Asociación Argentina



de Mecánica Computacional

Mecánica Computacional Vol XXXI, págs. 2485-2496 (artículo completo) Alberto Cardona, Paul H. Kohan, Ricardo D. Quinteros, Mario A. Storti (Eds.) Salta, Argentina, 13-16 Noviembre 2012

# VIBRACIONES DE PLACAS DELGADAS SUPERELÍPTICAS CON FUERZAS EN SU PLANO

Santiago Maiz<sup>a</sup>, Diana V. Bambill<sup>a,b</sup>, Carlos A. Rossit<sup>a,b</sup>

 <sup>a</sup>Departamento de Ingeniería, Instituto de Mecánica Aplicada (IMA), Universidad Nacional del Sur Av. Alem 1253, 8000 Bahía Blanca, Argentina. http://www.uns.edu.ar
 <sup>b</sup>Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
 E-mail: smaiz@uns.edu.ar, dbambill@criba.edu.ar, carossit@crib.edu.ar,

**Palabras clave**: Vibración transversal, placas superelípticas, carga crítica de pandeo, método de Ritz.

**Resumen.** El presente trabajo se refiere al estudio dinámico de placas delgadas de forma superelíptica que vibran transversalmente y están sometidas a la acción de cargas que actúan en su plano medio. Como es sabido, el definir el contorno de la placa con una función superelítica permite analizar desde una placa elíptica, pasando por la circular y hasta una placa rectangular con vértices ligeramente redondeados. Este último caso, representa una situación tecnológica habitual en orden a disminuir concentraciones de tensiones y su modelación superelíptica favorece su resolución. La presencia de fuerzas en el plano puede constituir una perturbación importante en el desempeño dinámico estructural de la placa y debe ser considerada en la formulación analítica del problema. Se determinan las primeras frecuencias de vibración transversal de diversas configuraciones de placas superelípticas sometidas a fuerzas en su plano de distinta magnitud. Como casos particulares, se determinan valores críticos de la carga que provocan inestabilidad elástica en la placa. El problema es analizado mediante el método de Ritz, aproximando las amplitudes de desplazamiento transversal con expresiones polinómicas en las coordenadas cartesianas. Los resultados obtenidos mediante el enfoque propuesto, muestran satisfactoria concordancia con casos particulares del modelo en análisis disponibles en la literatura técnico-científica.

#### **1 INTRODUCCION**

En numerosas situaciones tecnológicas, las exigencias de diseño requieren la utilización de placas de diferentes formas en su contorno.

En ese contexto adquiere trascendencia el estudio de las placas superelípticas.

Se denomina así a las placas cuyo perímetro es definido por una función superelíptica con una potencia que se corresponde con su forma, que variará entre rectángulo de vértices redondeados y una elipse:

$$\left[\frac{x}{a}\right]^{2\alpha} + \left[\frac{y}{b}\right]^{2\alpha} = 1 \tag{1}$$

donde *a* y *b* son los semiejes mayor y menor respectivamente y  $\alpha$  es un parámetro que define la forma de la placa. En efecto, en caso de que  $\alpha$ =1, la ecuación (1) representa en general una elipse y como caso particular (*a*=*b*) una circunferencia. (Figura 1)



Figura 1: Contornos de placas superelípticas correspondientes a valores de  $\alpha = 1, 2, 4, 5$  y 10, para a/b = 3/2

Obviamente, valores muy grandes de  $\alpha$  aproximarán el contorno al de un rectángulo al reducir significativamente el radio en los vértices.

Se cuenta entonces, con una herramienta que permite un tratamiento unificado para un amplio rango de placas considerando placas circulares, elípticas o rectangulares eligiendo el parámetro adecuado.

No son numerosos los trabajos sobre placas superelípticas y aún elípticas en la literatura.

Entre los trabajos sobre placas elípticas merecen consignarse las contribuciones de Sato (1972, 1973, 1976 y 2002) quien investigó profundamente las vibraciones transversales de placas elípticas macizas con distintas condiciones de borde.

También, entre los trabajos pioneros debe mencionarse el de DeCapua y Sun (1972) que estudiaron las frecuencias de placas ortótropas superelípticas utilizando polinomios como funciones aproximantes en el método de Ritz

Zhou et al. (2004) estudiaron la vibración tridimensional de placas superelípticas generalizadas, basado en la teoría lineal de la elasticidad utilizando el método de Ritz para derivar la ecuación de frecuencias. Series triplicadas de polinomios de Chebyshev fueron utilizadas en la formulación de las funciones admisibles.



Figura 2: Placa superelíptica  $\alpha$ =1 con esfuerzos uniformes en el plano

En el caso de placas superelípticas con estados de cargas en su plano, se menciona el trabajo de Wang et al. (1994) que estudiaron su vibración y pandeo utilizando el llamado Método de Rayleigh pb-2 tomando como funciones aproximantes el producto de una función básica (b) por un polinomio bidimensional completo (p-2), y el más reciente de Altekin (2008) estudió la vibración y el pandeo de placas apoyadas en cuatro puntos simétricos a los ejes por el método de Ritz utilizando funciones polinómicas.

En el presente trabajo se estudia la influencia de un estado de fuerzas hidróstático de tracción en el plano medio de la placa sobre las frecuencias de vibración transversal de la placa superelíptica empotrada (Figura 2). En caso de fuerzas de compresión, se determinan los valores críticos.

## 2 EL MÉTODO DE RITZ

Cuando la placa ejecuta uno de sus modos normales de vibración, el desplazamiento de la superficie media de la placa w(x, y, t) puede ser representado mediante el producto:

$$w(x, y, t) = W(x, y) e^{i\omega t}$$
<sup>(2)</sup>

donde W es una función continua que representa la amplitud de la deformación de la superficie media y  $\omega$  es la frecuencia circular natural.

Se obtendrá una solución aproximada del problema mediante el método de Ritz. Para ello es necesario utilizar como aproximación para la amplitud W, alguna expresión que satisfaga al menos las condiciones esenciales de borde. En este caso la expresión para W será definida como una sumatoria con coeficientes indeterminados  $C_i$ .

$$W(x,y) \cong W_a(x,y) = \sum_{i=1}^{R} C_i f_i(x,y), \qquad (3)$$

en la que *f* representa funciones continuas:

$$f_i(x, y) = \left[ \left(\frac{x}{a}\right)^{2\alpha} + \left(\frac{y}{b}\right)^{2\alpha} - 1 \right]^n \phi_i(x, y)$$
(4)

La expresión en el corchete define el contorno de la placa, el parámetro *n* depende de la vinculación de la placa y los  $\phi'_i$ 's son monomios elegidos de un set de monomios (Fig. 3) de la forma:

$$x^{q-p}y^p \tag{5}$$

Entonces, la solución aproximada (3) deviene en:

$$W_{a}(x,y) = \sum_{i=1}^{R} C_{i} f_{i}(x,y) = \left[ \left( \frac{x}{a} \right)^{2\alpha} + \left( \frac{y}{b} \right)^{2\alpha} - 1 \right]^{n} \sum_{q=0}^{s} \sum_{p=0}^{q} C_{i} x^{q-p} y^{p} \\ \left( i = \frac{q(q+1)}{2} + (p+1); R = \frac{(s+1)(s+2)}{2} \right)$$
(6)

que satisface las condiciones de borde de placas libres cuando n=0, simplemente apoyadas cuando n=1 y empotradas cuando n=2.



Figura 3: Conjunto de monomios elegidos

El funcional de energía que gobierna el problema de la placa vibrante de la Figura 1 es:

$$J(W) = \iint_{A} D\left\{\frac{1}{2}\left(\frac{\partial^{2}W}{\partial x^{2}} + \frac{\partial^{2}W}{\partial y^{2}}\right)^{2} - 2(1-\nu)\left[\frac{\partial^{2}W}{\partial x^{2}}\frac{\partial^{2}W}{\partial y^{2}} - \left(\frac{\partial^{2}W}{\partial x\partial y}\right)^{2}\right] + S\left[\left(\frac{\partial W}{\partial x} + \frac{\partial W}{\partial y}\right)^{2}\right]\right\} dxdy$$

$$-\frac{1}{2}\omega^{2}\rho h \iint_{A} W^{2} dxdy$$

$$(7)$$

donde *A* es el dominio de la placa, *v* es el coeficiente de Poisson,  $\rho$  es la densidad del material de la placa, *h* su espesor uniforme y *S* es la carga en el plano medio de la placa y normal a su borde expresada en *N/m* como se observa en la Figura 2.

$$D = \frac{Eh^3}{12(1-v^2)}$$
, es la rigidez flexional de la placa y *E* módulo de Young.

2488

Es conveniente normalizar las coordenadas:

$$\xi = \frac{x}{a} \qquad , \qquad \eta = \frac{y}{b} \tag{8}$$

con lo que:

$$W_{a}(\xi,\eta) = \sum_{q=0}^{s} \sum_{p=0}^{q} \overline{C}_{i} \left[ \xi^{2\alpha} + \eta^{2\alpha} - 1 \right]^{n} \xi^{q-p} \eta^{p}$$
(9)

donde  $\overline{C}_i = C_i a^{q-p} b^p$ .

De acuerdo con el método de Ritz, luego de introducir la expresión aproximada  $W_a(\xi,\eta)$ , Ec. (9) en la Ec. (7), la integración de  $J(W_a)$  conduce a una función cuadrática homogénea en los desconocidos coeficientes de desplazamiento  $\overline{C}_i$ . La minimización de dicha función lleva a un sistema de ecuaciones homogéneas de primer orden en los  $\overline{C}_i$ :

$$\frac{\partial J(W_a)}{\partial \overline{C}_i} = 0 \quad ; \quad i = 1, 2, 3, \dots, R.$$

$$(10)$$

El sistema de ecuaciones obtenido puede ser escrito en la forma:

$$\begin{bmatrix} \mathbf{K} + N\mathbf{H} - \Omega^2 \mathbf{L} \end{bmatrix} \overline{\mathbf{C}} = \mathbf{0}$$
(11)

donde  $N = \frac{Sab}{D}$ , es el valor adimensional de la carga en el plano,  $\Omega = \omega ab \sqrt{\frac{\rho h}{D}}$  son los coeficientes de frecuencia naturales de vibración del sistema y **K**, **H** y **L** son matrices simétricas cuyos elementos vienen dados respectivamente por:

$$k_{ij} = \iint_{\overline{A}} \left[ \left( \frac{b}{a} \right)^2 \varphi_{i,\xi\xi} \varphi_{j,\xi\xi} + \left( \frac{a}{b} \right)^2 \varphi_{i,\eta\eta} \varphi_{j,\eta\eta} + v \left( \varphi_{i,\xi\xi} \varphi_{j,\eta\eta} + \varphi_{j,\xi\xi} \varphi_{i,\eta\eta} \right) + 2 (1-v) \varphi_{i,\xi\eta} \varphi_{j,\xi\eta} \right] d\xi d\eta$$

$$h_{ij} = \iint_{\overline{A}} \left( \varphi_{i,\xi} \varphi_{j,\xi} + \varphi_{i,\eta} \varphi_{j,\eta} \right) d\xi d\eta$$

$$l_{ij} = \iint_{\overline{A}} \varphi_i \varphi_j d\xi d\eta$$

$$(12)$$

en las cuales  $\overline{A}$  es el dominio normalizado, *i,j* son enteros (1,2,..., *R*) y  $\varphi_i(\xi,\eta) = \left[\xi^{2\alpha} + \eta^{2\alpha} - 1\right]^n \xi^{q-p} \eta^p$ .

Los coeficientes de frecuencia natural  $\Omega$  son obtenidos estableciendo la nulidad del determinante de la Ec. (11), definiendo con anterioridad el valor N de la carga en el plano. La condición de no trivialidad conduce a una ecuación trascendente en  $\Omega$ . En tanto que el coeficiente de carga crítica  $N_{cr}$  se determina haciendo nulo el coeficiente de frecuencias  $\Omega$  y procediendo de manera similar a lo antedicho, quedando el problema de carga crítica de la siguiente forma:

$$\left[\mathbf{K} + N_{cr}\mathbf{H}\right]\overline{\mathbf{C}} = \mathbf{0} \tag{13}$$

Como es sabido, las raíces de dicha ecuación constituyen límites superiores, por lo que hay que tener sumo cuidado con los valores de carga crítica de pandeo, ya que los coeficientes resultantes de la ecuación (13) producen la inestabilidad de la estructura.

## **3 RESULTADOS NUMÉRICOS**

Se han realizado pruebas de convergencia y comparaciones con trabajos anteriores llegando a una predicción optima de los coeficientes de frecuencias y de pandeo con R=136.

La tabla N°1 muestra los coeficientes de carga  $N_{cr}$  de pandeo para diferentes placas superelípticas empotradas.

| v=0.3       | a/b                  |         |                      |                      |                      |                      |
|-------------|----------------------|---------|----------------------|----------------------|----------------------|----------------------|
| α           | 1                    | 1.2     | 1.5                  | 2                    | 2.5                  | 3                    |
| 1           | -14.682              | -15.128 | -16.856              | -20.868              | -25.317              | -29.899              |
|             | (-14.684)            |         | (-16.861)            | (-20.877)            | (-25.331)            | (-29.920)            |
| 2           | -13.175              | -13.621 | -15.361              | -19.484              | -24.123              | -28.872              |
|             | (-13.186)            |         | (-15.375)            | (-19.502)            | (-24.147)            | (-28.898)            |
| 3           | -13.090              | -13.535 | -15.266              | -19.380              | -24.032              | -28.720              |
| 4           | -13.079              | -13.523 | -15.253              | -19.365              | -24.019              | -28.616              |
|             | (-13.090)            |         |                      | (-19.369)            | (-24.023)            | (-28.641)            |
| 5           | -13.076              | -13.520 | -15.250              | -19.362              | -24.016              | -28.589              |
| 10          | -13.071              | -13.517 | -15.248              | -19.361              | -24.016              | -28.576              |
|             | (-13.080)            |         |                      | (-19.351)            | (-23.822)            | (-28.852)            |
| rectangular | $-13.087^{\text{F}}$ |         | $-15.253^{\text{F}}$ | -19.362 <sup>¥</sup> | $-24.015^{\text{F}}$ | $-28.577^{\text{¥}}$ |

Tabla 1: Coeficientes de carga crítica de pandeo para una placa superelíptica empotrada.

Los valores entre paréntesis fueron calculados por Wang et al. (1994), los valores para la placa rectangular <sup>¥</sup> calculados por S. P. Timoshenko and J. M. Gere (1961).

Debe notarse que los valores negativos en la tabla 1 corresponden justamente a cargas de compresión, ya que en el desarrollo se supuso como positiva la carga de tracción.

En las tablas 2 a 6 se muestran los coeficientes de frecuencias para distintas placas elípticas. En la tabla 2 dichos coeficientes son calculados sin carga en plano medio de la placa. Los valores entre paréntesis corresponden al estudio realizado por Wang et al. (1994).

| <i>N</i> =0 |            |            |            |            |            |            |  |
|-------------|------------|------------|------------|------------|------------|------------|--|
| a/b         | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |
| 1           | 10.216     | 21.260     | 21.260     | 34.876     | 34.877     | 39.771     |  |
|             | (10.218)   | (21.259)   | (21.259)   | (34.877)   | (34.877)   | (39.775)   |  |
| 1.2         | 10.461     | 19.735     | 23.615     | 32.625     | 35.516     | 43.325     |  |
| 1.5         | 11.420     | 18.981     | 27.658     | 29.593     | 38.023     | 43.220     |  |
|             | (11.422)   | (18.981)   | (27.668)   | (29.596)   | (38.023)   | (43.221)   |  |
| 2           | 13.689     | 19.749     | 27.988     | 34.929     | 38.497     | 44.024     |  |
|             | (13.694)   | (19.749)   | (27.991)   | (34.947)   | (38.496)   | (44.022)   |  |
| 2.5         | 16.258     | 21.593     | 28.551     | 37.233     | 42.435     | 47.715     |  |
|             | (16.265)   | (21.592)   | (28.556)   | (37.232)   | (42.461)   | (47.721)   |  |
| 3           | 18.933     | 23.863     | 30.077     | 37.650     | 46.652     | 50.030     |  |
|             | (18.943)   | (23.862)   | (30.083)   | (37.648)   | (46.660)   | (50.064)   |  |

Tabla 2: Coeficientes frecuencia para una placa elíptica empotrada sin cargas en el plano.

En las tablas 3 a 6 se indica los coeficientes de frecuencias para placas elípticas empotradas para diferentes cargas en el plano. Las cargas se relacionan con la carga crítica de pandeo. En las tablas 4 a 6 el signo menos en la carga en el plano significa carga de tracción ya que el coeficiente  $N_{cr}$  es negativo. Se observa el efecto rigidizador de la carga de tracción.

| N=N <sub>cr</sub> /2 |            |            |            |            |            |            |  |  |
|----------------------|------------|------------|------------|------------|------------|------------|--|--|
| a/b                  | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |  |
| 1                    | 7.2750     | 18.114     | 18.114     | 31.624     | 31.624     | 36.554     |  |  |
| 1.2                  | 7.4512     | 16.473     | 20.403     | 29.264     | 32.173     | 40.020     |  |  |
| 1.5                  | 8.1395     | 15.354     | 24.121     | 25.836     | 34.329     | 39.387     |  |  |
| 2                    | 9.7730     | 15.356     | 23.383     | 30.604     | 33.768     | 39.518     |  |  |
| 2.5                  | 11.627     | 16.402     | 23.078     | 31.577     | 37.226     | 41.934     |  |  |
| 3                    | 13.559     | 17.871     | 23.747     | 31.089     | 39.926     | 43.908     |  |  |

Tabla 3: Coeficientes frecuencia para carga de compresión igual a la mitad de la carga crítica.

| N=-N <sub>cr</sub> /2 |            |            |            |            |            |            |  |
|-----------------------|------------|------------|------------|------------|------------|------------|--|
| a/b                   | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |
| 1                     | 12.440     | 23.975     | 23.975     | 37.837     | 37.838     | 42.743     |  |
| 1.2                   | 12.738     | 22.504     | 26.418     | 35.658     | 38.557     | 46.390     |  |
| 1.5                   | 13.898     | 21.986     | 30.768     | 32.908     | 41.372     | 46.731     |  |
| 2                     | 16.644     | 23.277     | 31.908     | 38.746     | 42.691     | 48.087     |  |
| 2.5                   | 19.750     | 25.683     | 33.090     | 42.111     | 47.037     | 52.852     |  |
| 3                     | 22.984     | 28.529     | 35.226     | 43.186     | 52.499     | 55.439     |  |

Tabla 4: Coeficientes frecuencia para carga de tracción con módulo igual a la mitad de la carga crítica.

| N=-N <sub>cr</sub> |            |            |            |            |            |            |  |
|--------------------|------------|------------|------------|------------|------------|------------|--|
| a/b                | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |
| 1                  | 14.296     | 26.396     | 26.396     | 40.572     | 40.573     | 45.517     |  |
| 1.2                | 14.637     | 24.949     | 28.934     | 38.442     | 41.364     | 49.259     |  |
| 1.5                | 15.965     | 24.603     | 33.573     | 35.904     | 44.457     | 49.988     |  |
| 2                  | 19.107     | 26.303     | 35.375     | 42.197     | 46.495     | 51.814     |  |
| 2.5                | 22.661     | 29.160     | 37.044     | 46.459     | 51.199     | 57.517     |  |
| 3                  | 26.360     | 32.472     | 39.668     | 48.057     | 57.735     | 60.333     |  |

Tabla 5: Coeficientes frecuencia para carga de tracción con módulo igual a la carga crítica.

| N=-2N <sub>cr</sub> |            |            |            |            |            |            |  |  |
|---------------------|------------|------------|------------|------------|------------|------------|--|--|
| a/b                 | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |  |
| 1                   | 17.376     | 30.633     | 30.634     | 45.527     | 45.528     | 50.598     |  |  |
| 1.2                 | 17.788     | 29.194     | 33.367     | 43.455     | 46.445     | 54.530     |  |  |
| 1.5                 | 19.396     | 29.095     | 38.537     | 41.219     | 50.028     | 55.915     |  |  |
| 2                   | 23.193     | 31.431     | 41.402     | 48.317     | 53.261     | 58.520     |  |  |
| 2.5                 | 27.488     | 35.012     | 43.831     | 54.067     | 58.583     | 65.828     |  |  |
| 3                   | 31.958     | 39.083     | 47.229     | 56.485     | 66.937     | 69.016     |  |  |

Tabla 6: Coeficientes frecuencia para carga de tracción con módulo igual al doble de la carga crítica.

| N=N <sub>cr</sub> /2 |            |            |                        |            |            |            |  |
|----------------------|------------|------------|------------------------|------------|------------|------------|--|
| a/b                  | $\Omega_1$ | $\Omega_2$ | $\Omega_3$             | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |
| 1                    | 6.4795     | 15.867     | 15.875                 | 25.261     | 30.078     | 31.293     |  |
| 1.2                  | 6.6473     | 14.079     | 18.247                 | 25.781     | 26.230     | 36.163     |  |
| 1.5                  | 7.3041     | 12.687     | 22.003                 | 22.111     | 27.841     | 35.074     |  |
| 2                    | 8.8801     | 12.267     | 18.757                 | 28.129     | 28.472     | 32.877     |  |
| 2.5                  | 10.697     | 13.064     | 17.747                 | 24.803     | 34.126     | 35.053     |  |
| 3                    | 12.615     | 14.443     | 18.003                 | 23.471     | 30.880     | 40.167     |  |
|                      |            |            | <i>N</i> =0            |            |            |            |  |
| 1                    | 9.0927     | 18.671     | 18.680                 | 28.173     | 32.978     | 34.163     |  |
| 1.2                  | 9.3270     | 17.014     | 21.107                 | 28.781     | 29.248     | 39.117     |  |
| 1.5                  | 10.244     | 16.014     | 25.182                 | 25.561     | 31.184     | 38.581     |  |
| 2                    | 12.442     | 16.397     | 23.158                 | 32.454     | 32.639     | 37.029     |  |
| 2.5                  | 14.968     | 17.984     | 23.106                 | 30.384     | 39.811     | 39.952     |  |
| 3                    | 17.622     | 20.113     | 24.230                 | 30.052     | 37.658     | 47.049     |  |
|                      |            |            | N=- N <sub>cr</sub> /2 |            |            |            |  |
| 1                    | 11.067     | 21.085     | 21.093                 | 30.797     | 35.632     | 36.808     |  |
| 1.2                  | 11.351     | 19.487     | 23.604                 | 31.482     | 31.973     | 41.857     |  |
| 1.5                  | 12.464     | 18.727     | 27.982                 | 28.582     | 34.185     | 41.787     |  |
| 2                    | 15.131     | 19.629     | 26.818                 | 35.971     | 36.581     | 40.738     |  |
| 2.5                  | 18.194     | 21.754     | 27.392                 | 35.059     | 44.279     | 44.763     |  |
| 3                    | 21.405     | 24.419     | 29.091                 | 35.387     | 43.360     | 52.695     |  |
|                      |            |            | $N = -N_{cr}$          |            |            |            |  |
| 1                    | 12.713     | 23.234     | 23.242                 | 33.204     | 38.092     | 39.270     |  |
| 1.2                  | 13.039     | 21.662     | 25.845                 | 33.958     | 34.474     | 44.423     |  |
| 1.5                  | 14.316     | 21.071     | 30.510                 | 31.300     | 36.929     | 44.757     |  |
| 2                    | 17.374     | 22.367     | 30.013                 | 39.153     | 40.124     | 44.118     |  |
| 2.5                  | 20.883     | 24.920     | 31.060                 | 39.158     | 48.194     | 49.203     |  |
| 3                    | 24.560     | 28.021     | 33.207                 | 39.985     | 48.372     | 57.360     |  |
|                      |            |            | $N=-2 N_{cr}$          |            |            |            |  |
| 1                    | 15.444     | 26.990     | 26.998                 | 37.532     | 42.565     | 43.770     |  |
| 1.2                  | 15.839     | 25.424     | 29.793                 | 38.408     | 38.977     | 49.140     |  |
| 1.5                  | 17.387     | 25.068     | 34.985                 | 36.100     | 41.852     | 50.155     |  |
| 2                    | 21.094     | 26.966     | 35.507                 | 44.799     | 46.374     | 50.160     |  |
| 2.5                  | 25.345     | 30.200     | 37.269                 | 46.231     | 55.139     | 57.021     |  |
| 3                    | 29.794     | 34.012     | 40.114                 | 47.809     | 57.039     | 65.635     |  |

En las tablas 7 a 9 se muestran los coeficientes de frecuencias para diferentes placas superelípticas con distintas magnitudes de cargas en el plano.

Tabla 7: Coeficientes frecuencia para una placa superelíptica  $\alpha$ =2 empotrada con distintas magnitudes de cargasen el plano con relación a la carga crítica de pandeo.

| N=N <sub>cr</sub> /2 |               |            |             |                 |            |            |  |  |
|----------------------|---------------|------------|-------------|-----------------|------------|------------|--|--|
| a/b                  | $\Omega_1$    | $\Omega_2$ | $\Omega_3$  | $\Omega_4$      | $\Omega_5$ | $\Omega_6$ |  |  |
| 1                    | 6.4093        | 15.564     | 15.583      | 24.203          | 29.992     | 30.238     |  |  |
| 1.2                  | 6.5754        | 13.772     | 17.943      | 24.700          | 25.692     | 35.541     |  |  |
| 1.5                  | 7.2225        | 12.345     | 21.522      | 21.663          | 26.666     | 34.319     |  |  |
| 2                    | 8.7736        | 11.828     | 18.021      | 27.197          | 28.065     | 31.495     |  |  |
| 2.5                  | 10.560        | 12.517     | 16.812      | 23.629          | 32.807     | 34.588     |  |  |
| 3                    | 12.494        | 13.852     | 16.922      | 22.072          | 29.303     | 38.484     |  |  |
|                      |               |            | <i>N</i> =0 |                 |            |            |  |  |
| 1                    | 8.9900        | 18.333     | 18.351      | 27.069          | 32.866     | 33.065     |  |  |
| 1.2                  | 9.2217        | 16.671     | 20.767      | 27.654          | 28.674     | 38.462     |  |  |
| 1.5                  | 10.125        | 15.634     | 24.805      | 24.934          | 29.958     | 37.789     |  |  |
| 2                    | 12.290        | 15.917     | 22.391      | 31.675          | 32.006     | 35.591     |  |  |
| 2.5                  | 14.781        | 17.392     | 22.159      | 29.204          | 38.477     | 39.447     |  |  |
| 3                    | 17.403        | 19.415     | 23.097      | 28.629          | 36.051     | 45.322     |  |  |
|                      | $N=-N_{cr}/2$ |            |             |                 |            |            |  |  |
| 1                    | 10.938        | 20.712     | 20.731      | 29.644          | 35.497     | 35.666     |  |  |
| 1.2                  | 11.219        | 19.108     | 23.230      | 30.305          | 31.364     | 41.171     |  |  |
| 1.5                  | 12.316        | 18.307     | 27.569      | 27.917          | 32.905     | 40.959     |  |  |
| 2                    | 14.944        | 19.100     | 26.006      | 35.485          | 35.577     | 39.238     |  |  |
| 2.5                  | 17.968        | 21.104     | 26.396      | 33.841          | 43.394     | 43.737     |  |  |
| 3                    | 21.122        | 23.625     | 27.871      | 33.894          | 41.689     | 51.235     |  |  |
|                      |               |            | N=- N       | r<br>cr         |            |            |  |  |
| 1                    | 12.561        | 22.829     | 22.848      | 32.001          | 37.937     | 38.086     |  |  |
| 1.2                  | 12.884        | 21.249     | 25.440      | 32.730          | 33.832     | 43.706     |  |  |
| 1.5                  | 14.141        | 20.613     | 30.063      | 30.596          | 35.594     | 43.894     |  |  |
| 2                    | 17.157        | 21.790     | 29.153      | 38.631          | 39.076     | 42.554     |  |  |
| 2.5                  | 20.626        | 24.211     | 30.006      | 37.890          | 47.616     | 47.791     |  |  |
| 3                    | 24.227        | 27.140     | 31.895      | 38.409          | 46.625     | 56.515     |  |  |
|                      |               |            | N=-2 N      | N <sub>cr</sub> |            |            |  |  |
| 1                    | 15.253        | 26.526     | 26.545      | 36.230          | 42.374     | 42.500     |  |  |
| 1.2                  | 15.644        | 24.949     | 29.330      | 37.079          | 38.271     | 48.363     |  |  |
| 1.5                  | 17.169        | 24.537     | 34.479      | 35.321          | 40.407     | 49.223     |  |  |
| 2                    | 20.826        | 26.298     | 34.551      | 44.211          | 45.237     | 48.469     |  |  |
| 2.5                  | 25.033        | 29.385     | 36.097      | 44.856          | 54.496     | 55.514     |  |  |
| 3                    | 29.379        | 32.980     | 38.628      | 46.065          | 55.135     | 64.854     |  |  |

Tabla 8: Coeficientes frecuencia para una placa superelíptica  $\alpha$ =5 empotrada con distintas magnitudes de cargasen el plano con relación a la carga crítica de pandeo.

| $N=N_{cr}/2$ |                        |            |             |            |            |            |  |  |
|--------------|------------------------|------------|-------------|------------|------------|------------|--|--|
| a/b          | $\Omega_1$             | $\Omega_2$ | $\Omega_3$  | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |  |  |
| 1            | 6.4066                 | 15.548     | 15.576      | 24.167     | 29.982     | 30.195     |  |  |
| 1.2          | 6.5732                 | 13.759     | 17.935      | 24.664     | 25.662     | 35.521     |  |  |
| 1.5          | 7.2205                 | 12.333     | 21.494      | 21.654     | 26.626     | 34.269     |  |  |
| 2            | 8.7713                 | 11.815     | 17.991      | 27.146     | 28.052     | 31.441     |  |  |
| 2.5          | 10.557                 | 12.501     | 16.776      | 23.569     | 32.743     | 34.569     |  |  |
| 3            | 12.493                 | 13.834     | 16.879      | 22.002     | 29.228     | 38.416     |  |  |
|              |                        |            | <i>N</i> =0 |            |            |            |  |  |
| 1            | 8.9859                 | 18.315     | 18.342      | 27.030     | 32.854     | 33.020     |  |  |
| 1.2          | 9.2184                 | 16.656     | 20.758      | 27.615     | 28.642     | 38.441     |  |  |
| 1.5          | 10.122                 | 15.620     | 24.794      | 24.905     | 29.915     | 37.737     |  |  |
| 2            | 12.286                 | 15.901     | 22.359      | 31.622     | 31.990     | 35.533     |  |  |
| 2.5          | 14.776                 | 17.372     | 22.119      | 29.141     | 38.407     | 39.426     |  |  |
| 3            | 17.396                 | 19.390     | 23.046      | 28.552     | 35.966     | 45.239     |  |  |
|              | N=- N <sub>cr</sub> /2 |            |             |            |            |            |  |  |
| 1            | 10.933                 | 20.693     | 20.720      | 29.602     | 35.483     | 35.619     |  |  |
| 1.2          | 11.215                 | 19.092     | 23.219      | 30.263     | 31.330     | 41.147     |  |  |
| 1.5          | 12.312                 | 18.291     | 27.557      | 27.885     | 32.858     | 40.905     |  |  |
| 2            | 14.939                 | 19.081     | 25.970      | 35.468     | 35.520     | 39.175     |  |  |
| 2.5          | 17.962                 | 21.080     | 26.351      | 33.773     | 43.318     | 43.715     |  |  |
| 3            | 21.112                 | 23.593     | 27.812      | 33.808     | 41.594     | 51.140     |  |  |
|              |                        |            | N=- N       | cr         |            |            |  |  |
| 1            | 12.555                 | 22.808     | 22.835      | 31.955     | 37.921     | 38.037     |  |  |
| 1.2          | 12.879                 | 21.231     | 25.427      | 32.685     | 33.796     | 43.681     |  |  |
| 1.5          | 14.137                 | 20.595     | 30.050      | 30.562     | 35.544     | 43.837     |  |  |
| 2            | 17.151                 | 21.769     | 29.114      | 38.612     | 39.016     | 42.487     |  |  |
| 2.5          | 20.618                 | 24.185     | 29.957      | 37.818     | 47.592     | 47.709     |  |  |
| 3            | 24.214                 | 27.103     | 31.828      | 38.315     | 46.521     | 56.409     |  |  |
|              | N=-2 N <sub>cr</sub>   |            |             |            |            |            |  |  |
| 1            | 15.245                 | 26.502     | 26.530      | 36.177     | 42.354     | 42.448     |  |  |
| 1.2          | 15.637                 | 24.927     | 29.315      | 37.027     | 38.231     | 48.335     |  |  |
| 1.5          | 17.163                 | 24.516     | 34.462      | 35.282     | 40.350     | 49.162     |  |  |
| 2            | 20.819                 | 26.272     | 34.505      | 44.190     | 45.170     | 48.394     |  |  |
| 2.5          | 25.024                 | 29.351     | 36.039      | 44.775     | 54.469     | 55.421     |  |  |
| 3            | 29.362                 | 32.933     | 38.548      | 45.956     | 55.014     | 64.814     |  |  |

Tabla 9: Coeficientes frecuencia para una placa superelíptica  $\alpha$ =10 empotrada con distintas magnitudes de cargas en el plano con relación a la carga crítica de pandeo.

En las tablas 3 a 9 se observa el efecto rigidizador de las tensiones de tracción de la carga transversal en el plano medio de la placa como así también el efecto contrario para las cargas de compresión. Estos casos pueden darse en estructuras o mecanismos cuando existe un gradiente de temperatura, o para distintos efectos de dilatación térmica entre la placa y su contorno. El ingeniero de diseño deberá contemplar este comportamiento dinámico para evitar posibles resonancias en la estructura, ya sea por transmisión de vibraciones de equipos

lindantes o por equipos montados sobre las placas.

Por otro lado, en ocasiones se generan en estructuras existentes que contienen elementos del tipo placa o tabique, corrimientos accidentales o sobrecargas no previstas. En tales circunstancias se generan esfuerzos en el plano medio de la placa que, si es esbelta, podría inestabilizarse imprevistamente. Esos esfuerzos pueden resultar difíciles de estimar con precisión aceptable. Sin embargo se puede contar con valiosa información adicional, monitoreando el comportamiento dinámico de la estructura mediante la medición de sus frecuencias naturales, ya que las mismas mantienen una fuerte dependencia con el estado de cargas en su plano.

#### **4** CONCLUSIONES

El concepto de placa superelíptica permite un tratamiento unificado para un amplio rango de placas considerando desde placas circulares a cuadradas (a=b), y desde elípticas a rectangulares  $(a\neq b)$  mediante una adecuada elección del parámetro  $\alpha$ .

El método de Ritz con las funciones base propuestas, demuestra ser una herramienta eficiente en la determinación de un gran número de frecuencias naturales de placas cuyo contorno presenta una variada gama de geometrías y distintas condiciones de borde, permitiendo el agregado de masas inerciales traslacionales y rotacionales adosadas (Maiz et al, 2009).

La cantidad de frecuencias a determinar, puede incrementarse simplemente tomando un número adecuado de términos R en la sumatoria de aproximación (6).

Se señala que para R=136, el tiempo computacional insumido en el cálculo de las primeras seis frecuencias en cada caso analizado fue de escasos segundos utilizando una PC estándar.

La formulación presentada implica un ahorro de tiempo significativo frente a la utilización de códigos de elementos finitos, los que requieren modelar el dominio de la placa cada vez que se considera una geometría diferente para su contorno. Esto es importante en la etapa de diseño de la estructura resistente.

#### **5** AGRADECIMIENTOS

Los autores agradecen a la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur y al Conicet por su auspicio para la realización de este trabajo.

### REFERENCIAS

- Altekin, M., Free linear vibration and buckling of super-elliptical plates resting on symmetrically distributed point-supports on the diagonals. *Thin walled structures*, 46: 1066-1086, 2008.
- DeCapua, N.J., and Sun, B.C., Transverse vibration of a class of orthotropic plates. *Journal of Applied Mechanics*—*ASME*, 39: 613–615, 1972.
- Maiz, S., Rossit, C.A., Bambill, D.V., and Susca, A., Transverse vibrations of a clamped elliptical plate carrying a concentrated mass at an arbitrary position. *Journal of Sound and Vibration*, 320:1146-1163, 2009.

Sato, K., Free flexural vibrations of an elliptical plate with edge restrained elastically. *The Japan Society of Mechanical Engineers*, 129:260-264, 1976.

Sato, K., Free flexural vibrations of an elliptical plate with free edge. The Journal of the

Acoustical Society of America, 54:547-550, 1973.

- Sato, K., Free flexural vibrations of an elliptical plate with simply supported edge. *The Journal of the Acoustical Society of America*, 52, 919-922, 1972
- Sato, K., Vibration and Buckling of a Clamped Elliptical Plate on Elastic Foundation and under Uniform In-Plane Force. *Theor Appl Mech Jpn*, 51:49-62, 2002.

Timoshenko, S. P., and Gere, J. M., Theory of elastic estability. Mc Graw Hill, 1961.

- Wang, C.M., Wang, L., and Liew, K.M., Vibration and buckling of super elliptical plates. *Journal of Sound and Vibration*, 171, 301–314, 1994.
- Zhou, D., Lo, S.H., Cheung, Y.K., and Au, F.T.K., 3-D vibration analysis of generalized super elliptical plates using Chebyshev-Ritz method. *International Journal of Solids and Structures*, 41,4697-4712, 2004.