during the dynamic analysis of the 
toss rule is presented as function of the spectral radius (r∞) and continuity class (Cn). The 
results shown here demonstrate again a sudden interruption of the time integration process 
when a spectral radius of r∞ = 1.00 is considered (no numerical dissipation), independently of 
the continuity class utilized. In this sense, the influence of the continuity class on the energy 
response was not identified. On the other hand, stable solutions can be obtained even with 
small amounts of numerical dissipation, i.e. r∞ = 0.99, where the total energy is perfectly 
maintained during the time interval of the numerical analysis. The same behavior was 
observed for the components of the angular and linear momenta (not presented in this work), 
which indicates that the formulation proposed in this work presents excellent performance 
with respect to numerical stability associated with the time integration process. The range of 
stable spectral radii obtained with the isogeometric model is slightly wider that that presented 
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by the finite element model proposed by Braun and Awruch (2008). The energy responses 
obtained here are in agreement with the numerical predictions presented by Kuhl and Ramm 
(1999). 

 
r∞ = 0.50; C1  r∞ = 0.95; C1 r∞ = 0.99; C1 

 
r∞ = 1.00; C1 r∞ = 0.50; C2  r∞ = 0.95; C2  

  
r∞ = 0.99; C2  r∞ = 1.00; C2 r∞ = 0.50; C3  

  
r∞ = 0.95; C3 r∞ = 0.99; C3 r∞ = 1.00; C3  

   
r∞ = 0.50; C4  r∞ = 0.95; C4 r∞ = 0.99; C4 
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r∞ = 1.00 and C4 

Figure 6. Energy responses for the motion analysis of the toss rule using different combinations of spectral 
radius (r∞) and continuity class (Cn). 

The motion referring to the toss rule can be visualized in Fig. 7, where a sequence of 
deformed configurations obtained with the algorithm proposed in this paper is shown. One 
can observe that the inertial motion is developed after the initial load is removed. Structural 
displacements take place on the plane x-z in accordance with the load configuration 
prescribed initially. 

 
r∞ = 0.95 and C4 

 
r∞ = 0.95 and C1 

Figure 7. Deformed configurations of the rule during numerical analysis. 

4.3 Cylindrical shell 

The snap-through phenomenon occurring in a hinge-supported cylindrical shell subject to a 
concentrated load is investigated here. Geometrical and load characteristics referring to the 
present analysis are shown in Fig. 8 and material properties of the structure as well as the time 
step adopted in the time integration procedure are found in Table 6. Information on 
computational parameters utilized in the parametric studies carried out here are summarized 
in Table 7. Number and distribution (LxWxh) of elements over the physical space referring to 
the cylindrical shell are given as follows: the continuity class C1 corresponds to the continuity 
class employed over the shell surface, where the element configuration (8x8) is adopted. The 
computational mesh related to the continuity class C4 presents (4x4) elements over the shell 
surface. Along the shell thickness, two elements of C0 continuity are used in both meshes, 
such that the control points associated with the middle surface of the cylindrical shell become 
interpolatory and the boundary conditions corresponding to hinge supports can be 
appropriately imposed. 
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Figure 8. Geometrical and load characteristics for the cylindrical shell analysis. 

Young modulus – E [N/m2] 2x1011 
Poisson coefficient – ν 0.25 

Specific mass – ρ [Kg/m3] 1x104 
Damping coefficient – φ 0.0 

Time step – ∆t [s] 5.0x10-4 

Table 6. Material properties and time step utilized in the cylindrical shell analysis. 

Control mesh (LxWxh) Continuity class Spectral radius - r∞ Polinomial degrees (p, q, r) 
13x13x5 C1 0.50; 0.90; 0.95 5, 5, 2 
13x13x5 C4 0.50; 0.90; 0.95 5, 5, 2 

Table 7. Computational parameters employed in the cylindrical shell analysis. 

Figure 9 presents the dynamic responses obtained in the present analyses with the 
formulation proposed in this work, which are given in terms of vertical displacements 
measured at the position where the load is applied. In addition, the displacement response is 
also evaluated at the middle point on the free edge of the cylindrical shell. One can observe 
that the continuity class has a minor influence on the dynamic responses obtained here. On 
the other hand, the effects induced by the spectral radius are clearly noted, since the 
displacements are continuously increasing for r∞ = 0.90 and r∞ = 0.95. A stable solution is 
obtained for r∞ = 0.50, although numerical damping can be also observed. It is important to 
notice that numerical dissipation is identified in this case considering that the amplitude of the 
displacement response is gradually reduced after the onset of the buckling phenomenon, when 
a dynamic response with high frequencies is observed. This behavior generally leads to 
numerical instability if a stabilization strategy with numerical dissipation is not included in 
the time discretization scheme employed during the time integration. Nevertheless, the 
amount of numerical damping must be carefully controlled in order to obtain accurate results. 
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r∞ = 0.50 and C1; r∞ = 0.90 and C1 

  
r∞ = 0.95 and C1; r∞ = 0.50 and C4 

  
r∞ = 0.90 and C4; r∞ = 0.95 and C4 

Figure 9. Displacement responses for the cylindrical shell analysis using different combinations of spectral 
radius (r∞) and continuity class (Cn). 

In Fig. 9, results obtained in this work are compared with numerical predictions obtained 
by Khul and Ramm (1996, 1999), Balah and Al-Ghamedy (2005) and the commercial 
package ABAQUS. The present results correspond to the numerical analysis performed 
considering a spectral radius of r∞ = 0.50 and continuity class C1. A good agreement can be 
observed, except for the solution presented by Khul and Ramm (1996), where the higher 
modes are not present and the energy is concentrated on the lower modes (displacements with 
larger amplitude). 
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Figure 10. Displacement response of the cylindrical shell obtained from different authors. 

Figure 11 shows some configurations assumed by the cylindrical shell during the 
numerical simulation, where the mesh configuration corresponding to the continuity class C1 
and spectral radius of r∞ = 0.50 were adopted. The buckling phenomenon can be identified 
and the different stages of deformation are well reproduced, especially for the region near the 
point where the load is applied. 

 
Figure 11. Deformation of the cylindrical shell during dynamic analysis. 

 

5 CONCLUSIONS 

A parametric study was performed in this work in order to evaluate the performance of 
isogeometric analysis for applications on nonlinear elastodynamics. A numerical model for 
linear and nonlinear dynamic analysis was described considering an isogeometric formulation 
based on B-splines and NURBS. In order to stabilize the time integration procedure in the 
nonlinear range, a dissipative energy-momentum conserving method was adopted. The 
simulations carried out here obtained stable solutions when appropriate numerical dissipation 
was employed. Conservation of energy and angular as well as linear momentum were shown 
through the examples. Results demonstrated that isogeometric analysis can provide numerical 
predictions accurately with much less numerical dissipation than that required by a finite 
element model previously developed by the present authors with similar characteristics. 
Moreover, the range of stable spectral radii is wider when isogeometric analysis is utilized. 
Other important aspect related to isogeometric analysis are the mathematical characteristics of 
the NURBS basis functions, which leads to better approximations for the modes of vibration 
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observed in the dynamic analyses. Studies performed with respect to the continuity class of 
the basis functions indicated that this aspect has a minor influence on the solutions obtained 
with the present formulation. For future works, the present formulation will be extended in 
order to deal with applications involving hyperelastic and elastoplastic constitutive models. 
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