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Abstract. When Burgers vector is accounted for in crystal plasticity theories through energetic de-
pendences, high-order boundary conditions are required. In the work done by Gurtin and Needleman (J.
Mech. Phys. Solids, 53:1-31 (2005)) is shown that a boundary condition based directly on slip-rates is in-
appropriate for being too restrictive. The authors suggest a new type of boundary condition based on the
flow of the Burgers vector. In the present work, the two types of boundary conditions are implemented
in a finite element crystal plasticity code. Only small-deformation and 2D cases are considered. Details
about the new formulation are commented. The boundary conditions are tested considering a single
crystal and hard surfaces. Preliminary results show that the use of the second type of high-order bound-
ary condition leads to more adequate results than the first type, when compared to discrete dislocation
results.
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1 INTRODUCTION

The consideration of the effects of geometrically necessary dislocations (Nye, 1953; Ashby,
1970) gives rise to a material response that is size dependent, as observed in experiments (Fleck
et al.,1994). Nonlocal crystal plasticity theories that take into account these dislocations have
been proposed in the last few years. These theories can be broadly separated in two categories:
those that consider higher-order terms (e.g. Shu and Fleck, 1999; Gurtin, 2002) and those that
do not (e.g. Acharya and Bassani, 2000). While lower-order theories are much simpler to
implement in an existing conventional plasticity code, in some cases, such as the development
of boundary layers (Shu et al., 2001), these theories fail to reproduce material behavior. On the
other side, higher-order theories may introduce difficulties to regard boundary conditions.

In order to take into account higher-order terms, additional degrees of freedom should be
considered. This constraint leads to mixed formulations. In the present work the theory of
Gurtin (2002) will be followed. As a consequence, besides displacements, crystal slips are con-
sidered independent variables. Originally the theory established higher-order boundary condi-
tions in terms of slip-rates. In Gurtin and Needleman (2005), however, it is demonstrated that
a boundary condition based directly on slip-rates leads to uniqueness problems. The authors
then establish uniqueness conditions when higher-order boundary conditions are formulated in
terms of the flow of the Burgers vector.

In section 2, details of the theory of Gurtin (2002) are given as well as the modifications
introduced by Gurtin and Needleman (2005). In section 3, a boundary value problem for a
single crystal is considered: a model composite material is subjected to simple shear. Elastic
rectangular particles are embedded in a plastically deforming matrix. The different possible
higher-order boundary conditions are numerically tested at the matrix/particle boundaries. Final
remarks are presented in section 4.

2 CRISTAL PLASTICITY FORMULATION

The gradient of the displacement vector, ui,j , is written as the sum of an elastic ueij and a
plastic upij part. The plastic part occurs by crystallographic slip on a set of slip planes. With s(β)i

and m(β)
i unit vectors specifying the slip direction and the slip plane normal, respectively, for

slip on a system β, the plastic part of the displacement gradient is given by

upij =
∑
β

γ(β)s
(β)
i m

(β)
j (1)

with γ(β) the total slip on the system β. Greek superscripts, with no summation convention, are
used to label the slip systems. We consider slip system directions fixed throughout calculations.

In the case of Gurtin (2002), with body forces neglected, the principle of virtual work can be
written as ∫

B

[
σijδui,j +

∑
β

(
π(β) − τ (β)

)
δγ(β) +

∑
β

ξ
(β)
i δγ

(β)
,i

]
dV =

∫
∂Bq

∑
β

q(β)δγ(β)dA+

∫
∂Bt

tiδuidA. (2)

Here, ti = σijnj , q(β) = ξ
(β)
i ni where ni is the surface normal, ∂Bt is the part of the boundary

on which ti is prescribed, ∂Bq is the part of the boundary on which q(β) is prescribed and

τ (β) = P
(β)
ij σij , P

(β)
ij =

1

2

(
s
(β)
i m

(β)
j + s

(β)
j m

(β)
i

)
. (3)
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The quantities π(β) and ξ(β)i are specified through constitutive relations. The macro boundary
conditions are that at each point on the boundary either ti or ui is prescribed and the correspond-
ing micro boundary conditions are that either q(β) or γ(β) is prescribed as follows:

• Microscopically hard boundary conditions: surface is hard in the sense that dislocations
do not pass through it. It characterizes for instance the boundary behavior of the crystal
bonded perfectly to a non-metalic surface. In this case:

γ(β) = 0 (4)

• Microscopically free boundary conditions: characterizes the boundary behavior where
the environment excerts no forces impending slip on slip system (β). In this case:

ξ
(β)
i ni = 0 (5)

Since Eq. (2) holds for independent variations in δui and δγ(β), we can separate the principle
of virtual work in two parts as ∫

B

σijδui,jdV =

∫
∂Bt

tiδuidA (6)

and ∫
B

[∑
β

(
π(β) − τ (β)

)
δγ(β) +

∑
β

ξ
(β)
i δγ

(β)
,i

]
dV =

∫
∂Bq

∑
β

q(β)δγ(β)dA (7)

which form the basis of the finite element formulation. The microforce part, Eq. (7) only applies
during plastic flow, γ̇(β) 6= 0. Corresponding classical balance and microforce balance are:

σij,j = 0 (8)

and
π(β) − τ (β) − ξ(β)i,i = 0. (9)

The stress σij is given in the rate form

σ̇ij = Cijklu̇k,l − Cijkl
∑
α

γ̇(α)P
(α)
kl (10)

with (˙) = ∂()/∂t, where t is time.
We focus attention on rate independent material behavior and cases where the geometrically

necessary dislocations only affect the energetic hardening. We take

π(β) = σ(β)sgnγ̇(β) (11)

with σ(β) having the initial value σ0 for all β and and the corresponding π(β) having the initial
value π0. σ(β) evolves as

σ̇(β) =
∑
α

h(βα)|γ̇(α)| h(αβ) = qH0 + (1− q)H0δαβ (12)

where H0 is a prescribed constant and q is the latent hardening ratio. The relation (11) applies
only when there is flow on slip system β, i.e. when γ̇(β) 6= 0.
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In the case of Gurtin and Needleman (2005), the virtual work associated to microforces is
considered a function of the Burgers vector Gij:

Gij = εirs
∂upjs
∂xr

. (13)

εipq is the alternating tensor. The work conjugated to Gij is a defect stress Tij . In this case,
Eq.(7) can be rewritten as:∫

B

[∑
β

(
π(β) − τ (β)

)
δγ(β) + TijδGij

]
dV =

∫
∂BQ

Qklδu
p
kldA (14)

where,
Qij = Triεrkjnk. (15)

Considering that the defect stress Tij is related to micro-stress ξ(β)i by the relation below,

ξ
(β)
i = εipqm

(β)
p Trqs

(β)
r , (16)

the same microforce balance (Eq. 9) is obtained. However Gurtin and Needleman (2005)
show that microscopic boundary conditions are not completely equivalente in both virtual work
formulations. Considering Eq. (16), (15) and (1) it is easy to show that microscopically free
boundary condition q(β) = 0 is equivalent to Qijmisj = 0 for all (β). However, this is not
the case for the microscopically hard boundary condition. From Eq. (14) can be said that this
boundary condition is:

upriεrkjnk = 0 (17)

The old microscopically hard boundary condition ( Eq. 4) in fact corresponds to upij = 0, which
is a much more restrictive or stronger than condition in Eq. (17).

As here we confine attention to plane strain calculations, s(β)3 = 0 and m(β)
3 = 0 for all slip

systems, the new microscopically hard boundary condition ( Eq. 17) corresponds to:∑
β

γ(β)s
(β)
i (s

(β)
k nk) = 0 (i = 1, 2). (18)

Clearly, only slip systems that are orthogonal to the boundary surface ∂BQ will be completely
blocked.

Just complementing the theory, the defect stress is defined as (Gurtin, 2002):

Tji = `2π0Gij, (19)

where ` is a material length parameter.
In the next section a two dimensional model composite material subject to simple shear is

tested considering the three microscopic boundary conditions discussed in this section. Equa-
tions are implemented in a finite element framework, as described in Bittencourt (2012).

3 NUMERICAL EXPERIMENTATION

A planar model composite material consisting of elastic rectangular particles embedded in a
plastically deforming matrix is subjected to simple shear as sketched in Fig. 1. The geometrical
parameters and the elastic properties of the matrix and of the reinforcement are the same as in
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Figure 1: Unit cell of a composite material with a doubly periodic array of elastic particles. Slip planes are parallel
to the applied shear direction.

Bittencourt et al.(2003). The matrix material has a single slip system with the shearing direction
parallel to the slip plane. the particles are rectangular and do not leave any unreinforced veins
of matrix material.

The reinforcing particles are arranged in a hexagonal array, with each unit cell being of width
2w and height 2h (w/h =

√
3) (see Fig. 1). The particles are of size 2wf × 2hf ; hf = 2wf =

0.588h. The reinforcement area fraction is 0.2.
The macroscopic boundary conditions on a unit cell are

u1(t) = ±hΓ(t), u2(t) = 0 along x2 = ±h (20)

Along the lateral sides (x1 = ±w) periodic macro-scale boundary conditions are imposed
and the micro-scale boundary condition is taken to be q(1)(±w) = ξ

(1)
i (±w)ni = 0. For compar-

ison purposes, on the reinforcement-matrix interface, three different micro-boundary conditions
are tested:

• the micro-free boundary condition q(1) = 0;

• the old micro-hard boundary condition γ(1) = 0;

• the new micro-hard boundary condition Eq.(18). At the vertical interfaces, where slip
system is perpendicular to the particle surface, we have γ(1) = 0. At the horizontal
interfaces the micro-hard boundary condition is nonexistent and the result is a micro-free
boundary condition q(1) = 0.

Each phase is considered to be elastically isotropic, with shear modulus µ = 26.3 GPa and
Poisson’s ratio ν = 0.33 for the matrix; the corresponding values for the reinforcement are
192.3 GPa and 0.17, respectively. A value of σ0 = 28 MPa for the matrix and h/` = 1.25
was found to give good agreement with the monotonic stress-strain response obtained from the
discrete dislocation calculations. A finite element mesh consisting of 384 bi-quadratic elements
was used.

Contours of slip, γ(1), are shown in Fig. 2, for Γ = 0.0096 and H0 = 0. Micro-free, the
old and new micro-hard boundary conditions are considered (from top to down in the figure,
respectively).
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Figure 2: Contours of slip γ(1). (above) Micro-free, (midle) old micro-hard and (below) new micro-hard boundary
conditions.
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Figure 3: Contours of microstress ξ(1)1 . (above) Micro-free, (below) new micro-hard boundary conditions.

For the micro-free case, slip is localized near the central reinforcement, particulary at the
vertical interfaces of the particle. On the other hand, for the old micro-hard case, slip is more
spread out in the unit cell. Finally, in the new micro-hard case, slip tends to localize at the
horizontal interfaces of all particles. This is the only distribution of slips that is consistent with
the displacement distributions seen in the discrete dislocation solution shown by Cleveringa et
al. (1997).

The slip distribution reflects the rotation of the reinforcement (see Cleveringa et al., 1997),
which requires the presence of geometrically necessary dislocations near the reinforcement,
Ashby (1970). In Fig. 3(below), with the new micro-hard boundary condition, the contours
of micro-stress ξ(1)1 reflect a density of geometrically necessary dislocations at the particle-
matrix interface as seen in the discrete dislocation distribution in Cleveringa et al. (1997).
For the micro-free boundary condition, Fig. 3(above), the density of geometrically necessary
dislocations is much lower and peaks away from the interface.

4 DISCUSSION AND FINAL REMARKS

The new type of higher-order boundary condition developed by Gurtin and Needleman
(2005) has been implemented in a finite element framework and tested in a model compos-
ite material. Boundary conditions developed previously (Gurtin, 2002) are also considered and
compared to the new type. While the micro-free boundary condition is equivalent in both for-
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mulations, this is not the case of the micro-hard boundary condition. In the old formulation this
condition means that no dislocation can pass through the boundary. In the new formulation the
flux of dislocations on boundary depends on the orientation of the slip system with the boundary
surface.

The example used to test the new micro-hard boundary condition is appealing because, de-
pending on the surface, two limit situations are found. In the surfaces where slip system is
perpendicular to the boundary, dislocations are completely blocked, as in the old micro-hard
boundary condition. In the surfaces where slip system is paralel to the boundary, dislocations
are completely free to flow, as in the free micro-hard boundary condition. The new micro-
hard boundary condition is the only that can match the deformation pattern found in discrete
dislocation calculations (Cleveringa et al., 1997).

Distribution of the density of geometrically necessary dislocations (Fig. 3) and average shear
stress (not shown in this work) obtained with the new micro-hard boundary condition are also
consistent with discrete dislocation results (Cleveringa et al., 1997).
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