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Abstract. In this study, the problem of determining the linear buckling load of wood columns with
material and geometrical uncertainties under only axial static loads is considered. Argentinean Euca-
lyptus grandis, which is mainly cultivated in the mesopotamian provinces of Entre Ríos and Corrientes,
is one of the most important renewable species cultivated in Argentina. The characteristic values of its
mechanical properties exhibit great variability and are also dependent of knots, which are considered the
most important defect affecting mechanical properties. In the present work, columns are modelled using
the Bernoulli-Euler beam-column theory and are discretized by means of the finite element method. The
bending stiffness field is modelled using random fields to include the variability of mechanics properties
and the knot ratio influence. In this case the stochastic finite element method is used. Finally, Monte
Carlo simulations are used to approximate the statistics of the critical buckling load. Some numerical
results are shown and discussed.
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1 INTRODUCTION

Afforestation with Eucalyptus gender is very important in the mesopotamian provinces of
Entre Ríos and Corrientes of Argentina, representing a 90% of the provincial forested area.
Within this genus, the main specie is the Eucalyptus Grandis, which in turn has its core pro-
duction in the Argentine mesopotamia (INTA, 1995). Nowadays, this wood is also used in
structures like glued laminated timber as a major alternative industrial method to obtain sized
timber. This material also achieves, besides different shapes, durable alternative of use for
different conditions of exposure to the environment. However, the characteristic values of its
mechanical properties exhibit great variability and are also dependent of the knots, which are
considered the most important defect affecting mechanical properties.

Modelling uncertainties as random variables or random process suggests the use of stochastic
methods. The uncertainties are due to physical imperfections, model inaccuracies and system
complexities and are included in the model. On the other hand, deterministic methods of anal-
ysis are performed with characteristic values and then, the uncertainties are taken into account
by means of parcial safety factors. In the present work, continuous and finite element methods
are used to determine the buckling load of pinned-pinned columns with material and geomet-
ric uncertainties considering deterministic and stochastic models for the bending stiffness of
columns.

In the deterministic approach, the well-known Bernoulli-Euler beam-column model is used
to formulate a variational problem for the calculation of the deterministic buckling load. When
the bending stiffness field is assumed to be deterministic, the ordinary finite element method
slightly overestimates the buckling load, and with a very few number of elements a high rate of
convergence to the exact results is observed.

In the case of stochastic approach, the bending stiffness field can be modelled using random
fields. Here, the stochastic finite element method is used. Then, the buckling load becomes
a random variable. To the best of the authors’ knowledge , there is no exact closed-form so-
lution available for the random buckling load even for this simple system. The discretization
is performed using weighted integrals that lead to a stiffness matrix with random elements. A
stochastic field with a exponential correlation function is used to model the stiffness bending
field. The probability distribution function of the random buckling load can be approximated
via Monte Carlo simulations (Rubinstein, 2007).

The lengthwise variation of the modulus of elasticity has been studied since the mid-sixties.
The variability of the bending stiffness was modelled by (Czmoch, 1991, 1998) as a stationary
random process. He used two models, one with a random bending stiffness variation around a
global mean for the whole population of beams. In the other model a variable mean was used
for every beam and a stationary random process expressed the local fluctuation within a beam.

The sensitivity of the lower order moment of the buckling load with respect to the mesh
size, the correlation length and coefficient of variations of the random field are examined. The
reliability of columns designed considering safety factors are estimated by means of extensive
Monte Carlo simulations. For structural design, the lower bound is of crucial interest.

2 DETERMINISTIC MODEL

This section describes the features of the model employed in the analysis. It should be
noticed that this is a first approach, therefore the model is the simplest possible continuous
model within the Strength of Materials.

The classic results for the buckling problem are associated with four basic sets of beam
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Figure 1: Buckling Problem. Euler cases

boundary conditions, here only the pinned-pinned case will be reported. These are: pinned-
pinned, clamped-free, clamped-clamped and clamped-pinned; with the addition of a compres-
sive axial load as shown in Fig. 1. For all cases, according to the Bernoulli-Euler beam theory,
the deflection field v(x) and the buckling load pcr of a column of length L are related as follows:

d2

dx2

(
(ei)(x)

d2v(x)

dx2

)
− d2

dx2
(pcrv(x)) = 0 , x ∈ [0, L] (1)

where (ei)(x) is the deterministic bending stiffness field. Exact solutions for pcr can be calcu-
lated for simple systems such as single columns, with constants material properties and geom-
etry, and certain boundary conditions, while, in general, approximate solutions are needed for
more complex systems such as frames.

Passing to the variational formulation, a set of admissible functions V is prescribed and
Eq.(1) can be written as:

∫ L

0

(
(ei)(x)

d2v(x)

dx2
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0

− pcr
dv(x)
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φ(x)

∣∣∣∣L
0

∀φ(x) ∈ V (2)

For the pinned-pinned problem,

V =
{
φ : [0, L]→ R, φ is piecewise C2 and bounded, φ(0) = 0, φ(L) = 0

}
(3)

and the second member is zero giving an eigenvalue problem. It is interesting to remark that the
clamped-clamped, or pinned-clamped cases, give the same equation though the prescription of
V is different.

The variational form of the pinned-pinned problem can be written as follows,

k(v, φ) = pcrk
G(v, φ) ∀φ ∈ V (4)
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where k(v, φ) and kG(v, φ) are the stiffness and geometrical stiffness operators respectively,
defined as follows,

k(v, φ) =

∫ L

0

(
(ei)(x)

d2v(x)

dx2

)(
d2φ(x)

dx2

)
dx, (5)

and

kG(v, φ) =

∫ L

0

dv(x)

dx

dφ(x)

dx
dx. (6)

Equation (4) defines a continuous generalized eigenvalue problem. To approximate numer-
ically, we discretize Eq.(4) using the Galerkin Method. We define a N -dimensional subspace
VN ⊂ V , where a function vN ∈ VN can be written in a unique way as a linear combination of
the basis functions ϕi:

vN(x) =
N∑
i=1

ηiϕi(x), x ∈ [0, L], (7)

Thus, the discrete finite-dimensional variational problem of a buckling column can be now
formulated as follows: Find vN ∈ VN such that

k(vN , φ) = p̂crk
G(vN , φ) ∀φ ∈ VN (8)

Applying the standard finite element methodology to the variational form (Eq.(8)), see for
example (Bathe, 1996)), the displacement field of an element v(x) is approximated as a linear
combination of the nodal deformations v with signs indicated in Fig. 2, multiplied by deter-
ministic cubic interpolation functions n(x) which can be compactly written as:

Figure 2: Bernoulli-Euller beam-column finite element with 4 degrees of freedom.

v(x) = nT (x)v (9)

where
vT =

[
v1 θ1 v2 θ2

]
(10)

as shown in Fig. 2, and,

n(x) =
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 (11)

where Le is the element length.
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Then, one can end up with the geometrical stiffness matrix kG
e and the stiffness matrix ke of

the eth beam element are derived as

kGe,ij =

∫ Le

0

dni(x)

dx

dnj(x)

dx
dx (12)

ke,ij =

∫ Le

0

(ei)(x)
d2ni(x)

dx2

d2nj(x)

dx2
dx (13)

Integration in Eq.(12) can be evaluated using the listed shape functions n(x).

ke
G =

1

30


36
Le

3 − 36
Le

3

3 4Le −3 −Le
−36
Le

−3 36
Le

−3

3 −Le −3 4Le

 (14)

For the case when the bending stiffness is constant, i.e. (ei)(x) = ei, the element stiffness
matrix becomes

ke =
ei

L3
e


12 6Le −12 6Le

6Le 4L2
e −6Le 2L2

e

−12 −6Le 12 −6Le

6Le 2L2
e −6Le 4L2

e

 (15)

Next, the global matrices can be obtained from the finite element assembling and the buck-
ling load is calculated from the equation

k− p̂crkG = 0 (16)

where k is the n × n positive-definite global stiffness matrix and kG is the global geometrical
stiffness matrix of elements in compression.

3 STOCHASTIC MODEL

We define the random field {(EI)(x) : x ∈ [0;L]} as a collection of real-valued random
variables from a probability space (Ω,F , P ), where Ω is the sample space, F is the σ-algebra
and P is the probability measure.

In what follows, the random (stochastic) quantities are denoted by capital letters. The random
deflection field V (x) and the random buckling load Pcr of a column of length L are related as
follows:∫ L

0

(
(EI)(x)

d2V (x)

dx2

)(
d2φ(x)

dx2

)
dx − Pcr

∫ L

0

dV (x)

dx

dφ(x)

dx
dx = 0, ∀φ(x) ∈ V (17)

It is assumed that EI is a truncated Gaussian random field on [0, L] with exponential auto-
correlation function

R(x1, x2) = σ2 exp

(
−|x2 − x1|

d

)
, (18)

where d is the correlation length, which measures the decay of the autocorrelation function.
We propose to use an exponential autocorrelation function and truncated Gaussian field that

is expanded with Karhunen-Loève (KL) expansion, developed by (Karhunen, 1946; Loève,
1946), using standard Gaussian random variables.
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The stochastic field (EI) is then expanded using the Karhunen-Loève expansion (see Sec.
(4).

Since a closed-form solution for the random buckling load is not known, in what follows a
stochastic finite element formulation(SFEM) is used to determine the probability density func-
tion of Pcr approximately. In an element, the random displacement field V is approximated as a
linear combination of the nodal deformations V multiplied by deterministic cubic interpolation
functions n(x).

V (x) = nT (x)V (19)

where
VT =

[
V1 Θ1 V2 Θ2

]
(20)

and n(x) is given in Eq. (11). After the standard finite element procedure is applied, the same
geometrical stiffness matrix ke

G given in Eqs. (12) and (14) is obtained. The stochastic stiffness
matrix Ke of the beam element becomes

Ke,ij =

∫ Le

0

(EI)(x)
d2ni(x)

dx2

d2nj(x)

dx2
dx (21)

Since (EI)(x) is a random field, Ke,ij is a random variable. The stochastic global stiffness
matrix can be obtained after the usual assembling operation of the finite element method. The
assembling procedure involves deterministic coordinate transformations and additions.

Then, the buckling load, which is a random variable, is calculated from equation

K− P̂crk
G = 0 (22)

where K is the n× n stochastic global stiffness matrix.
The probability distribution function of the random buckling load can be determined from

Eq. (22) using several methods, among others, Monte Carlo simulations.

4 KARHUNEN-LOÈVE EXPANSION

The KL decomposition of a random process can be regarded as the continuous counterpart
of the decorrelation of a set of random variables. It allows to approximate a random process by
a linear combination of orthonormal deterministic functions (KL modes) with coefficients that
are uncorrelated random variables.

Let the buckling problem be one in which the system characteristics modelled as a scalar
random process S(x, ξ) : [0, L] × Ω → R. This process is defined on the probability space
(Ω,F , P ). The process is characterized by its PDF pS(s) : R→ R+ and its covariance function
CS(x1, x2) : R× R→ R.

In order to assemble the SFEM equations for this problem, the random process S(x, ξ) has to
be expressed as a deterministic function of a small number of random variables. This discretiza-
tion is achieved by means of the Karhunen-Loève (KL) decomposition (Ghanem and Spanos,
1991),

The non-zero mean random process S(x, ξ) is decomposed as follows:

S(x, ξ) = mS(x) + Y (x, ξ) (23)

where mS(x) = E{S(x, ξ)} is the mean value of the random process S(x, ξ) and Y (x, ξ) is a
zero mean random process. Both the correlation function RY (x1, x2) and the covariance func-
tion CY (x1, x2) of the zero mean random process Y (x, ξ) are equal to the covariance function
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CS(x1, x2) of the non-zero mean random process S(x, ξ). All three are denoted by CS(x1, x2)
in the following.

Let Ξ be the Hilbert space of random variables Z(ξ) : Ω → R defined on the probability
space (Ω,F , P ), with the inner product 〈Z1(ξ), Z2(ξ)〉Ξ = E{Z1(ξ)Z2(ξ)}. Let {ηj(ξ)}j be a
Hilbert basis of Ξ. The KL decomposition of the zero mean random process Y (x, ξ) consists of
the projection of the process on the Hilbert basis {η(ξ)}j . This leads to the following expansion:

S(x, ξ) = mS(x) +
∞∑
j=1

√
λjφ

∗
j(x)ηj(ξ) (24)

where {φ∗j(x)}j and {λj}j are the normalized eigenfunctions and the eigenvalues of the co-
variance function Cs(x1, x2), respectively. The discretization of the random process S(x, ξ) is
accomplished by a truncation of the infinite series in Eq. (24) after the terms corresponding to
the highest M eigenvalues.

S(x, ξ) ≈ mS(x) +
M∑
j=1

√
λjφ

∗
j(x)ηj(ξ) (25)

M is called the order of the KL decomposition. As the terms in the decomposition are not
correlated (the variables {ηj(ξ)}j are orthonormal random variables), the KL decomposition is
the most efficient decomposition of a random process: for a given number of terms the trunca-
tion error is minimized. Ghanem and Spanos (1991) present a proof of this error minimizing
property of the KL decomposition.

5 NUMERICAL RESULTS

In what follows, some numerical results are presented. In all the cases, the cross sectional
area (A) is rectangular with dimensions b = 0.9 m and h = 0.6 m. The plane moment of inertia
is I = bh3/12 and the slenderness ratio of the column is λ = L/

√
I/A. Even if the convergence

of the Finite Element Method is good with a few number of elements, we used 20 elements in
all simulations. We are going to focus on the stochastic results. The results are computed
using 5000 independent Monte Carlo realizations. The weighted integrals (Eq. (21)), that is,
the random stiffness matrix, were solve by means of the Gauss quadrature with nine points.
To generate the correlated random variables, an eigenvalue decomposition of the covariance
matrix of the random variable is used. Then, the discrete representation of the random field,
are obtained from the discrete coordinates coincident with the Gauss points, e.g, nine points
per element. Another choice is to represent the random field using the the same interpolation
functions used to approximate the deflection v(x) (Ghanem and Spanos, 1991).

In Fig. 3 some realizations of the random field are shown. Fast convergence is observed for
the mean of Pcr (E[Pcr]) and the standard deviation (σPcr) of Pcr using few elements. Figures
4 and 5 show typical convergence curves for the buckling load and the standard deviation Pcr

respectively for a pinned-pinned column with slenderness ratio λ = 110 and correlation length
d = 0.1 , where n is the number of Monte Carlos simulations. As can be seen in the picture an
acceptable convergence is achieved when ns = 2000. The probability density function of critic
load Pcr is plotted for the different cases; see Fig. 6.

As can be seen from Fig. 7, E[Pcr] is smaller than the buckling load of the deterministic
column in all cases. The mean value of the modulus of elasticity was assumed in this case as
E = 153666.5 105 Pa. which was obtained as the mean of the results of experimental tests
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Figure 3: Realizations of the random field EI for different values of the correlation length d, λ = 110.

Figure 4: Mean buckling load (E[Pcr]) convergence for λ = 110.

performed with 120 Eucalyptus grandis samples. It should be noted that when d → ∞, the
random field becomes fully correlated and can be interpreted as a random variable in the limit.

6 CONCLUSIONS

The buckling load of columns with material and geometrical uncertainties are determined
considering deterministic and stochastic models for the bending stiffness of columns. The mean
of the buckling load is found to be slightly less than the buckling load of the deterministic
column. The stochastic analysis allows to obtain more information on the system behaviour. In
particular, in this case, the critical loads found for the stochastic problem, are always smaller
than the deterministic value. Hence, assuming only one value (deterministic) of the bending
stiffness would be on the unsafe side.

At the moment of the present study the authors are working in more complex models that
include columns of glued laminated timber, other constitutive relation-ships and uncertainties
properties models taken from experimental data.
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Figure 5: Deviation standard (σPcr
) convergence for λ = 110.

Figure 6: PDF of Pcr for different values of the correlation length d.
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