
STOCHASTIC ANALYSIS OF AN ELECTROMECHANICAL COUPLED
SYSTEM WITH EMBARKED MASS

Roberta de Queiroz Lima and Rubens Sampaio

PUC–Rio, Marquês de São Vicente 225, Gávea, Rio de Janeiro, RJ, Brasil,
roberta_10_lima@hotmail.com, rsampaio@puc-rio.br

Keywords: Nonlinear dynamics, vibro systems, coupled systems, energy pumping, stochastic
analysis.

Abstract. The objective of this paper is to analyze the behavior of embarked vibro systems considering
the existence of epistemic uncertainties in the systems parameters. Two different systems were studied.
The first one is composed by a cart whose motion is excited by a DC motor and the second, a pendulum
is added into this cart and can have a relative motion with respect to the cart. The electrical motor is
modeled as a limited source of power and, its influence in the dynamic behavior of the two systems
are considered. The coupling between the motor and the cart is made by a mechanism called scotch
yoke, so that the motor rotational motion is transformed in horizontal cart motion. The influence of the
pendulum embarked in the cart was investigated and it is presented an analysis of the coupling force.
In the stochastic analysis, an uncertain parameter is modeled as random variable and, the Maximum
Entropy Principle is used to construct its probability model. Monte Carlo simulations are employed to
compute the mean and the 90% confidence interval of the displacements of the pendulum, of the cart and
of the angular speed of the motor shaft.
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1 INTRODUCTION

The wide occurrence of the electromechanical coupling in manufacturing processes turns
the research on this topic an area of interest for engineering practice. By coupling it is meant
a mutual influence between the systems. In the two systems studied in this paper the source
of energy is the imposed voltage that will be taken as constant. The dynamics of the motor is
heavily influenced by the coupled mechanical system. To better see the effects of coupling the
mechanical system has no dissipation, the only dissipation is in the electrical part. It is believed
that the theoretical knowledge on couplings between electric motors and mechanical systems
can provide improvements in the design of mechanical systems and can help in the development
of control techniques.

Electromechanical coupled systems is not a new subject, in Rocard (1943) there is a chapter
dedicated to the coupled problem and it is remarked that it is a problem different from para-
metric resonance. In Kononenko (1969) the whole book is dedicated to the problem but the
analytical treatment supposes some small parameter, a hypothesis avoided here. Recently, the
problem is been intensely studied again, see Belato (2002); Aguiar (2010); Balthazar et al.
(2003), but the literature is vast. It is important to remark that the nonlinearity of this problem
is not prescribed by a function, as is unfortunately found in several papers, but it comes from
the coupling and the nonlinearity varies with the coupling conditions. This means that the no
linearity varies with the dynamics, one cannot that it a sine, or a cubic nonlinearity, as seen in
some papers, for example. Coupled problems have a very rich system dynamics due to pres-
ence of nonlinearities arising from the mutual interaction of the coupled systems, see Nayfeh
and Mook (1979); Evan-Iwanowski (1976); Fidlin (2006); Hagedorn (1988); Troger (1991).

In this paper, it is analyzed and compared two electromechanical systems. The first one is a
very simple system composed by a cart whose motion is driven by a DC motor. The coupling
between the motor and the cart is made by a mechanism called scotch yoke. In this simple
system the coupling is a sort of master-slave condition: the motor drives, the cart is driven, and
that is all. The second system has the same two elements of the first and also a pendulum that
can move relative to the cart. The pendulum introduces a new feature since the motion of the
pendulum acts as a reservoir of energy, i.e. energy from the electrical system is pumped to the
pendulum and stored in the pendulum motion, changing the characteristics of the mechanical
system. The pendulum is the embarked system and its motion is driven by the motion of the
cart or, better said, by the motor. The motor is influenced by the attached mass and the heavier
the mass the greater the nonlinearities involved. Normally, problems of this type are modeled
saying that the forcing is harmonic with frequency given by the nominal frequency of the motor.
It will be shown here that this hypothesis is far from true.

Without simplifying hypothesis about the terms, the behavior of the system variables are
analyzed, as the motor current over time, rotational movement of the motor shaft and force and
torque exerted by the DC motor in the mass. The influence of the pendulum embarked in the
cart is investigated and it is shown the changes it causes in the dynamics of the second system
with respect to the first.

The two most important parameters of the coupled problem are the attached mass and the
amplitude of its motion that is given by the position of the pin used in the coupling. With some
simplifying hypothesis a lot of analytical results could have been derived as well as results about
chaotic behavior, but this is not the object of the paper. The object is to show the dynamics
without undue simplifications.

This paper is organized as follows. Section 2 describes the two coupled electromechanical
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systems analyzed. Section 3 presents the results of the deterministic simulations developed
to each one of them. The influence of the attached mass and the amplitude of its motion are
discussed. In Section 4, it is presented a configuration of the coupled system that leads to the
phenomenon of energy pumping and causes revolution, i. e. the inversion of the master-slave
relation. The probability model to the parameter that is considered uncertain is construct in
Section 5 and the results of the simulations of the stochastic systems are presented in Section 6.
Section 7 presents some conclusions.

2 DYNAMICS OF THE COUPLED SYSTEMS

Next, it is presented the elements of the two coupled systems (motor, cart, and pendulum).
The coupling between the motor and the mechanical systems are shown and the two coupled
problems are described and mathematically formulated as initial-value problems.

2.1 Electrical system: motor DC

The mathematical modeling of DC motors is based on the Kirchhoff’s law (Karnopp et al.,
2006). It is constituted by the equations

lċ(t)+ r c(t)+ keα̇(t) = v , (1)

jmα̈(t)+bmα̇(t)− kt c(t) =−τ(t) , (2)

where t is the time, v is the source voltage, c is the electric current, α̇ is the angular speed of
the motor, l is the electric inductance, jm is the motor moment of inertia, bm is the damping
ratio in the transmission of the torque generated by the motor to drive the coupled mechanical
system, kt is the torque constant, ke is the motor electromagnetic force constant and r is the
electrical resistance. Figure 1 shows a sketch of a DC motor. The available torque to the
coupled mechanical system is represented by τ , that is the component of the torque vector~τ in
the z direction shown in Fig. 1.

Figure 1: Electrical motor DC.

Assuming that the load applied in the motor and source voltage are constant in time, the
motor achieves a steady state. Thus, the electric current and the angular speed become constant
and α̈(t) = 0 = ċ(t) = 0, ∀t ∈ R≥0. By equations (1) and (2), the angular speed of the motor
shaft and the current in steady state, respectively α̇steady and csteady, can be calculated by

α̇steady =
−τ r+ kt v
bm r+ ke kt

, csteady =
v
r
− ke

r

(
−τ r+ kt v
bm r+ ke kt

)
. (3)
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When the hypothesis of constant load is not verified, the angular speed of the motor shaft and
the current do not reach a constant value. This kind of situation happens when, for example, a
mechanical system is coupled to the motor. In this case, α̇ and c variate in time in a way that
the dynamics of the motor will be influenced by the coupled mechanical system.

Two more situations are relevant when we analyze electrical motors. The first one is when
there is no load applied in the motor (i.e. τ(t) = 0, ∀t ∈R≥0) and the source voltage is constant
in time. Then, the motor achieves its maximum angular speed that is called the no load speed.
It is calculated by

α̇no load =
kt v

bm r+ ke kt
. (4)

The second one is when the motor delivers the maximum torque. This torque is achieved
when the load applied in the motor is such that the motor does not move at all. This is called
the stall torque. If the source voltage is constant in time, it is calculated by

τstall =
kt v
r

. (5)

In the problems discussed here, there is the constraint τ(t)< τstall . In Sec. 3 it is taken care
do not reach this condition.

2.2 Coupled cart-motor system: a master-slave relation

As described in the introduction, the system analyzed in this paper is composed by a cart
whose motion is driven by the DC motor sketched in Fig. 1. The motor is coupled to the cart
through a pin that slides into a slot machined on an acrylic plate that is part to the cart, as shown
in Fig. 2. The pin hole is drilled off-center on a disk fixed in the axis of the motor, so that the
motor rotational motion is transformed into horizontal cart motion.

Figure 2: First Mechanical System.

It is noticed that with this configuration, the center of mass of the mechanical system is
always located in the center of mass of the cart, so its position does not change.

The mass of the mechanical system, m, is equal the cart mass, mc, and the horizontal cart
displacement is represented by x. Due to constraints, the cart is not allowed to move in the
vertical direction. Due to the problem geometry, and noting ||~d||= d, the horizontal motion of
the cart and the angular displacement α of the motor are related by the constraint

x(t) = d cosα(t) . (6)
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To model the coupling between the motor and the mechanical system, it is assumed that the
motor shaft is rigid. Thus, the available torque to the coupled mechanical system, ~τ , can be
written as

~τ(t) = ~d(t)×~f (t) , (7)

where ~d is the eccentricity of the pin of the motor and ~f is the coupling force between the DC
motor and the cart. By the problem geometry, the module of ~d is the nominal eccentricity of the
pin. Besides this, the component of ~d that is perpendicular to the plane of the cart movement
is always zero and, the others horizontal and vertical components can be calculated from the
angular displacement α of the motor.

Assuming that there is no friction between the pin and the slot machined on an acrylic plate,
the vector ~f only has a horizontal component, f (the horizontal force that the DC motor exerts
in the cart). Thus, ~d and ~f are written as

~d(t) =

 d cosα(t)
d sinα(t)

0

 ~f (t) =

 f (t)
0
0

 . (8)

Substituting Eq. (8) in Eq. (7), the module of~τ(t) is

τ(t) =− f (t)d sinα(t) . (9)

Since the cart is modeled as a particle, it satisfies the equation

m ẍ = f (t) . (10)

Substituting the Eq. (9), (6) and (10) in the equations of the electric motor, we obtain a
system of differential equations to the coupled system.

The initial value problem for the motor-cart system is: given the source voltage of the motor,
v, find (α, c) satisfying

lċ(t)+ r c(t)+ keα̇(t) = v ,

α̈(t)
[

jm +md2(sinα(t))2
]
+ α̇

[
bm +md2α̇(t)cosα(t) sinα(t)

]
− kt c(t) = 0 ,

(11)

for given initial conditions.
Comparing Eqs. 1, 2, and 11 it is seen that the attached mass influences the motor in a

parametric way, Lacarbonara and Antman (2008).

2.3 Coupled cart-motor-pendulum system: introduction of a mechanical energy reser-
voir

In the second system, a third element, a pendulum, is added to the first system. It is placed
inside the cart, as shown in Fig. 3. The suspension point O is fixed in the cart, hence moves
with it. The important point is that it can have a relative motion with respect to the cart. That is
the meaning we give to embarked.

The pendulum with concentrated mass is represented by mp, the pendulum length by lp and
the pendulum angular displacement by θ .
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Figure 3: Second Mechanical System.

Using the Lagrangian equation L= T−V, with the angle θ and displacement x of the cart as
generalized coordinates, the kinetic and potential energies of the mechanical system, are defined
respectively as

T =
1
2

mp[(lpθ̇ cosθ + ẋ)2
+(lpθ̇ sinθ)

2
]+

1
2

mcẋ2 , (12)

V=−mpg(lp cosθ) . (13)

Thus, the equation of the cart-pendulum are

mpl2
pθ̈(t)+mplpẍ(t)cosθ(t)+mpglp sinθ(t) = 0 , (14)

(mp +mc)ẍ(t)+mplpθ̈(t)cosθ(t)−mplpθ̇
2(t)sinθ(t) = f (t) , (15)

where, again, f represents the horizontal coupling force between the DC motor and the cart, g
is the gravity and the horizontal cart displacement is x.

The relative motion of the embarked pendulum causes a variation in the position of the center
of mass of the mechanical system. In this case, the mass of the mechanical system, m, is equal
the cart mass plus the pendulum mass, mc +mp.

As in the first coupled system, the cart is not allowed to move in the vertical direction. Due
to the problem geometry, the horizontal motion of the cart and the angular displacement α of
the motor are related by Eq. (6).

Once again, it is assumed that the motor shaft is rigid and that there is no friction between
the pin and the slot machined on the acrylic plate. Thus, the available torque to the coupled
mechanical system,~τ , is written as Eq. (9).

Substituting the Eq. (9), (6) and (15) in the equations of the electric motor and in Eq. (14),
we obtain a system of differential equations for the coupled system.

Given the source voltage of the motor, v, the dynamic of the coupled system is written in
terms of the variables α , c and θ . Thus, the initial value problem for the motor-cart-pendulum
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system is: given the source voltage of the motor, v, find (α, c, θ) satisfying

lċ(t)+ rc(t)+ keα̇(t) = v ,

α̈(t)
[

jm +(mc +mp)d2(sinα(t))2
]
+ α̇(t)

[
bm +(mc +mp)d2α̇(t)cosα(t) sinα(t)

]
+

+kt c(t) − θ̈(t) [mplp cosθ(t)d sinα(t)]+ θ̇(t)
[
mp lpθ̇(t)sinθ(t)d sinα(t)

]
= 0 ,

θ̈(t)
[
mp l2

p
]
− α̈(t) [mp lp cosθ(t)d sinα(t)]− α̇(t) [mp lp cosθ(t)d cosα(t)α̇(t)]+

+ mp g lp sinθ(t) = 0 ,
(16)

for given initial conditions.

3 NUMERICAL SIMULATIONS OF THE DYNAMICS OF THE COUPLED SYSTEMS

To better comprehend the behavior of the coupled systems composed by the DC motor and
the mechanical systems, we started analyzing the deterministic models. Simulations of the two
systems are compared in order to observe the influence of the pendulum in the rotational motion
of the motor shaft.

3.1 Simulations of the motor-cart system

Looking at the initial value problem Eq. (11), it is observed that if the nominal eccentricity
of the pin, d, is small, Eq. (11) tends to the linear system equations of the DC motor, Eq. (1)
and (2), in case of no load. But as the eccentricity grows, the non-linearities become more
pronounced. The nonlinearity also increases with the attached mass, m. To better comprehend
the increase of nonlinearity, the system Eq. (11), was integrated in a range of [0.0, 2.0] seconds
for different values of d and m.

In the first analysis, d was fixed as 0.005 [m] and the cart mass was variated from 1 [Kg]
to 5 [Kg]. In the second analysis, the cart mass was considered to be m = 5.0 [Kg] and d was
variated in the range 0.001 [m] to 0.01 [m].

The specifications of the motor parameters used in all simulations are listed in Table 1. These
values were obtained from the specifications of the motor Maxon DC brushless number 411678.
The source voltage was assumed to be constant in time and equal to 2.4 [Volt]. This value is just
10% of the nominal voltage of this motor, 24 [Volt], but it ensures the respect to the constraint
τ(t) < τstall for the parameters considered for the coupled system. So the simulations reflect
realisable situations.

Motor Parameter Notation Used value Unit
Electric inductance l 1.880×10−4 [H]
Motor moment of inertia jm 1.210×10−4 [Kg m2]
Damping ratio in the transmission of the torque bm 1.545×10−4 [Nm/(rad/s)]
Electrical resistance r 0.307 [ohm]
Torque constant kt 5.340×10−2 [Nm/Amp]
Electromagnetic force constant ke 5.330×10−2 [Volt/(rad/s)]

Table 1: Motor parameters used in the simulations.

In the integration, the initial conditions assumed for the current in the motor and for the
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angular position and velocity of the motor shaft were, in all simulations:

α(0) = 0.0 [rad] , α̇(0) = 0.0 [Hz] , c(0) = v/r = 7.81 [Amp] . (17)

Due to the coupling mechanism, coupling torque, τ , variates in time. Thus, the angular speed
of the motor shaft and the current are not constant values after the transient. As the motor-cart
system does not have any mechanism of storing energy, after the transient the dynamics achieves
a periodic state. Therefore, to compare the response of the coupled systems for different values
of d and m, the duration of one cart movement cycle were computed in the periodic state.
Figures 4(a) and 4(b) show the graphs of the computed periods in function of d and m. In both
graphs it is observed that, the bigger d or m is, the bigger is the period of the cart movement
cycle in the periodic state. It is noted too that this increment is more pronounced in relation to
d.

(a) (b)

Figure 4: Motor-cart system: (a) period of one cart movement cycle in function of d and (b) in function of m.

Although these graphs show the relation between d or m and the period of the cart, they do
not give a more detailed analysis of the motor-cart system. To better comprehend the behavior
of the coupled system, is necessary to study the variation of the other variables, as the motor
current and the coupling force and torque. To make these analysis, the mass was fixed to 5 [Kg]
and two values of d were selected: 0.001 [m] and 0.010 [m]. The selection guarantees that the
stall torque is not reached in the simulations.

The Fast Fourier Transform of the cart displacement over time, x̂, was computed for the two
different values of d. Figures 5(b) and 6(b) show the obtained results. It is noted that when
d is small, as 0.001 [m], the angular speed of the motor shaft oscillates with a small amplitude
around 7 [Hz] and the FFT graph of x presents only one peak at this frequency. In contrast to
this, when d is bigger, the amplitude of the oscillations of α̇ grows and, due to the non-linearity
effects, the FFT graph of x presents more than one peak. The first one of them is at 6.56 [Hz]
and, the following are at odd multiples of this value.

As said in the introduction of this paper, normally problems of coupled systems are modeled
saying that the force is imposed, so no coupling, and it is harmonic with frequency given by the
nominal frequency of the motor. The dynamic of the motor is not considered. The graphs of
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(a) (b)

Figure 5: Motor-cart system d = 0.001 [m]: (a) angular speed of the motor shaft over time and (b) Fast Fourier
Transform of the cart displacement.

(a) (b)

Figure 6: Motor-cart system d = 0.01 [m]: (a) angular speed of the motor shaft over time and (b) Fast Fourier
Transform of the cart displacement.

Fig. 5(a) and 6(a) confirm that this hypothesis does not correspond to reality. Even when d is
small, the angular speed of the motor shaft do not reach a constant value. After a transient it
achieves a periodic state. It oscillates around a mean value and these oscillations are periodic.

To enrich the analysis in the frequency domain, the Fast Fourier Transform of the current
over time, ĉ, was computed for the two values of d. The results are shown in Fig. 7(a) and 7(b).
It it observed that in both cases, the FFT graph of ĉ presents a peak at a frequency that is twice
the peak frequency of the FFT x̂ indicating a parametric excitation, Lacarbonara and Antman
(2008).

In the following analysis of the motor-cart system, the nominal eccentricity of the pin was
consider to be 0.01 [m]. This value was selected to highlight the non-linearity effects. The
integration results obtained to the cart displacement and current in motor over time are observed
in Fig. 8(a) and Fig. 8(b). The behavior found for the current over time is similar to the behavior
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(a) (b)

Figure 7: Motor-cart system: Fast Fourier Transform of the current over time (a) when d = 0.001 [m] and (b) when
d = 0.01 [m].

found for the angular speed of the motor shaft, Fig. 6(a). It achieves a periodic state after a
transient.

(a) (b)

Figure 8: Motor-cart system with d = 0.01 [m]: (a) cart displacement and (b) motor current over time.

Others graphs to be analyzed are the f (t) and τ(t) variation during one n-th cart movement
cycle. This type of graph will be called phase portrait. The Fig. 9(a) and 9(b) shows these
graphs for the fourth cycle, i.e., n = 4 and α(t) ∈ [8π,10π].

Observing the f graph and remembering the constrain x(t) = d cosα(t), it is verified that
the horizontal force presents its maximum value when x(t) = −d [m] and its minimum value
when x(t) = d [m]. Besides this, the cart positions corresponding to the points where f changes
sign are x(t) = −0.00415 [m] and x(t) = 0.00415 [m]. At this values, the angular positions
of the motor shaft, in the n-th cart movement cycle, are equals to α(t) = n2π +1.99 [rad] and
α(t) = n2π +5,14 [rad].

Observing the τ graph, it is verified that the torque presents four points of sign changes. Two
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of them occur when x(t) =−d and x(t) = d, corresponding respectively to α multiple of π and
α multiple of 2π . This changes were expected from Eq. (9). The others two changes occur
exactly in the same cart positions that we have the f sign changing, i.e., when x(t) =−0.00415
[m] and x(t) = 0.00415 [m]. In each cart movement cycle, the horizontal force f and the torque
τ follow once the paths shown in Fig. 9(a) and 9(b).

(a) (b)

Figure 9: Motor-cart system with d = 0.01 [m]: (a) horizontal force f and (b) torque τ during one cycle of the cart
movement.

The Fig. 10(a) and 10(b) show the graphs of the current variation during the fourth cart
movement cycle and the torque variation in function of the current. In the left graph, it is noted
that the current presents four points of sign changing. They occur when the x value are 0.00891
[m],−0.00728 [m],−0.00891 [m] and 0.00728 [m]. The corresponding angular positions of the
motor shaft in the n-th cart movement cycle, α , at these points are n2π +0.47 [rad], n2π +2.38
[rad], n2π +3.61 [rad] and n2π +5.53 [rad].

(a) (b)

Figure 10: Motor-cart system with d = 0.01 [m]: (a) current variation during the fourth cart movement cycle and
(b) torque variation in function of the current.
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As the current presents four points of sign changing in each cart movement cycle, observing
the graph of the torque variation in function of the current, it is verified that the current follows
two times the path shown in Fig. 10(b). This result was expected since the FFT graph of ĉ
presents a peak at a frequency that is twice the peak frequency of the FFT x̂.

Others of the motor-cart system during the fourth cart movement cycle are shown in Fig. 11(a),
11(b), 12(a) and 12(b). The four points where the torque sign changes can be observed in the
graph of torque in function of the coupling force. A similar behavior of Fig. 10(b) is found the
graph of current in function of α̇ . The current follows twice the path shown in Fig. 11(b).

(a) (b)

Figure 11: Motor-cart system with d = 0.01 [m]: (a) angular velocity of the motor shaft during the fourth cart
movement cycle and (b) current variation in function of the angular velocity of the motor shaft.

(a) (b)

Figure 12: Motor-cart system d = 0.01 [m]: (a) torque variation in function of the horizontal force f and (b)
horizontal force variation in function of the angular velocity of the motor shaft.

The angles where happen the sign changes of the horizontal force and current are represented
in a circle graph in Fig. 13(a) and Fig. 13(b).
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(a) (b)

Figure 13: Motor-cart system d = 0.01 [m]: (a) angles α corresponding to the sign changes of the coupling
horizontal force and (b) angles α corresponding to the sign changes of the current during one cart movement
cycle. The blue parts correspond to the interval path where these variables are greater than zero, and the pink parts
correspond to the interval path where they are smaller than zero.

3.2 Simulations of the motor-cart-pendulum system

A similar analysis to the one made to the motor-cart system was developed for the motor-
cart-pendulum system.

Looking at the initial value problem Eq. (16), it is observed that if the nominal eccentricity
of the pin, d, is small and the angle θ(t) is near zero, Eq. (16) tends to a linear system. But as
the eccentricity grows, the nonlinearities become more pronounced. To better comprehend the
increase of nonlinearities, the system Eq. (16), was integrated in a range of [0.0, 50.0] seconds
for two different values of d: 0.001 [m] and 0.010 [m].

It was considered as initial conditions for the angular position and velocity of the motor
shaft, α(0) = α̇(0) = 0.0, and for the current in the motor c(0) = v/r = 7.81 [Amp] and for
the angular position and velocity of the pendulum θ(0) = θ̇(0) = 0.0. The specifications of the
motor parameters used in the simulations are equal to the ones used in the simulations of the
motor-cart system, listed in Table 1. The source voltage was assumed to be constant in time
and equal to 2.4 [Volt]. The values of the cart and the pendulum masses were mc = 0.0 [Kg]
and mp = 5.0 [Kg], so that the total mass, m = mc +mp = 5.0 [Kg], is equal to the embarked
mass. Although the masses are equal, this configuration contrasts with the one of the motor-cart
system used in the previous simulations. In spite of having the same masses, the pendulum has
a relative motion with respect to the cart, and this make a huge difference. The pendulum length
was assumed to be 0.075 [m].

The results obtained with the integration of Eq. (16), considering d = 0.001 [m], are shown
in Fig. 14(a), 14(b), 15(a) and 15(b). These results reveal that when d is small, the angular
speed of the motor shaft oscillates over time with a very small amplitude around 7 [Hz], the
current also oscillates with a small amplitude around 0.13 [Amp], and the angular displacement
of pendulum is near zero.

The Fast Fourier Transform was computed to the cart and pendulum displacements over time
and to the current over time for this small value of d. It is noted that the FFT graph of x̂, shown
in Fig. 16(a), presents only one peak at the frequency at 7.04 [Hz]. This peak was expected,
since this is close to the angular speed of the motor shaft. The FFT graph of θ̂ presents two
peaks. One of them coincides with the x̂ peak and the other one is at the natural frequency of
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(a) (b)

Figure 14: Motor-cart-pendulum system with d = 0.001 [m]: (a) angular velocity of the motor shaft and (b) current
over time.

(a) (b)

Figure 15: Motor-cart-pendulum system with d = 0.001 [m]: (a) pendulum and (b) cart displacement over time.

the pendulum, i.e, ωn =
√

g/lp/(2π) = 1.82 [Hz]. The FFT graph of ĉ presents three peaks.
One at 5.22 [Hz], one at 8.86 [Hz] and one at 14.08 [Hz], that is twice the peak frequency of
the FFT x̂. This relation between the peak frequency of ĉ and x̂ is equal to the relation found for
the motor-cart-pendulum system.

When d is bigger, the amplitude of the oscillations of α̇ , c, and θ are bigger when compared
with the results obtained with the smaller d. Figures 17(a), 17(b), 18(a) and 18(b) show the
angular speed of the motor, current, pendulum and cart displacement over time as result to the
integration of Eq. 16 with d = 0.01 [m].

As done to the results with small d, the FFT was computed to the cart and pendulum dis-
placements over time and to the current over time for the new value of d. It is noted that the
graphs of x̂ and θ̂ , shown in Fig. 19(a) and 19(b), present peaks at the same frequencies.
The first of them is at 1.61 [Hz] and the following are at odd multiples of this value. Thus,
comparing x̂ with d = 0.001 [m] and with d = 0.01 [m], it is verified that the peak at the natural
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(a) (b)

Figure 16: Motor-cart-pendulum system with d = 0.001 [m]: Fast Fourier Transform of (a) cart and pendulum
displacements over time and (b) of current over time.

(a) (b)

Figure 17: Motor-cart-pendulum system with d = 0.01 [m]: (a) angular velocity of the motor shaft and (b) current
over time.

frequency of the pendulum, ωn = 1.82, vanished when d grows. This result certifies that the
system behavior is far from linear.

The FFT graphs of the current and of the angular speed of the motor shaft over time also
present peaks at the same frequencies. The first of them is at 3.21 [Hz] and the following are at
multiples of this value, as shown in Fig. 20(a) and 20(b). Comparing this first peak frequency,
3.21 [Hz], with the first peak frequency found for θ̂ and x̂, 1.61 [Hz], it is verified that the same
phenomenon found for the motor-cart system is found for the motor-cart-pendulum system. The
ĉ presents a first peak at a frequency that is twice the peak frequency of the FFT for x̂.

This non-periodic behavior presents reflects in the graphs of f , τ and c during one cart
movement cycle and in the graph of torque variation in function of the current. Figures 21(a),
21(b), 22(a) and 22(b) show these four graphs for the last cycle in the period [0, 50] seconds
of the integration of Eq. 16.
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(a) (b)

Figure 18: Motor-cart-pendulum system with d = 0.01 [m]: (a) pendulum and (b) cart displacement over time.

(a) (b)

Figure 19: Motor-cart-pendulum system with d = 0.01 [m]: Fast Fourier Transform of (a) pendulum and (b) cart
displacements over time.

It is possible to observe that the graphs of τ and c have lost their symmetry in relation to a
vertical axis drawn at x = 0 and the graph of torque variation in function of the current is no
longer a closed path. Similar effects are noted in the phase portraits in the last cart movement
cycle of α̇ in function of x, c in function of α̇ , τ in function of f and f in function of α̇ . These
graphs are shown in Fig. 23(a), 23(b), 24(a) and 24(b).

The graphs of the coupling force, f , and coupling torque, τ , over time are presented in
Fig. 25(a) and 25(b).

4 PUMPING LEADS TO REVOLUTION

In the analysis developed to the the motor-cart-pendulum system, in the previous section of
the paper, the cart mass was considered to be zero and the pendulum mass 5.0[Kg]. Next, it is
presented an analysis of the behavior of this system with a different mass configuration. The
cart mass is kept as 0.0 [Kg] and a smaller value is selected to the pendulum mass, mp = 4.0
[Kg], so that the total mass, mc +mp = 4.0 [Kg], is still equal to the embarked mass.

To observe the influence of this new configuration in the system behavior, the Eq. 16 was
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(a) (b)

Figure 20: Motor-cart-pendulum system with d = 0.01 [m]: Fast Fourier Transform of (a) current and (b) angular
speed of the motor shaft over time.

(a) (b)

Figure 21: Motor-cart-pendulum system with d = 0.01 [m]: (a) horizontal force f and (b) torque τ during the last
cycle of the cart movement.

integrated in a range of [0, 50] seconds with the null initial conditions to α(0), α̇(0), θ(0) and
θ̇(0). The initial current was considered equal to c(0) = v/r = 7.81 [Amp] and the nominal
pin eccentricity 0.01 [m]. The source voltage was assumed to be constant in time and the
specifications of the motor parameters are listed in Table 1.

The obtained results for the angular speed of the motor shaft, for the current and cart and
pendulum displacements are shown in Fig. 26(a), Fig. 26(b), Fig. 27(a) and Fig. 27(b). The
mechanical system pumps energy from the motor and the amplitude of the pendulum grows
reaching a point where the mechanical system starts to drive the motion, Gourdon et al. (2007);
Gourdon (2006); Cataldo et al. (2012). This is seen nothing that α̇ takes negatives values,
meaning that the motor shaft changes its motion direction sometimes. When the angular speed
of the motor shaft is positive, it is considered that the motor drives the cart motion, the cart is
driven. But in the period when it is negative, the motor looses the control over the cart and
drives it no more, it is now driven by the mechanical system. In these situations, it will be said
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(a) (b)

Figure 22: Motor-cart-pendulum system with d = 0.01: (a) current variation during the last cart movement cycle
and (b) torque variation in function of the current.

(a) (b)

Figure 23: Motor-cart-pendulum system with d = 0.01 [m]: (a) angular velocity of the motor shaft during the last
cart movement cycle and (b) current variation in function of the angular velocity of the motor shaft.

that the relation master-slave is reverted.
To better comprehend the sign changing of the angular speed of the motor shaft, some phase

portrait graphs were plotted. Figures 28(a) and 28(b) show the α̈ graph in function of α̇ and
the α̇ graph in function of x during one movement cycle. It is verified that when α̇(t) turns
negative, the motor shaft has a negative acceleration. After a short period of time, its acceler-
ation becomes positive and brakes the motor shaft motion. This causes other sign changing in
α̇(t) and consequently, it turns positive again. Thus, the motor recovers the control over the cart
motion.

Looking at Fig. 28(b), it is noted that this reversion in the relation master-slave occurs two
times in each movement cycle. The position and angular speed of the pendulum, at the moment
of the reversion, can be discovered by the graphs of θ̇ in function of α̇ and θ in function of α̇ .
They are shown in Fig. 29(a) and 29(b). It is verified that when the the motor looses the control
over the cart by the sign changing of α̇ , the pendulum angle is around 21.6 [o] or around −21.6
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(a) (b)

Figure 24: Motor-cart-pendulum system with d = 0.01 [m]: (a) torque variation in function of the coupling force
and (b) f variation in function of the angular velocity of the motor shaft.

(a) (b)

Figure 25: Motor-cart-pendulum system with d = 0.01 [m]: (a) coupling force, f , and (b) torque over time, τ .

[o]. When the motor recovers the control, the pendulum angle is around 6.0 [o] or around −6.0
[o].

It is also noted that, during the period of reversion, the pendulum does not change its direction
of motion in spite of its angular speed presents a change of behavior. In the beginning of
the reversion the modulus of θ̇ grows, but when it achieves the value 2.95 [Hz], it starts to
decrease. This change occurs due to the sign changing in the tangent angular acceleration of the
pendulum, as can be observed in Fig. 30(a). The graph of the torque variation in function of the
angular speed of the motor shaft shows that the maximum torque is achieved during the period
of reversion.

5 PROBABILISTIC MODEL

To make a stochastic analysis of the two proposed systems, a system parameter is considered
uncertain. It is assumed that the value of the nominal eccentricity of the pin, d is a random
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(a) (b)

Figure 26: Motor-cart-pendulum system with d = 0.01 [m]: (a) angular velocity of the motor shaft and (b) current
over time.

(a) (b)

Figure 27: Motor-cart-pendulum system with d = 0.01 [m]: (a) pendulum and (b) cart displacement over time.

variable represented by the capital letter D.
The Maximum Entropy Principle (PEM) is used to construct the probability density function

of this random variable (Jaynes, 1957; Shannon, 1948; Sampaio and de Queiroz Lima, 2012;
de Cursi and Sampaio, 2012) and it is assumed that the only available information is the support
of D: [dmin,dmax]. Therefore, the Maximum Entropy Principle using Shannon entropy measure
of the probability density function, p, of D, S(p) =−

∫ dmax
dmin

ln(p(d))p(d) d p, yields the uniform
probability density function, given by

p(d) = 1[dmin,dmax](d)
1

dmax−dmin
. (18)

where 1[dmin,dmax](d) is an indicator function that is equal to 1 for d ∈ [dmin,dmax] and 0 otherwise.
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(a) (b)

Figure 28: Motor-cart-pendulum system with d = 0.01 [m]: portrait graphs of (a) α̈ graph in function of α̇ and (b)
α̇ graph in function of x.

(a) (b)

Figure 29: Motor-cart-pendulum system with d = 0.01 [m]: portrait graphs of (a) θ̇ graph in function of dotα and
(b) θ in function of dotα .

6 NUMERICAL SIMULATIONS OF THE STOCHASTIC SYSTEMS

As it was assumed that the value of the nominal eccentricity of the pin is a random variable,
the output variables of the stochastic coupled systems are random process with parameter t.
Therefore, the horizontal cart displacement is represented by the random process X, the pendu-
lum displacement by Θ, the angular displacement of the motor shaft by A, the angular velocity
of the motor shaft by Ȧ, the current by C, the horizontal force by F and the torque by T.

To make the stochastic analysis of the two coupled systems, Monte Carlo simulations were
employed to compute the mean and variance of the the random processes listed above. The
support of D was assumed to be [dmin,dmax] = [0.005, 0.015] (units in [m]).
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(a) (b)

Figure 30: Motor-cart-pendulum system with d = 0.01 [m]: portrait graphs of (a) tangent θ̈ graph in function of
dotα and (b) τ in function of dotα .

6.1 Stochastic simulations of the motor-cart system

Figures 31(a), 31(b), 32(a) and 32(b) show the envelope graphs of C, Ȧ, X and F con-
structed with 2× 103 realizations of these random process. In each realization, the system
Eq. (11), was integrated in a range of [0.0, 3.0] seconds. The cart mass was considered to be
mc = 5.0 [Kg], the source voltage 2.4 [Volt] and, the specifications to the motor parameters are
listed in Table 1.

It is possible observe that the variations on the value of the nominal eccentricity of the pin
bring significant dispersions to the oscillation amplitudes and to the oscillation frequencies of
the output variables.

(a) (b)

Figure 31: Motor-cart system: (a) Envelope graphs of X and Ȧ.

6.2 Stochastic simulations of the motor-cart-pendulum system

Figures 33(a), 33(b), 34(a) and 34(b) show the envelope graphs of C, Ȧ, X and Θ con-
structed with 2× 103 realizations of these random process. In each realization, the system
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(a) (b)

Figure 32: Motor-cart system: (a) Envelope graphs of X and F.

Eq. (16), was integrated in a range of [0.0, 1.0] seconds. The cart mass was considered to be
mc = 1.0 [Kg], the pendulum mass mp = 4.0 [Kg], the pendulum length lp = 0.075 [m], the
source voltage 2.4 [Volt] and, the specifications to the motor parameters are listed in Table 1.

It is possible observe that the variations on the value of the nominal eccentricity of the pin
bring significant dispersions to the oscillation amplitudes of the output variables. The disper-
sions relative to the oscillation frequencies are small, meaning that the variations on d do not
have an big impact on this parameter in the period of [0.0, 1.0] seconds. If the period of inte-
gration of Eq. (16) were bigger, probably, the impact of the variations on d would the huge. As
shown in the deterministic analysis of the motor-cart-pendulum system, the FFT graphs of x̂, θ̂

and ĉ are very sensitive to variation of the parameter d.

(a) (b)

Figure 33: Motor-cart-pendulum system: (a) Envelope graphs of C and Ȧ.
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(a) (b)

Figure 34: Motor-cart-pendulum system: (a) Envelope graphs of X and Θ.

7 CONCLUSIONS

The purpose of this paper was to analyze and compare the behavior of two electromechanical
systems. The first one is composed by a cart whose motion is driven by a DC motor and in the
second one a embarked mass, a pendulum, was into the cart. The motor-cart system has no
capacity to pump energy from the motor, it is a master-slave system: the motor drives the cart
motion, the cart is driven. The only interesting feature is how the nonlinearity changes with d
and m, the mass of the cart. The nonlinearity of the coupled system comes from the coupling.
The motor-cart-pendulum system has a new feature, the capacity to store energy in the motion
of the pendulum. With this the mechanical system can pump energy from the motor and, in
certain cases, revert the relation master-slave, that is the mechanical system can be itself the
master stopping the motor and reverting its motion. For the motor-cart-pendulum system, for a
fixed mass m = mc+mp, the relation between mc and mp is important. The study of the relation
and how it affects the dynamics will be object of a future work. The influence of a embarked
mass was demonstrated and it was shown the changes it causes in the solutions of the dynamic
equations.

The nominal eccentricity of the pin of the motor, d, was characterized as a parameter that
controls the nonlinearities of the equations of motion of both systems, and its influence in the
dynamic equations was analyzed by the Fast Fourier Transform.

In the stochastic analysis, d was modeled as a random variable and the Maximum Entropy
Principle was used to construct the probability model. Monte Carlo simulations were employed
to compute the mean and the 90% confidence interval of the displacements of the random pro-
cess that characterize the output variables of the stochastic coupled systems. It was observed
that the most important effect of the variations on d were the generation of dispersions to the
oscillation amplitudes and frequencies of the output variables.

As future work, a study of the distribution of mass between the cart and the pendulum in
the motor-cart-pendulum system will be done. In this paper, the total mass of the motor-cart-
pendulum system was considered equal to the embarked mass, a extreme case. So would be
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interesting to study others configurations. Another work in preparation is to investigate the
influence of dissipation in the mechanical system, specially of the friction between the pin and
the slot machined on the acrylic plate in the coupling mechanism.
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