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Abstract. This article is concerned with the dynamic analysis of structures constructed with composite
materials. There are many ways to manufacture a composite material for uses in structural constructions,
for example filament winding and resin transfer molding, among others. Depending on the manufacturing
process composite materials may have deviations with respect to the calculated response (or determin-
istic response). These manufacturing aspects lead to a source of uncertainty in the structural response
associated with constituent proportions or geometric parameters. Another source of uncertainty can be
the mathematical model that represents the mechanics of the slender structure. In many structural mod-
els, the type of hypotheses invoked can reflect the most of the physics of a structure, however in some
circumstances these hypotheses are not enough, and cannot represent properly the mechanics of the struc-
ture. Uncertainties should be considered in a structural system in order to improve the predictability of a
given modeling scheme. There are some strategies to face the uncertainties in the dynamics of structures.
The parametric probabilistic approach quantifies the uncertainty of given parameters such as variation of
the angles of fiber reinforcement, material constituents, etc. In this study a shear deformable model of
composite beams is employed as the mean model. The probabilistic model is constructed by adopting
random variables for the uncertain parameters of the model. The probability density functions of the
random variables are constructed appealing to the Maximum Entropy Principle. Then the probabilistic
model is possed in the context of the finite element method and the Monte Carlo method is employed to
perform the statistical simulations. Numerical studies are carried out to show the main advantages of the
modeling strategies employed, as well as to quantify the propagation of the uncertainty in the dynamics
of slender composite structures.
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1 INTRODUCTION

Composite materials have many advantages with respect to isotropic materials that motivate
their use in structural components. The most well known properties of composite materials are
high strength and stiffness properties together with a low weight, good corrosion resistance,
enhanced fatigue life, low thermal expansion properties among others (Barbero, 1999). Other
important feature of composite materials is the very low machining cost for complex structures
(Jones, 1999). As a result of the increasing use of composite thin-walled beams, the analysis
of static and dynamic behavior is a task of intense research. Since the eighties many research
activities are been devoted toward the development of theoretical and computational methods
for the appropriate analysis of such members. The first consistent study dealing with the static
structural behavior of thin-walled composite-orthotropic members, under various loading pat-
terns, was due to Bauld and Tzeng (1984), who developed in the early eighties, invoking Vlasov
hypotheses, a beam theory to analyze fiber-reinforced members featuring open cross-sections
with symmetric laminates. Although this theory assumed the cross-sections to be shear unde-
formable and was restricted to members formed by non-general stacking sequences and em-
ployed only for static analysis. Further contributions from many authors (Kapania and Raciti,
1989) until the present time, made possible the extension of Vlasov models by considering shear
deformability due to bending and warping effects, among others and the resulting models were
employed in many problems.

Composite Thin-walled beam-models allowing for some effects of shear deformability were
presented, in the middle eighties with the work of Bauchau (1985). In this article, the effect of
full shear deformability and specially the warping torsion shear deformability was not taken into
account or was slightly studied in a few problems of static’s and dynamics. The late eighties
and the nineties brought a considerable amount of new models and uses. Rehfield et al. (1990)
studied the non-conventional effects of constitutive elastic couplings (such as bending-bending
coupling or bending-shear coupling, etc.) in the mechanics of cantilever box-beams. In the
models developed by Librescu and Song (1992) and Song and Librescu (1993), which were
employed in a broad field of engineering problems, it was considered the bending component
of shear flexibility but the shear deformation due to warping torsion component was neglected.
However in these models new extensions were performed, such as the accounting for the ef-
fect of thickness in shear and warping deformations. Special attention, deserve the works of
Cesnik et al. (1996) who performed studies on thin-walled composite beams by means of the
so-called Variational Asymptotical Cross Sectional Analysis (VABSA) Method. In these works
there is no mention to buckling problems and vibrations with states of arbitrary initial stresses.
Employing the Hellinger-Reissner principle, Cortínez and Piovan (2002) introduced a theory
of thin-walled beams with symmetric balanced laminates, which considers full shear flexibil-
ity, i.e. bending shear deformation and torsion-warping shear deformation. This model covers
topics of dynamics under states of initial normal stresses, and also accounts for thickness shear
flexibility and warping. Many of the aforementioned models were employed only for static
response or for eigenvalue calculation. Piovan and Cortínez (2007a) and Piovan and Cortínez
(2007b) extended the previous model by incorporating general laminates, buckling analysis and
other complexities such as beams with curved axis among others.

The uncertainty is an important concern in the behavior of beams constructed with fiber re-
inforced composite materials due to their inherent variability. The first studies about the quan-
tification of uncertainty in composite materials are related to the constituent level, fibre/matrix
or ply level according to the deep review of the state of the art carried out by Sriramula and
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Chryssantopoulos (2009). The main sources of uncertainty in composite materials are the value
of constituent properties at microscopic level, geometric aspects at mesoscale or macroscopic
level and the manufacturing process. The manufacturing processes of composite structures may
affect strongly the dynamic response. There is a huge amount of research related to quantify
the propagation of uncertainty in the mechanics of composite materials at the microscale level
(Sriramula and Chryssantopoulos, 2009) or in the case of failure analysis (Pawar, 2011).

There are different approaches to evaluate the dynamic response of structures subjected to
several aspects of uncertainty. The most common is the consideration of the uncertainty in
the loads or external excitations as a random processes (Lutes and Sarkani, 1997). The un-
certainty involved in the material properties of the composites can be considered as a random
fields according to the works of Onkar and Yadav (2005), Mehrez et al. (2012b) and Mehrez
et al. (2012a) among others. Other way to study the dynamic response due to uncertainties in
the composite material is associating random variables to given parameters that are considered
uncertain, which is called parametric probabilistic approach. The construction or derivation of
the probability density functions of the random variables is a crucial task that needs some infor-
mation about the statistics of the parameters (e.g. expected value or bounds and/or coefficient of
variation, etc.). The Maximum Entropy principle is employed to deduce the probability density
functions in order to guarantee that the mentioned functions have the maximum uncertainty.
This is the approach to be employed in the present article. The angles of the laminates are
assumed to vary around the expected values, thus a set of random variables is defined with the
corresponding probability density function. The deterministic and probabilistic approaches of
the structural model are proposed within the frame of the finite element method. The Monte
Carlo Method is used to obtain the statistics of the dynamic response associated to a number of
independent simulations.

The article is organized as follows: after the introductory section where the state-of-the-art is
summarized, the deterministic model and its finite element discretization are briefly described,
then the probabilistic approach is constructed. The subsequent section contains the computa-
tional studies, the analysis of the uncertainty propagation in the dynamics of composite thin
walled beams and finally concluding remarks are outlined.

2 BRIEF PRESENTATION OF THE COMPOSITE BEAM MODEL

In Figure 1 a basic sketch of the thin walled beam is shown, where it is possible to see the
reference points C and A. The principal reference point C is located at the geometric center
of the cross-section, where the x-axis is parallel to the longitudinal axis of the beam while y
and z are the axes of the cross section, but not necessarily the principal axes of inertias. The
secondary reference system, located at A, is used to feature shell stresses and strains. The thin-
walled beam model is based in the following assumptions (Cortínez and Piovan, 2002; Piovan
and Cortínez, 2007a):

1) The cross-section contour is rigid in its own plane.

2) The radius of curvature at any point of the shell is neglected. This implies to consider the
section shaped in a polygonal arrangement.

3) The warping function is normalized with respect to the principal reference point C.

4) A general laminate stacking sequence for composite material is considered.
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Figure 1: Thin walled beam with reference systems

5) The material density is considered constant along the beam but it can vary in the laminate
thickness.

6) Stress and strain components are references from point A, and the representative stresses
are σxx, σxs and σxn.

7) The model is presented in the context of linear elasticity.

2.1 Governing equations and boundary conditions

Following assumptions 1) to 7) it is possible to derive the displacement field of a point P
(Piovan, 2003; Piovan and Cortínez, 2007a), which can be presented in the subsequent form:

ŨP =


ux
uy
uz

 =


uxc − ωθx

uyc
uzc

+

 0 −θz θy
θz 0 −φx

−θy φx 0


0
y
z

 , (1)

Where uxc, uyc, uzc are the displacements of the reference center in x-, y-, and z- directions,
respectively. θz and θy are bending rotational parameters. φx is the twisting angle and θx is a
warping-intensity parameter. In Eq. (1) the cross-sectional variables y(s) and z(s) of a generic
point are related to the ones of the wall middle line Y (s) and Z(s) by means of Eq. (2) is the
warping function normalized with respect to the reference center. It is defined in Eq. (3)

y(s) = Y (s)− ndZ
ds
, z(s) = Z(s) + n

dY

ds
, (2)

ω(s, n) = ωp(s) + ωs(s, n). (3)

In Eq. (3), ωp(s) is the primary or contour warping function whereas ωs(s, n) is the secondary
or thickness warping. These entities are given by:

ωp(s) =

∫
s

[r(s) + ψ(s)] ds−DC , ωs(s, n) = −nl(s), (4)
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where the functions r(s), l(s), ψ(s) and DC are defined in the following form:

r(s) = Z(s)
dY

ds
− Y (s)

dZ

ds
, l(s) = Y (s)

dY

ds
+ Z(s)

dZ

ds
,

ψ(s) =
1

Ā66(s)

[ ∫
s
r(s)ds∮

S
1

Ā66(s)
ds

]
, DC =

∮
S

[r(s) + ψ(s)] Ā11(s)ds∮
S
Ā11(s)ds

.
(5)

The functions Ā11 and Ā66 are normal and tangential elastic properties of composite lami-
nates (Piovan and Cortínez, 2007a) which can vary along the section middle line. The function
ψ(s) is connected with the torsional shear flow and DC is a constant for normalization of the
warping function with respect to the reference system C (Piovan, 2003; Cortínez and Piovan,
2002). In the case of open sections, the function ψ(s) = 0, consequently Eq. (5) holds for both
closed and open sections. The warping function described in Eq. (3), has an analogous form to
the ones defined by Song and Librescu (1993) or Na and Librescu (2001) for closed sections.

The displacement-strain relations can be obtained by substituting Eq. (1) in the well-known
expressions of linear strain components. As it was shown by Piovan (2003) and Piovan and
Cortínez (2007a) the shell strains can be written as:

ẼP = GkD̃, (6)

where:

Ẽ
T

P = {εxx, γxs, γxn, κxx, κxs} ,
D̃

T
= {εD1, εD2, εD3, εD4, εD5, εD6, εD7, εD8} ,

(7)

Gk =


1 Z −Y −ωp 0 0 0 0

0 0 0 0 dY/ds
dZ/ds r(s) + ψ(s) −ψ(s)

0 0 0 0 −dZ/ds
dY/ds l(s) 0

0 −dY/ds
dZ/ds −l(s) 0 0 0 0

0 0 0 0 0 0 1 −2

 . (8)

In Eq. (7), εxx, γxs and γxn are the strain components and κxx, κxs are the curvatures of
the shell that conforms the wall of the cross-section. These strain components are measured
according to the wall reference system in A. The entities εDi, i = 1, ..., 8 may be regarded
as generalized deformations. In this context εD1 is the axial deformation, εD2 and εD3 are
bending deformations, εD3 is the deformation due to non-uniform warping, εD5 and εD6 are the
bending shear deformations, εD7 is the warping shear deformation and finally εD8 is the pure
torsion shear deformation. These generalized deformations, which are collected in vector D̃,
are defined in the following form:

D̃ = GDU Ũ, (9)

where GDU is a matrix operator and Ũ is the vector of kinematic variables which are defined in
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following forms, in which ∂x(�) is the spatial derivative operator.

GDU =



∂x(�) 0 0 0 0 0 0
0 0 0 0 ∂x(�) 0 0
0 0 ∂x(�) 0 0 0 0
0 0 0 0 0 0 ∂x(�)
0 ∂x(�) −1 0 0 0 0
0 0 0 ∂x(�) 1 0 0
0 0 0 0 0 ∂x(�) −1
0 0 0 0 0 ∂x(�) 0


, (10)

Ũ
T

= {uxc, uyc, θz, uzc, θy, φx, θx} . (11)

The principle of virtual works can be condensed in the following form:

WT =

∫
L

(
δD̃

T
Q̃
)
dx+

∫
L

δŨ
T

Mm
¨̃Udx−

∫
L

δŨ
T

P̃Xdx+ δŨ
T

B̃X

∣∣∣x=L

x=0
= 0, (12)

where the force vector Q̃ is defined as follows:

Q̃
T

= {Qx,My,Mz, B,Qy, Qz, Tw, Tsv} , (13)

whereas for the sake of fluid and clear reading, the matrix of mass coefficients Mm, the vec-
tor P̃X of external forces and the vector B̃X of natural boundaries conditions are detailed in
Appendix A.

In Eq. (13) the internal beam forces Qx, My, Mz, and B correspond to the axial force,
the bending moment in y-direction, the bending moment in z-direction, and the bi-moment,
respectively; whereas the internal forces Qy, Qz, Tw, and Tsv correspond to the shear force in
y-direction, the shear force in z-direction, the twisting moment due to warping and the twisting
moment due to pure torsion, respectively. These internal forces can be written in terms of the
shell-forces as (Piovan and Cortínez, 2007a):

Q̃ =

∫
S

GT
k ÑPds, (14)

where ÑP is the vector of shell stress resultants or shell forces and moments defined according
to (Barbero, 1999):

Ñ
T

P =

∫
S
{σxx, σxs, σxn, nσxx, nσxs} dn. (15)

The differential equations of motion and associated boundary conditions can be derived by
applying the conventional steps of variational calculus in Eq. (12). The differential equations
of motion can be useful for some numerical methods, e.g. power series method. While in the
present article the finite element method is employed, the derivation of differential equations is
not necessary. The interested reader may follow, in the works of Piovan and Cortínez (2007a)
and Piovan (2003), the form and features of the differential equations of the thin-walled beam
model applied to several problems of mechanics of beams.
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2.2 Constitutive equations

In order to obtain the relationship between beam stress resultants and generalized deforma-
tions εDi, one has to select the constitutive laws for a composite shell and employ constitutive
hypotheses (Piovan and Cortínez, 2007a) of the shell stress resultants in terms of the shell
strains. The shell stress resultants can be expressed in terms of the generalized deformations
defined in Eq. (9) in the following matrix form:

ÑP = MCẼP , (16)

where MC is the matrix of modified shell stiffness, which depends on the type of constitutive
hypotheses involved (Piovan, 2003) and can be expressed in the following form:

MC =


Ā11 Ā16 0 B̄11 B̄16

Ā66 0 B̄∗16 B̄66

Ā∗55 0 0
sym D̄11 D̄16

D̄66

 . (17)

Due to the lack of space the coefficients Ā11, B̄11, D̄11, etc, are not described in the present
article, however the interested reader can found them in the works of Piovan and Cortínez
(2007a) or Piovan (2003).

Substituting Eq. (16) into Eq. (14) the beam stress resultants can be obtained in terms of
generalized strains:

Q̃ = MkD̃, (18)

where:

Mk =

∫
S

GT
k MCGkds. (19)

The matrix Mk of cross-sectional stiffness coefficients, leads to constitutive elastic coupling
or not, depending on the stacking sequence of the laminates in a given cross-section. That
is for example, if the laminates are specially orthotropic or cross-ply, or specially symmetric
balanced, there is no constitutive elastic coupling (Cortínez and Piovan, 2002), however if the
laminates are general the beam could have different types of constitutive elastic couplings such
as twisting-bending-extensional coupling, extensional-bending coupling bending-bending cou-
pling, etc (Piovan and Cortínez, 2007a).

2.3 Finite element approach

In order to solve problems of dynamics with several boundary conditions, quartic order
isoparametric finite elements of five nodes are employed. The vector of nodal displacements Ūe

is arranged as:

Ūe =
{

Ū(1)
e , ..., Ū(5)

e

}
, (20)

where:

Ū(j)
e =

{
uxcj , uycj , θzj , uzcj , θyj , φxj

, θxj

}
, j = 1, ..., 5 (21)

Mecánica Computacional Vol XXXI, págs. 2783-2800 (2012) 2789

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Now, substituting Eq. (20) into Eq. (12) and applying the conventional variational procedures
(Piovan and Cortínez, 2007a), the following finite element equation is attained:

KW̄ + M ¨̄W = F̄, (22)

where K and M are the global matrices of elastic stiffness and mass, respectively; whereas W̄,
¨̄W and F̄ are the global vectors of nodal displacements, nodal accelerations and nodal forces,

respectively.
Eq. (22) can be modified in order to account for "a posteriori" structural proportional Rayleigh

damping given by:

CRD = η1M + η2K. (23)

The coefficients η1 and η2 in Eq. (23) can be computed employing two given damping coef-
ficients (namely, ξ1 and ξ2) for the first and second modes, according to the common methodol-
ogy presented in the bibliography related to finite element procedures (Bathe, 1996; Meirovitch,
1997). The matrices M and K are the global mass matrix and the global elastic stiffness matrix,
respectively. This leads to:

KW̄ + CRD
˙̄W + M ¨̄W = F̄. (24)

The response in the frequency domain of the linear dynamic system given by Eq. (24) can
be written as (Meirovitch, 1997):

Ŵ (ω) =
[
−ω2M + iωCRD + K

]−1 F̂ (ω) , (25)

where Ŵ and F̂ are the Fourier transform of the displacement vector and force vector, respec-
tively; whereas ω is the circular frequency measured in [rad/sec].

3 STOCHASTIC MODEL

The stochastic model is constructed selecting the angles of laminates as uncertain parameters
and associating random variables to them. The construction of the probability distributions
of the random variables is quite sensible in stochastic analysis and they should be deduced
according to the known information about the uncertain parameters. The Maximum Entropy
Principle (Jaynes, 2003) is then employed to derive the probability distributions in order to
guarantee consistence with the known information of the random variables and the physics of
the problem.

In the present problem random variables Vi, i = 1, 2, 3...NP are introduced such that they
represent the angles of the NP plies in a given cross-sectional laminate. The expected value of
the random variables is known having, as a first approach, the nominal value of the determin-
istic model, i.e.: E{Vi} = V i, i = 1, 2, 3...NP ; moreover the random variables have bounded
supports whose upper and lower limits are distant ∆ from the expected value V i. Also, the
construction of the laminates should maintain the condition of symmetry in the corresponding
cases. If there is no information about the relation or dependency among random variables,
the Maximum Entropy Principle states that the random variables must be independent. Conse-
quently, according to the aforementioned background, the probability density functions of the
random variables can be written as:

pVi
(vi) = 1[LVi ,UVi ]

(vi)
1

UVi
− LVi

= 1[LVi ,UVi ]
(vi)

1

2∆
,= 1, 2, .., NP (26)
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where 1[LVi ,UVi ]
(vi) is the generic support function, whereas LVi

and UVi
are the lower and

upper bounds of the random variable Vi. ∆ is a gap measured in angular units (radians or
degrees), and the Matlab function unifrnd(V i −∆, V i + ∆) can be used to generate realizations
of the random variables Vi, i = 1, 2, 3...NP .

Then, using Eq. (26) in the construction of the matrices of finite element model given in
Eq. (25) the stochastic finite element model can be written as:

Ŵ (ω) =
[
−ω2M + iωCRD + K

]−1 F̂ (ω) . (27)

Notice that in Eq. (27) the math-blackboard typeface is employed to indicate stochastic enti-
ties, thus K is stochastic because Eq. (26) in employed in its derivation, and CRD is stochastic
through the stochastic nature of K in Eq. (23), hence Ŵ is stochastic.

The Monte Carlo method is used the simulate the stochastic dynamics, which implies the
calculation of a deterministic system for each realization of random variables Vi, i = 1, 2, .., NP .
The convergence of the stochastic response Ŵ is calculated appealing to the following function:

conv (NMS) =

√√√√ 1

NMS

NMS∑
j=1

∫
Ω

∥∥∥Ŵj (ω)− Ŵ (ω)
∥∥∥2

dω, (28)

where NMS is the number of Monte Carlo samplings and Ω is the frequency band of analysis.
Clearly, Ŵ is the response of the stochastic model and Ŵ the response of the mean model or
deterministic model.

4 COMPUTATIONAL STUDIES

In this section a study is carried out related to the propagation of uncertainties ought to
constructive aspects of composite laminates in the dynamic response of thin walled composite
beams. For this study a clamped-free thin walled beam with double-symmetrical cross-section
is employed. The beam has a length L = 6.0 m and a cross-sectional profile as shown in
Fig. 2. The web height, flange width and the laminate thickness are h = 0.6 m, b = 0.3 m
and e = 0.03 m, respectively. The laminates are made of graphite-epoxy whose properties
are: E11 = 144 GPa, E22 = E33 = 9.68 GPa, G12 = G13 = 4.14 GPa, G23 = 3.45 GPa,
ν12 = ν13 = 0.3, ν23 = 0.5, and the density ρ = 1389 Kg/m3. The stacking sequences to be
used in this study are the ones of Fig. 2, i.e. a quasi-isotropic laminate: {0o,−45o, 45o, 90o}S ,
angle-ply laminate: {α,−αα,−α}S and a type of Circumferential Uniform Stiffness (CUS)
laminate. This last one involves constitutive coupling between twisting moments and axial
force as well as both shear forces and both bending moments (see Appendix B for further
illustrations). It should be taken into account that the quasi-isotropic and angle-ply laminates
produce a slight constitutive elastic coupling between normal and shear components of strains
and stresses of the shell, which can eventually couple internal bending moments and twisting
moments (see Appendix B).

Four random variables are selected according to the common stacking sequences employed
in the construction of composite structures. These random variables have the following expected
values: E{V1} = 0o, E{V2} = 15o, E{V3} = 45o and E{V4} = 90o.

Models of twelve finite elements of five nodes are used for the deterministic and stochastic
calculations. This number of elements was shown (Piovan, 2003) to be enough to guarantee
a precision of more than 99% up to the eighth natural frequency. In Table 1 it is possible to
see the first eight natural frequencies for several types of stacking sequences. The deterministic
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Figure 2: I-beam cross-section profile: (a) quasi-isotropic laminate, (b) angle-ply laminate (c) CUS laminate.

model with the nominal angles was employed in the calculation. Notice that the feature of
the modes is also indicated in Table 1, that is: BY Y , BZZ and T identify bending mode
in y-direction, bending mode in z-direction and twisting mode, respectively; whereas BY T (or
BZT ),BY Z andBZY identify coupled bending-twisting modes and coupled bending-bending
modes, respectively.

Mode Quasi-isotropic {45,−45, 45,−45}S {15,−15, 15,−15}S CUS, α = 15
Number Freq Mode Freq Mode Freq Mode Freq Mode

1 6.00 BY Y 3.14 BY Y 8.68 BY Y 7.61 BY Z
2 14.11 T 12.43 BZZ 15.15 T 11.82 T
3 23.31 BZZ 16.08 T 32.37 BZZ 25.07 BZY
4 37.29 BY Y 19.64 BY Y 52.96 BY T 45.73 BY Z
5 55.83 T 52.41 T 69.38 T 58.47 T
6 102.95 BY Y 54.78 BY T 142.29 BY T 102.59 BZY
7 129.37 BZZ 74.91 BZZ 151.94 BZZ 120.19 BY Z
8 132.49 T 100.13 T 174.04 T 147.63 T

Table 1: Natural frequencies [Hz] of I-Beams with different stacking sequences.

In the following paragraphs the results of the stochastic analysis are presented. The stochastic
analysis is mainly concerned with the evaluation of the uncertainty propagation in the frequency
response function of the composite beam for all laminates indicated in Fig. 2. A unit force F is
used to perturb the structure. The force is located at the free end of beam (x = L) according to
Fig. 2 with ϕ = 45o. The response is observed at the free end, and it is evaluated by defining
the following frequency response function:

HF (ω) =

∥∥∥ÛP (ω)
∥∥∥

F̂ (ω)
. (29)

In Eq. (29),
∥∥∥ÛP

∥∥∥ is the norm of the fourier transform of the displacement vector of the point

(calculated according to Eq. (1)) where the force is applied (see Fig. 2) and F̂ is the Fourier
transform of the force applied at the beam end. Moreover, other frequency response functions
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may be introduced for particular comparative purposes, that is:

H1 (ω) =
ûyc (ω)

F̂y (ω)
, H2 (ω) =

ûzc (ω)

F̂z (ω)
, H3 (ω) =

φ̂x (ω)

T̂x (ω)
, (30)

where ûyc, ûzc and φ̂x are the Fourier transforms of lateral displacement, vertical displacement
and twisting angle, respectively, whereas F̂y, F̂z and T̂x are the Fourier transforms of the com-
ponents of force F and the associated twisting moment. For this problem, the displacements
are calculated at the free end.

The Monte Carlo Method is used to simulate the stochastic model, which is constructed
with the random variables Vi. The Fig. 3 shows examples of the convergence of the Monte
Carlo simulations for the angle-ply and quasi-isotropic laminates by studying the evolution of
the function conv (NMS) with respect to the number of simulations. For these simulations
∆ = 2o is employed in the laminates and damping coefficients are assumed to be ξ1 = 0.05
and ξ2 = 0.05 just for comparison purposes. The force is unitary, i.e. ‖F‖ = 1N and ϕ = 45o.
As it is possible to see in Fig. 3, a good convergence is achieved with 500 samplings, and a
reasonable convergence is also achieved with 250 samplings.
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(a) (b)
Figure 3: Convergence of the Monte Carlo simulations. (a) For {45,−45, 45,−45}S stacking sequences, (b) For
quasi-isotropic stacking sequences.

In Fig. 4 it is shown the FRFs of the composite beam with quasi-isotropic laminates for
damping coefficients ξ1 = 0.05 and ξ2 = 0.05. That is, Fig. 4(a) shows the FRF of the bending
kinematic variables and the twisting parameters of the deterministic (mean) model according to
Eq. (30), whereas Fig. 4(b) shows the FRF according to Eq. (29) of the mean model and the
mean response of the stochastic model as well as the 95% confidence interval for a dispersion
parameter of ∆ = 2o. Now in Fig. 5 the same information is shown but for a stacking sequence
of {45,−45, 45,−45}S . Notice the magnitude of the uncertainty propagation in the case of the
angle-ply stacking sequence in comparison to the case of a quasi-isotropic stacking sequence
for the same value of the dispersion, i.e. ∆ = 2o.

The Fig. 6 shows the same information of the previous two figures but for the angle-ply
stacking sequence of {15,−15, 15,−15}S and a dispersion of ∆ = 5o. In this type of stacking
sequence appears a slight constitutive coupling that can be observed in the FRF of uyc and φx

in Fig. 6(a), that influences the increase of uncertainty around those modes as it is possible to
see in Fig. 6(b).
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Figure 4: FRFs of the beam with quasi-isotropic stacking sequences (∆ = 2o). (a) Kinematic variables: uyc, uzc
and φx (b) Displacement of the point where the load is applied.
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Figure 5: FRFs of the beam with {45,−45, 45,−45}S stacking sequences (∆ = 2o). (a) Kinematic variables: uyc,
uzc and φx (b) Displacement of the point where the load is applied.

Fig. 7 shows the comparison of the FRF HF (ω) of the beam with the angle-ply stacking
sequences {45,−45, 45,−45}S for dispersion of ∆ = 2o and ∆ = 5o. Note that for the case
of ∆ = 5o the confidence interval is sensibly larger than the case of ∆ = 5o, except in the first
lateral bending mode and the first twisting mode, where the propagation of uncertainty is not
high even if the dispersion in the laminates has been more than doubled.

As a first or preliminary observation of the previous figures, it may be stated that the config-
uration of the laminates in the cross-section is quite sensible to the propagation of uncertainties
associated with the angular dispersion in the fiber reinforcement. Moreover it seems that the
constitutive elastic couplings have an important effect in the propagation of the uncertainty in
the dynamics of thin walled composite beams. In order to check this affirmation the following
stochastic study is performed in an I-beam with a CUS stacking sequence. The fiber reinforce-
ment has a dispersion quantified by ∆ = 5o and the CUS configuration is such that α = 15o

according to the Fig. 2(c), whereas the damping coefficients are the same the previous cases.
Fig. 8 shows the dynamic responses of the I-beam with CUS configuration. In fact, Fig. 8(a)

depicts the FRF of the kinematic variables uyc, uzc and φx measured at the free end, whereas
Fig. 8(b) shows the FRF according to Eq. (29) of the mean model and the mean response of the
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Figure 6: FRFs of the beam with {15,−15, 15,−15}S stacking sequences (∆ = 5o). (a) Kinematic variables: uyc,
uzc and φx (b) Displacement of the point where the load is applied.
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Figure 7: FRF of the beam with {45,−45, 45,−45}S stacking sequences. (a) ∆ = 2o (b) ∆ = 5o.

stochastic model as well as the 95% confidence interval.
It is noticeable from Fig. 8(a) that modes 1, 3, 4, 6 and 7 have a bending-bending coupled

character as it is confirmed by observing the mode shapes in Fig. 9, on the other hand modes 2
and 5 (not shown due to lack of space) have a twisting character. Recall that the dispersion in the
fiber orientation is quantified by ∆ = 5o, which in other cases, i.e. other stacking sequences,
produce a huge effect of uncertainty propagation. However in the case of a CUS lamination
(with α = 15o) it appears that the uncertainty propagation have more influence in the strongly
coupled modes, such as the sixth, third and seventh modes as one can check in Fig. 8(b).

5 CONCLUSIONS

In this article a study of uncertainty influence in the dynamics of thin walled fiber reinforced
composite beams has been done. The study has been performed by adopting of a thin walled
beam model for composite materials as a mean model (or deterministic model), thereafter the
stochastic model has been constructed by introducing random variables associated to the un-
certain parameters of the problem. The parameters selected for the studies of propagation of
uncertainty were the orientation angles of fiber reinforcement in the laminates. The probability
density function has been derived according to the Maximum Entropy Principle. Only open sec-
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Figure 8: FRFs of the beam with CUS (α = 15o) stacking sequence (∆ = 5o). (a) Kinematic variables: uyc, uzc
and φx (b) Displacement of the point where the load is applied.

tion I-beams with several types of stacking sequences have been evaluated. From the calculation
performed in this article, the following point can be concluded:

• The propagation of uncertainty is strongly influenced by the type of stacking sequences
in the cross-section.

• The propagation of uncertainty is larger in the cases where a constitutive coupling in
present.

• Angle-ply laminates are quite sensible to the uncertainty of the fiber orientation.

• Stacking sequences with an important number of plies oriented in the main orthotropic
directions (i.e. α = 0o or α = 90o) proved to be robust in non-coupled modes.

The composite structures have notable features of uncertainty. In this work the parametric
probabilistic approach has been employed to quantify the uncertainty and its propagation in the
linear dynamics of thin walled beams. There are other aspects associated to the uncertainty
of the model itself that cannot be analyzed even with a meticulous selection of uncertain pa-
rameters and random variables, for example the uncertainty in the structural damping or the
formulation of shear deformations and their influences in the dynamics of beams or the varia-
tion of properties along the beam length. This type of problems can be faced with other tools
such as Monte Carlo Markov Chain approaches or the non-parametric probabilistic approach,
however that would be part of further extensions to the present contribution.
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APPENDIX A: EXTENDED DEFINITION OF MATRICES AND VECTORS INVOLVED
IN THE PRINCIPLE OF VIRTUAL WORKS

The vector of external forces P̃X and the matrix of mass coefficients Mm can be calculated
in the following form:

P̃X =

∫
A

[
X̄x X̄y X̄z

]
Gmdydz, (A.1)

Mm =

∫
A

ρ (y, z) GT
mGmdydz, (A.2)

where X̄x, X̄y and X̄z are general volume forces, whereas:

Gm =

 1 0 −y 0 z 0 −ω
0 1 0 0 0 −z 0
0 0 0 1 0 y 0

 , (A.3)

The vector of natural boundary conditions B̃X can be written in the subsequent form:

B̃X =



−Q̄x +Qx

−Q̄y +Qy

−M̄z +Mz

−Q̄z +Qz

−M̄y +My

−T̄sv − T̄w + Tsv + Tw
−B̄ +B


, (A.4)

where Q̄x, Q̄y, Q̄z, M̄y, M̄z, T̄w and T̄sv are prescribed forces applied at the boundaries.

APPENDIX B: ILLUSTRATIVE EXAMPLES OF THE COUPLINGS FEATURES OF
SEVERAL STACKING SEQUENCES FOR SHEAR DEFORMABLE THIN WALLED
COMPOSITE BEAMS

In order to clarify the type of constitutive couplings that can produce a given stacking se-
quence, in this Appendix a few cases are exemplified. The coupling effects associated to certain
stacking sequences can be analyzed by means of the matrix Mk in Eq. (18), i.e. the constitutive
expression of the beam stress-resultants in terms of the generalized deformations.

In the following expressions, the non-zero elements of Mk are indicated with a box, whereas
the null elements of Mk are indicated with a ".". Thus in the case of an isotropic material or a
especial orthotropic material (i.e. with stacking sequence {0, 0, 0, 0, 0, 0, 0}) or cross-ply sym-
metric balanced stacking sequence (i.e. {0, 90, 0, 90, 90, 0, 90, 0}), then constitutive equations
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is given by (Piovan, 2003):

Qx

My

Mz

B
Qy

Qz

Tw
Tsv


=



� . . . . . . .
. � . . . . . .
. . � . . . . .
. . . � . . . .
. . . . � . . .
. . . . . � . .
. . . . . . � �
. . . . . . � �





εD1

εD2

εD3

εD4

εD5

εD6
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εD8


. (B.1)

In the case of quasi-isotropic or angle-ply stacking sequences for a thin walled beam with
open cross sections, the constitutive equations are given by (Piovan, 2003)

Qx

My

Mz

B
Qy

Qz

Tw
Tsv


=
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. (B.2)

In the case of a Circumferentially Uniform Stiffness stacking sequence, the constitutive equa-
tions are given by (Piovan, 2003):

Qx

My

Mz

B
Qy

Qz

Tw
Tsv


=
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. (B.3)

In Eq. (B.2) it is possible to see the slight coupling between Mz and the twisting moments,
even if in matrix MC of Eq. 17, Ā16 = B̄ij = 0. This is due to D̄16 6= 0 in matrix MC , however
in the case of quasi-isotropic laminates it is verified that D̄16 � max(D̄11, D̄66) implying that
coupling effect is negligible as it is possible to see in Table 1.

In Eq. (B.3) the coupling between twisting moments and axial force can be observed. More-
over it is possible to see the coupling of both flexural motions, i.e by means of the bending
moment of one flexural motion, e.g. Mz, and the shear force of the orthogonal flexural motion,
e.g. Qz.
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Figure 9: Selected modes shapes of the I-beam with CUS laminate.
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