
THE KLE METHOD: A VELOCITY-VORTICITY
FORMULATION FOR THE NAVIER-STOKES EQUATIONS

Fernando L. Ponta∗†

∗College of Engineering
University of Buenos Aires

Av. Paseo Colón 850, Buenos Aires, 1063, Argentina
e-mail: fponta@fi.uba.ar

†Department of Theoretical and Applied Mechanics
University of Illinois at Urbana-Champaign
104 S. Wright St., Urbana, IL 61801, USA

e-mail: ponta@uiuc.edu

Key Words: vorticity-velocity formulation, Navier-Stokes equations, time-space split
algorithm, finite element method.

Abstract. In this work, a novel procedure for the Navier-Stokes equations in the vorticity-
velocity formulation is presented. The time evolution of the vorticity is solved as an ODE
problem on each node of the spatial discretization, using at each step of the time dis-
cretization the spatial solution for the velocity field provided by a new PDE expression
called the kinematic Laplacian equation (KLE). This complete decoupling of the two vari-
ables in a vorticity-in-time/velocity-in-space split algorithm reduces the number of un-
knowns to solve in the time-integration process and also favors the use of advanced ODE
algorithms enhancing the efficiency and robustness of time integration. The issue of the
imposition of vorticity boundary conditions is addressed, as well as the details of the im-
plementation of the KLE by isoparametric finite element discretization. We shall see some
validation results of the KLE method applied to the classical case of a circular cylinder
in impulsive-started pure-translational steady motion at several Reynolds numbers in the
range 5 < Re < 180, comparing them with experimental measurements and flow visual-
ization plates; and finally, a recent result from a study on periodic vortex-array structures
produced in the wake of forced-oscillating cylinders.
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1 INTRODUCTION

During the last three decades several studies appeared concerning the representation
of the Navier–Stokes equations in terms of nonprimitive variables (namely the vorticity
and the velocity potentials) instead of the classical formulation in terms of the prim-
itive variables velocity and pressure. This family of approaches is generally known as
vorticity-stream function (ω, ψ) methods. More recently, together with those works on
the vorticity-stream function formulation and as a natural extension of them, a compara-
tively smaller number of studies were presented using a hybrid formulation in terms of the
primitive and nonprimitive variables velocity and vorticity. As several authors pointed
out,1–3 the vorticity-velocity (ω, v) methods (as they are generally known) present some
advantages compared with the classical formulation on primitive variables or with the
vorticity-stream function methods, namely: a) The pair of variables involved is partic-
ularly suited for a dynamic description of incompressible viscous flows. The vorticity is
governed by a well understood dynamical equation while the velocity, which embodies
the kinematical aspect of the problem, can be related to the vorticity by a simple ellip-
tic equation. In vortex-dominated flows the vorticity advection is a fundamental process
determining the dynamics of the flow, hence the vorticity-velocity description is closer to
physical reality. b) The variety of boundary conditions that can be chosen for the veloc-
ity potentials due to the nonuniqueness of the velocity representation is avoided since the
velocity is supplemented by unique boundary conditions. c) In some specific situations
like that of external flows, boundary conditions at infinity are easier to implement for the
vorticity than for the pressure. d) The noninertial effects only enter the solution proce-
dure of the (ω, v) formulation via the proper implementation of the initial and boundary
conditions. Hence, the general applicability of an algorithm based on the (ω, v) formu-
lation is enhanced because it is independent of whether or not the frame of reference is
inertial.

The first uses of the (ω, v) formulation of the incompressible Navier–Stokes equations
were reported by Fasel4 who analyzed the stability of boundary layers in two dimensions
and by Dennis, Ingham and Cook5 who derived a numerical method for computing steady-
state three-dimensional flows. Both approach were based on finite difference techniques.
Since then several investigations have been conducted on incompressible hybrid variable
models using variations of the finite difference approach (e.g. see,6–8 among others). A
vorticity-velocity finite element solution of the three-dimensional compressible Navier–
Stokes equations have been presented by Guevremont et al.9 who investigated the steady
state flow in a cubic cavity for several Mach numbers. More recently Clerxc,2 then Davies
and Carpenter,10 introduced pseudospectral procedures for the (ω, v) formulation. Lo and
Young11 presented an arbitrary Lagrangian-Eulerian (ω, v) method for two-dimensional
free surface flow, using finite difference discretization for the free surface and finite element
discretization for the interior of the domain.

A disadvantage of the vorticity-velocity formulation, compared with the formulation
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in primitive variables is that in the most general three-dimensional case the (ω, v) for-
mulation requires a total of six equations to be solved instead of the usual four of the
primitive-variable approach.2 The objective of the present study is to introduce a new
method based on the (ω, v) formulation which aims to tackle this six-unknown question
and to improve some other aspects of the numerical implementation of the (ω, v) ap-
proach. This alternative method is characterized by a complete decoupling of the two
variables in a vorticity-in-time/velocity-in-space split algorithm, thus reducing to three
the number of unknowns to solve in the time integration process. As we shall see later on,
this time-space splitting also favors the use of adaptive variable-stepsize/variable-order
ODE algorithms which enhances the efficiency and robustness of the time integration
process.

A comprehensive study of the theoretical basis of the vorticity-velocity formulation in
two and three dimensions can be found in chapter 4 of Quartapelle,1 including a series of
theorems proving the equivalence between the (ω, v) formulation of the incompressible
Navier–Stokes equations and their classical formulation in primitive variables (velocity-
pressure).

1.1 Vorticity boundary conditions

A common problem to all the methods based on nonprimitive or hybrid variables
is the absence of boundary conditions for the vorticity in presence of no-slip boundary
conditions for the velocity. In the case of the (ω, ψ) formulation it also implies that the
Poisson problem for the stream function with both Dirichlet and Neumann conditions
is overdetermined. There are several different ways of overcoming this difficulty. Some
earlier approaches like the boundary vorticity formula or the vorticity creation methods
use different techniques to define the boundary values of vorticity in terms of the stream
function (or the velocity) by means of some approximate formula applied locally at the
no-slip boundary. They are roughly equivalent, however their implementation may differ
remarkably depending on the type of discretization used (see1,12–14).

An alternative viewpoint have been introduced by Quartapelle and Valz-Gris.15,16 They
showed that in order to satisfy the no-slip boundary conditions for the velocity, the vor-
ticity should be subject to an integral constraint. This integral condition enforces the
orthogonality of the abstract projection of the vorticity field with respect to the linear
space of the harmonic functions defined on the domain. This condition is a direct con-
sequence of the boundary conditions on the velocity, and ensure satisfaction of essential
conservation laws for the vorticity. An important aspect of the integral vorticity condi-
tions is their nonlocal character: the vorticity distribution in the interior of the domain
and on its boundary is affected at each time by the instantaneous values of the tangential
and normal components of the velocity along the entire boundary. In other words, the
distribution of the vorticity in the whole domain is constrained by the velocity boundary
values. A detailed description of the mathematical basis and the different numerical im-
plementations of the orthogonal-projection operation of the vorticity field for the (ω, ψ)
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formulation can be found in.1

In our method, the issue of the vorticity boundary conditions on the no-slip surface
is dealt with by a sequence of two solutions of the KLE under a different set of velocity
boundary conditions. Thus, inside each time step, we perform two projectional operations
of integral character applied on the velocity field which ensures that the vorticity evolves
in time in a way compatible with the time-dependent velocity boundary values.

2 THE LAPLACIAN APPROACH AS A VORTICITY-VELOCITY METHOD:

THE KLE

Starting from the well-known vector identity:

∇2v = ∇ · ∇v = ∇(∇ · v) − ∇ × (∇ × v), (1)

we found that a variational form of this “Laplacian” expression could be advantageously
used as the spatial counterpart of the vorticity transport equation in a new type of
vorticity-velocity method.

Let us consider the full three-dimensional incompressible Navier–Stokes equation in
vorticity form for a flow domain Ω with solid boundary ∂Ω and external boundary of Ω
in the far field, in a moving frame of reference fixed to the solid,

∂ω

∂t
= −v · ∇ω + ν∇2ω + ω · ∇v. (2)

If we have the velocity field v in Ω at a certain instant of time, we can rewrite (2) as

∂ω

∂t
= −v · ∇(∇ × v) + ν∇2(∇ × v) + (∇ × v) · ∇v, (3)

and solve for ω at each point of the discretization of Ω by integration of (3) using an ODE
solver.

Now, let us revisit (1) but this time impose a given distribution for the vorticity field
the rate of expansion:

∇2v = ∇D − ∇ × ω, (4)

∇ · v = D, (5)

∇ × v = ω. (6)

Here ω is the vorticity field in Ω given by (3) and D is the corresponding rate of
expansion (i.e. the divergence field). The KLE is essentially defined as a solution of (4)
in its weak form under the simultaneous constraints (5) and (6).

F. Ponta

2910



Let us consider the orthogonal decomposition of the velocity field in its irrotational non-
solenoidal component vD, its solenoidal non-irrotational component vω and its irrotational
and solenoidal (i.e. , harmonic) component vh. Under prescribed boundary conditions for
the normal component of the velocity and given distributions for the vorticity ω and the
rate of expansion D, this decomposition v = vD + vω + vh is uniquely determined (see
sec. 2.7 of17). Constraints (5) and (6) ensure that vD and vω are properly solved.

∇ · v = ∇ · vD = D, (7)

∇ × v = ∇ × vω = ω. (8)

Now, applying the orthogonal decomposition to the total velocity field v in (4) we have,

∇2(vh + vD + vω) = ∇2vh + ∇(∇ · vD) − ∇ × (∇ × vω)

= ∇D − ∇ × ω, (9)

substituting (7) and (8) in (9) it yields,

∇2vh = 0 (10)

which provides the solution of the harmonic component vh. Thus, the KLE construction
ensures that all three components of the velocity field are properly solved.

For incompressible cases, such as discussed here, D is simply set to zero. For com-
pressible cases, D can be a general distribution given by a solution analogous to (3) but
for the divergence transport equation (i.e. the momentum equation in divergence form)
together with a solution of the mass transport equation and adding to (2) and (3) the
terms eliminated by the application of the incompressibility condition.

Now, provided that we can find a way of imposing on the velocity field the no-normal-
flow condition,

v · n = 0, (11)

and the no-slip condition,
v · τ = 0, (12)

on the solid boundary ∂ Ω in a way compatible with the vorticity distribution at that
time, we obtain a compatible solution for the velocity. Then, from this velocity field we
produce the right-hand side of (3) required to advance the time-integration process to the
next step. In order to impose the no-normal-flow and no-slip conditions on ∂Ω together
with the correspondingly compatible boundary conditions on the vorticity, we designed a
scheme based on two consecutive solutions of the KLE, which goes as follows:

i. given a vorticity-compatible velocity field for the previous time-step vn−1, compute
ωn by time integration of (3).
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ii. get ωn

0 by setting homogeneous conditions on ∂Ω for ωn (i.e. , set ωn to zero on
∂Ω).

iii. compute a free-slip velocity field, ṽn, by solving (4)–(6), with D = 0, for ωn

0 applying
only the no-normal-flow (v · n = 0) condition on ∂Ω.

iv. compute a new vorticity field, ω̃n, from the curl of ṽn with the no-slip condition on
∂Ω imposed, (thus obtaining a modified vorticity field in response to the induced
slip).

v. compute the new vorticity-compatible velocity field, vn, by solving (4)–(6) using ω̃n

and applying both the no-normal-flow and the no-slip condition on ∂Ω.

In steps (iii)–(v) we apply the corresponding time-dependent, Dirichlet conditions for
the velocity on ∂Ω∞, the external boundary of Ω in the far field.

The algorithmic sequence defined in (i)–(v) has the advantage of producing a complete
decoupling between the time integration of the vorticity transport equation and the space
solution of the Poisson equation for the velocity field. The linear spatial solution defined
in (4)–(6) (i.e. , the KLE) can be implemented in just one variational formulation. This
implementation leads to a global matrix which is independent both of time and of the
particular constitutive relation of the continuum media. Then, this matrix can be fac-
torized at the moment of assembling and its triangular factors used as many times as
needed so long as we are using the same grid. As we said, this is so even for problems
with different constitutive relations because all the physics of the problem is taken into
account only in the time-integration process for the vorticity, i.e. the spatial solution is
purely kinematic. Thus, the space solution performed at each time step reduces to a pair
of back-substitution processes where we simply change the right-hand side vector of the
linear system in order to impose consecutively the boundary conditions (11)–(12). This
scheme simplifies the issue of obtaining the vorticity in order to satisfy the boundary con-
ditions on the velocity. Note that it is not a purely local manipulation performed on the
boundary, this double solution of the velocity field is calculated over the entire domain
involving two projectional operations of nonlocal character.

3 NUMERICAL IMPLEMENTATION OF THE KLE METHOD

For the discretization of the KLE in two-dimensional applications we used nine-node
biquadratic isoparametric finite elements, which though “expensive” in computational
terms possess a high convergence rate and, due their biquadratic interpolation of the
geometric coordinates, provide the additional ability of reducing the so-called skin-error on
curvilinear boundaries when compared to linear elements. Figure 1 shows the biquadratic
interpolation functions (hk, k = 1, . . . , 9) of the nine-node isoparametric element on its
natural system of coordinates (r,s) (for a detailed description of the isoparametric-element
technique and its corresponding interpolation functions see18).
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Figure 1: Interpolation functions of the nine-node isoparametric element showing its natural system
of coordinates, node numeration and three examples of functions: for a corner node (node 3), for a
central-lateral node (node 8) and for the central node (node 9).

In order to combine the power of convergence of the nine-node quadrilateral isopara-
metric element with the geometrical ability of a triangular grid to create suitable non-
structured meshes with gradual and smooth changes of density, we implemented what we
called tri-quadrilateral isoparametric elements.19,20 The tri-quadrilateral elements consist
of an assembling of three quadrilateral nine-node isoparametric elements in which each
triangle of a standard unstructured mesh is divided into. Figure 2 shows a schematic ex-
ample of a mesh of tri-quadrilateral finite elements obtained from the original triangular
discretization.

Another advantage of the tri-quadrilateral scheme is that, by a previous condensation
of the nodes that lie inside the triangle, we can significantly reduce the number of nodes to

Figure 2: An example of a mesh of tri-quadrilateral finite elements obtained from a standard triangular
discretization.
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Figure 3: Schematic view of the internal topology of the tri-quadrilateral element. Subelements (I)–(III)
are model by standard nine-node isoparametric interpolation. Numbers 1–19 indicate the in-triangle
nodal numeration.

solve in the final system, subsequently recovering the values for the internal nodes from the
solution on the non-condensable nodes. Figure 3 shows a schematic view of the internal
topology of the tri-quadrilateral element including the in-triangle global numeration of
the nodes and indicating the three nine-node subelements (I)–(III).

The internal nodes 13–19 may be expressed in terms of nodes 1–12 which lay on the
elemental boundary following the classical procedure for elemental condensation (see18).
This process of condensation allows us to reduce the size of the new system to solve
to approximately a 40% of the original system. As it was mentioned above, none of
the matrices involved in the finite element solution depend on ω nor t, so they can be
computed once for a given mesh, stored and used as many times as needed to compute the
solution for the discrete velocity field V̂ . The global matrix of the system is symmetric and
positive definite, so it lends to factorization by Cholesky decomposition and its triangular
factor is repeatedly used to solve V̂ through back-substitution.

For the implementation of the time-integration procedure we evaluate the right-hand
side of (3) applying the corresponding differential operators onto the discrete velocity field
V̂ calculated following steps (ii)–(v) in section (2). The normal procedure to calculate
derivatives on the nodes of a mesh of isoparametric elements consists in computing the
derivatives in the Gaussian points adjacent to each node and interpolate their results
following several alternatives techniques. A detailed description of the this procedure can
be found in.18 In our case we used area-weighing interpolation which prove to be very
effective. The contribution of each Gaussian point to its corresponding node depends on
the constitution of the mesh and can be calculated at the moment of assembling. A set
of arrays that perform the differential operations is assembled simultaneously with the
finite-element matrices, so they can also be computed once for a given mesh, stored and
used as many times as needed to provide evaluation of (3) right-hand side for an advanced
package ODE solver. We choose a multivalue variable-order Adams-Bashforth-Moulton
predictor-corrector (ABM-PECE) solver with adaptive stepsize control which proved to
be quite efficient for this application. We also tried a fifth order adaptive-stepsize Runge-
Kutta algorithm with good results. For the first DNS low-Reynolds-number applications
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Figure 4: An example of a mesh of tri-quadrilateral finite elements used for the present analysis (geomet-
rical coordinates are given in diameters).

of the KLE method, the function prove to be smooth enough for the adaptive ABM-
PECE algorithm to work very efficiently, in these smooth cases the predictor-corrector
outperforms other alternatives like the Bulirsch-Stoer method.21

4 SOME EXAMPLES OF APPLICATION OF KLE METHOD

We first show some results produced by the KLE method for the well-studied case of
a circular cylinder started impulsively and then subjected to steady translational motion
through fluid otherwise at rest. Figure 4 shows an example of a mesh of tri-quadrilateral
elements used.

We shall see results at several values of Reynolds number, Re = U d/ν, where U is
the horizontal translational speed of the cylinder, d its diameter, and ν the kinematic
viscosity of the fluid. We compare our two-dimensional flow simulations on the range
5 < Re < 180 to experimental measurements and flow visualizations. Figure 5 shows
velocity arrow-plots taken from our computations superimposed on two aluminum-dust
flow-visualization plates due to S. Taneda (taken from22). In the range 5 < Re < 40
we measured the length (s) of the stationary twin-vortex wake from the rear stagnation
point on the solid surface to the confluence point at the tail of the wake, and we compared
our results to the classical experiments of.23 The results for the non-dimensional length
s/d against Re are shown in figure 6. Overall the agreement between computations and
experiments is very good.

As a second test case we considered the formation of the familiar Kármán vortex street
behind a translating cylinder. Figure 7 shows a comparison between a smoke-in-air flow
visualization due to M. M. Zdravkovich (taken from22) and the vorticity field produced
by our numerical method at the same Reynolds number. We show a symmetric gray-
scale map so areas of both positive and negative vorticity appear clear while zones of low
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(a)

(b)

Figure 5: Comparison of flow visualizations by S. Taneda and arrow-plots from numerical results for the
twin-vortex wake behind a cylinder at (a) Re = 13.05 and (b) Re = 26.
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d s

Figure 6: Comparison of the wake length calculated by the kinematic Laplacian equation method and
the experimental measurements by S. Taneda.23

vorticity appear dark. The smoke ‘signal’ in the experimental photo, and the magnitude
of vorticity displayed from the computation are, of course, not the same. Nevertheless,
the correspondence in the spacing, and even the shape of the vortices, lends considerable
confidence to the fidelity of the numerical simulations.

As our third test case, we measured the dominant frequency, f , of vorticity fluctuations
at a set of points in the vortex street wake for the range of Reynolds numbers 50 < Re <
180, and we computed the corresponding value of the Strouhal number (St = fd/U).
The dominant frequency is the same for all the points probed, and it is clearly defined at
an early stage of wake formation. The amplitude of the fluctuations, on the other hand,
displays a transient state until it reaches its final, constant value somewhat downstream.
Plotting St versus Re, as shown in figure 8, compares very favorably with the experiments
presented by Williamson.24

Finally, we have recently started a study on the formation, shedding and further evo-
lution of periodic vortex-array structures produced in the wake of forced-oscillating cylin-
ders. Several qualitatively distinct wake regimes were observed experimentally depending
on the wavelength of the undulatory motion of the cylinder and the amplitude of the
transverse undulations. For instance, for a certain range in the combination of the wave-
length/amplitude parameters, a pattern in which one pair and a single vortex are shed in
each cycle of the forced oscillation is produced. This pattern is commonly know as P+S
(one pair plus one single vortex). Figure 9 shows a comparison of a gray scale plot of
the vorticity field calculated by the KLE method with an experimental laser-fluorescene
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Figure 7: Comparison of flow visualization of a Kármán vortex street behind a cylinder at Re = 100
by M. M. Zdravkovich with a gray scale plot of the vorticity field produced by the kinematic Laplacian
equation method at the same value of Reynolds number.
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Figure 8: Comparison of the Strouhal number calculated by the kinematic Laplacian equation method
and the experimental measurements by Williamson24 for Re < 180.
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Figure 9: Comparison of flow visualization of a P+S wake of an oscillating cylinder for Re = 140 by C. H.
K. Williamson (private communication to H. Aref) with a gray scale plot of the vorticity field produced
by the KLE method at the same Reynolds number.

photograph for an oscillating cylinder at Re = 140. This photo was kindly provided by
Prof. C. H. K. Williamson.

5 CONCLUSIONS AND OUTLOOK FOR FURTHER WORK

We have introduced a mathematical-computational approach to solve the time-dependent
flow in a noninertial frame of reference attached to a body in translational and/or roto-
translational motion. The KLE method was validated for two-dimensional DNS applica-
tions against experimental results for incompressible flow around circular cylinders at low
Reynolds number, founding very good agreement.

As we have seen above, the basic formulation of the KLE is three-dimensional and has
no special requirements on the rate-of-expansion distribution which is imposed. It implies
that the method can be extended to the analysis of compressible flows, provided that we
find a way of dealing with compatible boundary conditions for the rate-of-expansion in
an analog way as we do with the vorticity.

Since it is a new approach, we are still exploring KLE method capabilities to man-
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age higher Reynolds-number flows in DNS, and its potential to be extended to LES
applications. The fact that the linear spatial solution provided by the KLE is purely
kinematic with all the nonlinearities and the material constitutive properties remitted
to the high-order adaptive time integration, favors the solution of problems with more
complex constitutive relations like non-Newtonian, plastic or viscoplastic flows. And the
same argument may be applied to the adoption of turbulence models for a future LES
implementation of the method.

The KLE is based on a universal vectorial relation, so it can be used to solved any
vector field provided that we can solve a transport equation for its divergence and curl.
This together with the fact that time is the only iteration variable present, makes possible
to extend its application to other physical problems like electromagnetic fields. It is also
possible to couple the fluid analysis with other physical processes (e.g. , heat transfer
or chemical reaction) by adding more equations to the ODE system, using grids with
different densities for problems with different scales.

Regarding the numerical implementation of the KLE method, the techniques men-
tioned above: Cholesky decomposition/back-substitution for the spatial solution and
adaptive predictor-corrector solver for time integration, prove to be very efficient for
a two-dimensional low Reynolds number implementation of the method in a sequential
code. In view to solve problems in complex geometries in three-dimensional applications
which will require a substantial number of nodes (leading to large sparse systems) for the
spatial discretization, it will be necessary to turn to a parallel version of the KLE code.
This can be done in a relatively easy way: there are several parallel-program packages
including parallel versions of the top ODE solvers and evaluation of our right-hand-side
term involves matrix products that can be easily paralellizable. Concerning the solution
of our linear system, back-substitution is essentially a sequential process, then it should
be replaced by an iterative parallel linear solver. For a symmetric positive-definite ma-
trix like ours, the preconditioned conjugate gradient method constitutes the first option,
using the triangular factor from an incomplete Cholesky decomposition as preconditioner
to accelerate convergence (like before, this incomplete Cholesky factor can be computed
once an used repeatedly). Regarding the time integration process, the adaptive ABM-
PECE solver works at its best for smooth functions, this situation could change when
we try to extend the KLE method to problems with more complex constitutive relations
or to the analysis of coupled physical processes where different time scales are likely too
appear. If the function is no longer smooth, a recommendable alternative to the ABM-
PECE solver is the adaptive Bulirsch-Stoer algorithm with modified midpoint integration
and Richardson extrapolation.21 If different time scales are present, the possibility of
stiffness arises and then a Bulirsch-Stoer solver with semi-implicit midpoint integration
is recommendable.

Finally, we may emphasize KLE flexibility to manage different trajectories with trans-
lational and rotational acceleration and its use of unstructured meshes. This method
gives us a useful tool to study the vortex structure of wakes for different body shapes and
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motions. We are using this tool to explore complex vortex wake patterns in the wake of
forced oscillating cylinders at low Reynolds number, focusing on the process of splitting
which characterizes the formation of P+S and similar structures. We hope to use the
numerical tool developed here to continue with such explorations in the future.
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