
MESH GENERATION OF PELVIC ORGAN SURFACES USING ACTIVE
CONTOURS WITH SELF-COLLISION DETECTION

R. Namíasa, J. P. D’Amatob,c, M. del Fresnob,d and M. Vénereb,e

aCIFASIS, French Argentine International Center for Information and Systems Sciences, UAM (France)
/ UNR-CONICET (Rosario), Bv. 27 de febrero 210 bis, (S2000EZP), Rosario, Santa Fe, Argentina,

secretaria@cifasis-conicet.gov.ar, http://www.cifasis-conicet.gov.ar/

bInstituto PLADEMA, Universidad Nacional del Centro, Campus Universitario Paraje Arroyo Seco,
(B7000), Tandil, Argentina pladema@exa.unicen.edu.ar, http://www.pladema.net/

cConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

dComisión de Investigaciones Científicas de la Prov. de Buenos Aires (CIC-PBA), Argentina

eComisión Nacional de Energía Atómica, Argentina

Keywords: 3D segmentation, mesh generation, collision detection, visualization.

Abstract. Segmentation of medical imaging is one of the main processes in the development of
computer-aided applications in several medical practices. In the last few years, different methods were
proposed for aiding the diagnosis, treatments and even pre-surgical assistance.
In particular, we are interested in the physical simulation of pelvic dynamics to study the pelvic organ
prolapse disease. Hence, our goal is to generate a geometrical model of pelvic organs from Magnetic
Resonance Imaging (MRI) acquisitions, which afterwards will contribute to build a physical model of
the patient organs.
In this work, we present a tri-dimensional geometrical generation method for general volumetric segmen-
tation purposes. The geometrical models should be as accurate as possible, therefore the surface mesh
obtained must keep some important quality aspects such as not presenting self intersections between its
triangles. For this purpose, we introduce a modified active surface model with a novel self-collision
inhibitor module.
Keywords: Mesh Generation, Self-collision Detector, Active Surfaces, Magnetic Resonance.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (artículo completo)
Alberto Cardona, Paul H. Kohan, Ricardo D. Quinteros, Mario A. Storti (Eds.)

Salta, Argentina, 13-16 Noviembre 2012

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.cifasis-conicet.gov.ar/
http://www.pladema.net/

1 INTRODUCTION

In modern surgery practices, many diseases, such as pelvic organ prolapse or tumour ex-
traction, are largely studied with non-invasive imaging techniques. Surgerous are prepared on
visualization systems and sometimes complex situations are simulated. These kind of systems,
uses digital representation of specific patients organ and run behavioral simulations, in order to
support the surgeon decisions. These simulations required a very good aproximated represen-
tation of the real organ to bring realistic results.

To generate these representations, dynamic and volumetric MRI are acquired from patients
and then the main organs are segmented [Xiping and Jie (2002); Singh et al. (1998)]. Af-
terwards, geometrical models are extracted from the segmentation results [Bay et al. (2011)].
Therefore, the segmentation step is critical to obtain more accurate geometrical models. Tech-
niques such as thresholding and region growing are commonly used for this purpose [Lin et al.
(2001); Pohle and Toennies (2001)]. Other advanced such as approaches level sets are also
widely used [Ma et al. (2010); Mcinerney and Terzopoulos (1999); Osher and Fedkiw (2000)].

Active contours models (ACM) [Kass et al. (1988)] have gained popularity as it shows to
be a dynamic and efficient method for multiple purposes. We have successfully applied this
method for brain segmentation [del Fresno et al. (2009)], but the method have to be improved
in order to detect blurry organs.

1.1 Active contours for mesh generation

Generally, the ACM starts from a parametric surface such as spheres or ellipsoids [Cohen
(1991)] generally defined by an user and evolves applying forces on the nodes of the surface
until it reaches some criterion. There are different approaches about initialization and evolving
rules.

Some works such as [del Fresno et al. (2009)], propose an hybrid approach that starts the
segmentation with a Region Growing method and then apply an active contour technique to
obtained a more refined result. [Pimenta et al. (2006)] propose a 3D model reconstruction of
the bladder applying 2D active contour segmentation in each slide of the MR acquisition. This
approach not only needs post-processing to create a 3D model from a set of slide contours but
also do not take into consideration the extra information of space and continuity in 3D which
could be greatly useful in the segmentation of soft organs that are not easily distinguishable in
the acquisitions.

During mesh evolution artifacts, like loops, may appear. In Figure 1 right panel we show one
loop in a mesh slide proyection. These deformations not only give wrong segmentation results,
but also lead to numerical instability in the force calculation that evolve the model. As the result
of these perturbations we can obtain weird anomalies as we can depict in Figure 1 left panel.
Bischoff et al. [Bischoff and Kobbelt (2003)] propose a geometrical control by restricting the
movement of the contour vertices to grid-lines of a uniform lattice. This model called restricted
snakes (r-snakes) controls efficiently the self collision problems. As the points (snakels) can
only move throught the grid-lines, when two of them are in the same supporting segment of the
grid and are moving towards each other they are not allowed to cross, they can just touch one to
the each. Although this technique deals efficiently with the collisions problem, it restricts the
points movements and more important, it is not extended to 3D models.

We present our approach that deals with geometrical artifacts during surface evolution. The

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3062

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 1: Loops artifacts. [left] Anomaly due to loop evolution and [right] loop in a mesh slide
proyection.

method starts from a initial surface obtained with a region growing method and then evolves
moving accordingly while geometry control is applied. If some surface elements are colliding,
we propose rollback to a safety state (with no collisions), "freeze" conflict nodes and then con-
tinue the evolution. Collision detection requires too much computing and many times no colli-
sions are detected, so a suitable collision detection frequence should be defined. This method
was applied to segmentate the main female pelvic organs.

This work is organized as follows: in section 2 we describe the geometrical model genera-
tion including the segmentation procedure; in section 3 we present the self-collision detection
scheme; then in section 4 the modified active surface model with the self-collision inhibitor is
exhibited; in section 5 we show a syntetic and a real case experiment to demonstrate the cor-
rectness and benefits of the proposed model; finally, in section 6 conclusions and future work
are mentioned.

2 TRIDIMENSIONAL GEOMETRICAL MODEL GENERATION

The main input of the segmentation process is a DICOM (Digital Imaging and Communication
in Medicine:international standard in medical imaging) graylevel 3D MRI. This volume is pro-
cessed by a tree stage procedure. First, a region growing (RG) technique is applied to obtain
a initialization mesh.Second, the RG output is converted to a triangular 3D surface mesh. As
the resulted mesh has several "staircase" artifacts, it is smoothed before passing to the active
surface algorithm that finishes the segmentation task.

2.1 Region Growing Step

The region growing algorithm is quite standard. The expert manually set one or more initial
points (seeds) in the organ of interest. The algorithm keeps a queue with the visited voxels.
In the beginning, only the seed indexes are included. For each candidate voxel in the queue
we evaluate whether it satisfies the acceptance criterion. If so, all its neighbors, that were not
visited before, are placed in the queue and the candidate is added to the region. If not, the voxel
is labeled as a border voxel. The algorithm finishes when the candidates queue is empty. In this
work, a 26-neighborhood for each voxel is considered. The acceptance criterion is the key of
the algorithm.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (2012) 3063

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2.1.1 Acceptance criterion

Let us consider the set S(r) of all voxels r-neighboring any seed defined in a given region
(26-connectivity). The characteristic intensity CI(r) and standard deviation σ(r) of the region
are calculated as:

• Caracteristic Intensity: CI(r) = 1
N(r)

∑
v∈S(r) I(v)

• Caracteristic Deviation: σ(r) =
√

1
N(r)

∑
v∈S(r)[I(v)− CI(r)]2

where I(v) is the image graylevel intensity andN(r) is the number of voxels contained in S(r).

So we define the first criterion as:

s1
v(k, r) =

|I(v)− CI(r)|
kσ(r)

≤ 1 (1)

where k ∈ (0,∞) is a free parameter which weights the acceptance tolerance of the criterion.
This criterion does not perform well in presence of noise. Noisy voxels are left outside the
region when they should be inside. Therefore, in order to avoid this problem a new criterion is
used:

s2
v(k, r) =

∑
v′ H(1− s1

v′(k, r))

N(v)
≥ f (2)

where H is a heavyside function applied to each neighbor v′ of v and f is a parameter between
0 and 1. H function returns 1 if v′ is accepted according to the s1

v(k, r) criterion, or 0 otherwise.
Then, one voxel is accepted only if a fraction of neighbors over the value f are accepted by the
first criterion. This last criterion, called the the fraction-neighborhood criterion, is more robust
in presence of noise than the first one.

2.2 Surface mesh generation

In order to create a mesh suface of the object of interest, we take the voxels of the border af-
ter doing the region growing process. For each voxel in the frontier, we select the face between
the interior and exterior of the ROI. For each face, we draw two triangles in an appropriate way;
all their four vertex are added clockwise so the triangles normals point to the exterior of the ROI.

The original mesh shape is not very appropriate as input to the active surface technique.
Its voxelized shape is not suitable for being evolved by an approximate differential equation to-
wards its final position. Therefore, the whole mesh is smoothed by a geometrical filter described
in [Taubin (1995)].

2.3 Active Surface Models

The final stage of the procedure is the active surface model usually called snake. Different
techniques were proposed for the evolution of the snake, such as finite differences, finite ele-
ments or dynamic programming. A model based on the formulation proposed by Mcinerney
et al. [Mcinerney and Terzopoulos (1999)] is applied. In our case, we consider that each ac-

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3064

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

tive vertex si (not every vertex) of the snake mesh evolves according to the following motion
equation:

γi =
dsi
dt
− aαi(t) + bβi(t) = qρi(t) + pfi(t) (3)

where αi(t), βi(t), ρi(t) and fi(t) are the tension, flexion, inflation and external forces respec-
tively, and γi is a damping coefficient. The internal energy simulates the characteristics of an
elastic membrane. The internal tension and flexion acting on the vertex si represent the snake
resistance to stretching and bending respectively, and are calculated as:

αi =
1

m

∑
j∈N(i)

sj(t)− si(t) (4)

βi =
1

m

∑
j∈N(i)

αj(t)− αi(t) (5)

where N(i) is the set of nodes sj neighboring the node si and m is the number of these neigh-
bors. The respective derivatives correspond to the Laplacian and the squared Laplacian and
they are approximated using the umbrella operator by considering the local mesh topology at
the node si.

The inflation ρi and the external force fi are calculated as:

ρi(t) = F (I(si(t)))ni(t) (6)

where ni is the unitary vector normal to the surface at node si and F is a binary function relating
ρi to the intensity field I:

F (I(si(t))) =

{
+1 if |I(si)−CI(r)|

kσ(r)
≤ 1

−1, otherwise
(7)

The local external force which contains the expansion of the snake at significant edges, acts
in each node emulating a potential gradient:

fi(t) = G[ϕ(si)] (8)

where the G is the gradient vector and the potential ϕ is defined as:

ϕ(si) = −grad[FI(si)] (9)

The scalar gradient is grad[.] and FI(si) is the intensity I(si) smoothed with a Gaussian Filter.
Since the initial guess provided by the growing process is a close approximation of the final
model, Eq. (3) can be solved directly by applying an explicit first-order Euler scheme:

s
(t+∆t)
i = s

(t)
i −

∆t

γi
(−aα(t) + bβ

(t)
i − qρ

(t)
i − pf

(t)
i) (10)

provided that the time steps are sufficiently small.
The iteration proceeds until the following stopping criterion is achieved.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (2012) 3065

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2.3.1 Stopping Criterion

We use a two parameter stopping criterion. We measure the fraction of points f that moves
less than a maximum tolerance distance tmax. The parameter tmax (tolerance) is the maximum
displacement tolerance value of a point and fmin is the minimal fraction of points that must
be under the tolerance tmax to achive the criterion. So, when the fraction of points f that are
displaced at most tmax is over fmin the criterion is achieved.

The advantage of using the RG result to initialize the snake model is that the deformation
is then limited to minor perturbations requiring fewer iteration steps. The deformable mesh
is composed of subvoxel triangular elements, so the final segmentation has subvoxel accuracy
and yields a smooth surface representation, matching concavities and convexities that may be
present on complex geometries.

3 SELF-COLLISION DETECTION SCHEME

The self-collision detection scheme aims to notice when two triangles of the mesh, which are
not neighbors, collide or self-intersect. We say that two triangles are not neighbors if they do not
share any vertex. The objective is to get a list of triangles that are colliding. As comparing each
triangle with each other in the mesh has a quadratic complexity (not suitable for this problem),
triangles should be classified and complexity reduced.

3.1 CLASSIFICATION

The first step of the detection process is a classification stage using Uniform Grids. We
discretize the space of the image that contains the mesh by dividing the volume into a grid
where each cell of this grid is a cube inside the analyzed volume. A visual representation can
be appreciated in Figure 2.

The number of bins in each axis is determinated empirically and is calculated automatically
as the range of the axis divided by the edge mean length (µ) of the triangles:

Figure 2: Volume discretization.

Bins[i] =
Max[i]−Min[i]

µ
i = 1, 2, 3 (11)

We use a tridimensional matrix data structure to repre-
cent the grid. Each cell of the matrix is a list of triangles’
identification (ids), initially empty. So, we iterate for each
triangle in the mesh and compute its bounding box to calcu-
late its intersection with the cells of the grid. If a triangle’s
bounding box intersects a cell, its id is added to the cell’s
list of triangles. Finally, for each cell we have a list of trian-
gles that intersects it. After visiting all the triangles of the
mesh, the cell’s lists are complete and the classification step
is finished.

3.2 COLLISION DETECTION

The detection step must decide whether or not two triangles of the same cell of the grid
collide. A pre-processing stage is done to eliminate all the lists that contain less than three

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3066

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

triangles ids in it. The heuristic considers that due to the mesh is a closed surface if a vertex or
an edge is inside the cell, then its neighbor will also intersect this cell, therefore we need at least
three triangles to have a real collision. With the remaning lists an all-to-all self-intersection
proof is done. This proof consists in three checkings. First, if the two triangles have any vertex
in common, they are discarted because they are neighbors. Second, if they are not neighbors
and their bounding boxes do not self-intersect they are also discarted. And third, after passing
the two previous tests a geometrical spatial intersection test is ran. If they collide, their ids are
kept in the colliding list.

In Figure 3 we depict a representation of a tipical self-intersection during the mesh evolution
process. On the left panel the arrows represent the displacement of the nodes in the iteration itk.
After evolving the nodes, on the center panel we see the new state of the mesh where one node
has intersected other triangle which it is not its neighbor. When we detect a self-intersection,
we rollback the whole mesh to the previous checkpoint (in this case itk) and fix the nodes
that where involved in the collision. Even though geometry is classified, this step is still quite
expensive.On panel right we show this situation.

Figure 3: Self-intersection prevention. [left] Nodes movements, [center] collision detection,
[right] collision resolution.

4 ACTIVE SURFACE WITH SELF-COLLISION DETECTION

Adding the self-collision detection technique previously explained to the active surface al-
gorithm is not straight forward.

Toward the objective of avoiding collisions two other issues, apart from the self-collision
detection, must be considered. The first, is to keep a collision-free safe state of the mesh to
rollback the iterations when a collision is detected. And the second, is to define a strategy to
prevent the triangles’ collisions. These two operations (collision detection and mesh state saving
and rollback) are computally expensive hence, the number of iterations between checkpoints
must balance quality and efficience. We will call this free parameter of the algorithm Each.

We keep a copy of the last collision-free state and the iteration number that is kept in a
proper data structure. So, when a control is performed, if no collisions are detected, we keep
the current state as well as the iteration number. Otherwise, the previous safe state must be
recovered, discarding the iterations and the prevention strategy must be applied.

Regarding the prevention strategy, we employed the simpliest solution. We freeze all the
triangles’ nodes evolution that collide and continue evolving after rolling back to a safe state.
Thus, in the active surface algorithm an other data structure keeps track whether a point is
enabled to evolve or not. This solution strongly limits the surface movement, and it does not
take in account how it affects the final geometry; but results in closed conformant meshes.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (2012) 3067

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

4.1 Implementation

We use the Insight Segmentation and Registration Toolkit (ITK)[Ibanez et al. (2005)] which
is an open-source system for medical imaging processing in C++. We implemented the Snake-
filter as a standard MeshToMesh filter and the SelfCollision-Detector as a lightobject. Two
different implementations of SelfCollision-Detector were programmed. The first one is single-
threaded and the other one using the multi-threading support provided by ITK.

/* Check the initial mesh */
Initialize();
...
/* Save Initial free-collision state */
RollBack->SaveState(Mesh, nIteration)
while (nIteration < max_Iterations and !Criterion)
{

/* Evolve the mesh */
Advance();
/* Checking iteration */
if(nIteration%Each == 0)
{

/* Any Collisions? */
if(ColliderDetector->EvaluateTriangles())
{

/** Collisions : Get the list of triangles */
Collisions = ColliderDetector->GetCollidingList();
/* Freeze the triangles */
CompleteFrozen(Collisions);
/* Load the previous safe state */
RollBack->GetState (Mesh, &nIteration);

} else // No collisions
{

/* Save the safe state */
RollBack->SaveState(Mesh, nIteration);

} /* End collide if */
/* Clear the list */
ColliderDetector->CleanTriangles();

} /* End checking if */
/* Check the Stopping Criterion */
Criterion = StopCriterion();
nIteration++;

} /* End while */
...

Figure 4: Pseudocode of active suface evolution with self-detection

Figure 4 shows a high-level pseudocode of the active surface evolution with self-colliding
detection. Before starting the points evolution, the original mesh must be collision-free. The
surface generation method, that takes the selected voxels from a previous process, checks that
no collisions are generated. In this case we assure that the mesh is collision-free. So, the first
safe state is kept and the evolution starts. In each iteration the points are evolved following
equation 10, if the iteration number is a checkpoint, the triangle evaluation process is called. If
no collisions are found, the mesh state is saved as the actual safe state as well as the iteration
number. Otherwise, the list of collided triangles points is added to the frozen list and the previ-
ous safe state is recovered discarding the last Each number of iterations.

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3068

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

5 EXPERIMENTS

We present two different experiments to address the correctness, the behaviour and the ad-
vantage of the self-collision detection strategy algorithm. The experiments were ran in an In-
tel(R) Core(TM) i7 CPU 860 @ 2.80 HGz (Quad Core) with Hyper-Threading, RAM memory:
8Gb DDR3 @ 1066 GHz, under the Linux 3.0.0.16 generic kernel(64bits).

5.1 Synthetic Evolution

The first proposed experiment shows empirically the desired property of the self-collision
detection strategy algorithm. Five spheres of the same radius were placed at the same height,
four of them form a square and the remaining is in the middle of the square but a bit closer to
one of the others as shows Figure 5, left panel. All the spheres were considered as one mesh,
and they were expanded during the whole process to provoke their collisions.

Figure 5: Synthetic evolution colliding detection. [left] The inicial state & final result checked
each 5 it. and [right] evolutions slides shown each 50 it.

As the result of the synthetic experiment, the inner sphere ended squashed by the four ex-
terior ones, and these last also remained deformed because of their approximation. The left
panel of Figure 5 shows, in cyan, the final state of the mesh. In Figure 5 right panel we present
colored slides of the mesh evolution each 50 iterations and its final position without collisions.

5.1.1 Checking Step Evaluation

The only free parameter of the detection algorithm is the number of iterations between check-
points (Each). Concerning the evaluation of this parameter we performed the next experiment:
We used 4 different checking steps, each 5, 10, 25 and 50 iterations. We computed 401 itera-
tions in every simulation using these snakes parameters: a = 1 b = 1 p = 0.0 q = 5, step:
∆t = 0.01. These 4 simulations were ran both with a single-threaded detector and again using
the multi-threaded detector to compare their performance. The simulations results were exactly
the same for the single-threaded and multi-threaded detector except for the total time they last.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (2012) 3069

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 6: Quality vs. Checking Iterations Parameter (Each). Final results: [top-left] Each: 5 it.,
[top-right] Each: 10 it., [bottom-left] Each: 25 it., and [bottom-right] Each: 50 it.

In Figure 6 we can appreciate that the smaller the parameter Each is, the better simulation
quality we have. This result is quite evident because as we are using a freezing strategy, the
minimum precision is inversely proportional to the number of iterations between checkpoints.
Nevertheless, using a short Each parameter increases the computational cost as we can appre-
ciate in section 5.3

5.2 Real Case Evolution

In this section we present a real case situation of a rectum segmentation in a volumetric MRI
study. We describe common artifacts in the mesh produced during the point evolution and how
they are avoided thanks to the colliding detection technique.

5.2.1 Loops

In Figure 7 left panel we show a region of the mesh with a loop. The white line is a slide of
the contour of the mesh. We ran the same simulation with the self-collision detector and as it
can be seen in Figure 7 right panel, we eluded the loop. The same slide is spotted as the white
line in the resulting mesh but now without loops. It is also important to remark that the rest of
the mesh is almost similar.

5.2.2 Results

We computed the complete segmentation process previously described in section 2. For
region growing stage, we used the parameters shown in Table 1 left panel. We needed 3 different
seeds to obtain an accurate result in this stage. Next, we created the mesh, smoothed it with the
Taubin filter and finally evolved it with the Snake filter with the self-colliding detector using
the parameters of Table 1 right panel. The evolution process ran for 74 iterations until the stop

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3070

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 7: Real case loop collision prevention. [left] 3D loop collision and [right] avoided
collision.

criterion was reached.

Region Growing: Snake:
Seeds x y z

I 168 155 50
II 181 087 39
III 204 110 60
k: 2.0 f: 0.44

a: 4.5 b: 4.0
p: 1.5 q: 2.3
f: 0.25 t: 0.25

∆t: 0.01 Each: 15

Table 1: Segmentation parameters.

As the result of the mesh evolution we obtain the surface representation of an organ, in this
case a rectum without collisions. In Figure 8 we show 3 proyections of the MRI acquisition and
in green the organ mesh surface representation. On the bottom-right panel we show a volume
view of the MRI and the mesh surface of the rectum also in 3D.

5.3 Performance

We performed two different analysis to test the efficience of the multi-threaded implemen-
tation over the single-threaded one. The first one sublty analyzes the time spent at each part
of the collision detector algorithm and the second one corroborates the efficience differences in
the whole simulation process.

5.3.1 Subtle Part by Part Analysis

In this experiment we analyzed the time spent in each part of the self-collision detection
algorithm in 5 checks during the rectum segmentation process of two different patients.

From Table 2 we can conclude that the speed-up factor of the parallelized stages of the
algorithm is almost proportional to the number of cores (4) of the used computer. In the total
spent time, the parallel implementation is approximately as twice faster than the secuential one.
Parallelize the classification stage could give an extra speed-up to the whole process.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (2012) 3071

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 8: Final Mesh Model of the Patient’s Rectum. [top-left] Axial View - [top-right] Sagital View -
[bottom-left] Coronal View - [bottom-right] Volume View

Rectum 13 Rectum 51
Time Secuential Parallel Spd-up Fac
Inicialization: 0.138694 s 0.033848 s 4.1
Classification: 0.462882 s 0.449207 s 1.03
Detection: 0.728716 s 0.193627 s 3.76
Total: 1.206402 s 0.646458 s 1.87

Secuencial Parallel Spd-up Fac
0.15074 s 0.005423 s 2.78
0.552061 s 0.537174 s 1.03
0.856607 s 0.236252 s 3.63
1.441756 s 0.778825 s 1.85

Table 2: Part by part efficience run-times comparison

5.3.2 Complete Simulation Comparison

We ran the syntetic simulation described in 5.1 varying the each parameter, and averaged
five different simulations measures. This experiment not only stands the speed-up factor of the
parallel implementation but also the computational overhead of the checking step Each in the
complete simulation process.

Figure 9 sumarizes the result of the experiment. First, we stand out the time overhead due
to the self-collision detection technique. As the Each parameter decreases, the total time of
the simulation grows exponentialy (red and green bars) while the snake evolution time (grey)
remains constant. Second, we can appreciate the time difference between the sequencial and
parallel implementations. The more checkings we perform, the bigger the time difference is. As
a conclusion of this experiment, in order to balance quality and efficience we propose to choose
the Each parameter between 10 and 25 iterations.

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3072

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0 5 10 15 20 25 30 35 40 45 50

20
60

10
0

14
0

18
0

22
0

26
0

30
0

34
0

Checking Step vs. Total Time

Each (it)

T
im

e
(s

) Secuential
Parallel

Figure 9: Total time simulation comparison: The colors (red, green) represent the collision
detection time (secuential, parallel) and in grey the snake evolution time.

6 CONCLUSION

In this paper, we have presented a segmentation scheme based on active contours with geom-
etry control. When self-intersections were detected, we propose to rollback to a “safe state”, fix
the nodes positions and continue the evolution. The proposed scheme effectively prevents the
appearance of loops in the mesh, without having to limit the forces on the nodes as are proposed
in other works. The resolution method applied is very simple and can be improved or replaced
by another, thanks to the modular design that has been followed in developing the algorithm.
The collision detection has a high computational cost, which may be reduced easily using a
parallel architecture, with either multi-cores CPUs or GPUs. In upcoming works, this strategy
will be used during the evolution of several snakes to solve the simultaneous segmentation of
multiple tissues or organs.

REFERENCES

Bay T., Chambelland J.C., Raffin R., Daniel M., and Bellemare M.E. Geometric modeling
of pelvic organs. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual
International Conference of the IEEE, pages 4329 –4332. 2011. ISSN 1557-170X. doi:
10.1109/IEMBS.2011.6091074.

Bischoff S. and Kobbelt L. Snakes with topology control. The Visual Computer, 2003.
Cohen L. On active contour models and balloons. CVGIP: Image understanding, 53(2):211–

218, 1991.
del Fresno M., Vénere M., and Clausse A. A combined region growing and deformable model

method for extraction of closed surfaces in 3d ct and mri scans. Computerized Medical Imag-
ing and Graphics, 33(5):369 – 376, 2009. ISSN 0895-6111. doi:10.1016/j.compmedimag.
2009.03.002.

Mecánica Computacional Vol XXXI, págs. 3061-3074 (2012) 3073

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Ibanez L., Schroeder W., Ng L., and Cates J. The ITK Software Guide. Kitware, Inc. ISBN
1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, second edition, 2005.

Kass M., Witkin A., and Terzopoulos D. Snakes: Active contour models. INTERNATIONAL
JOURNAL OF COMPUTER VISION, 1(4):321–331, 1988.

Lin Z., Jin J., and Talbot H. Unseeded region growing for 3d image segmentation. In Selected
papers from the Pan-Sydney workshop on Visualisation - Volume 2, VIP ’00, pages 31–37.
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 2001. ISBN 0-909-
92580-1.

Ma Z., Tavares J., Jorge R., and Mascarenhas T. A review of algorithms for medical image
segmentation and their applications to the female pelvic cavity. Computer Methods in Biome-
chanics and Biomedical Engineering, 13(2):235–246, 2010.

Mcinerney T. and Terzopoulos D. Topology adaptive deformable surfaces for medical image
volume segmentation. IEEE Transactions on Medical Imaging, 18:840–850, 1999.

Osher S. and Fedkiw R.P. Level set methods. In in Imaging, Vision and Graphics. Springer,
2000.

Pimenta S., Tavares J., Jorge R., Alexandre F., Mascarenhas T., and El Sayed R. Reconstruction
of 3d models from medical images: Application to female pelvic organs. 2006.

Pohle R. and Toennies K. A new approach for model-based adaptive region growing in medical
image analysis. In Computer Analysis of Images and Patterns, pages 238–246. Springer,
2001.

Singh A., Terzopoulos D., and Goldgof D. Deformable Models in Medical Image Analy-
sis. IEEE Computer Society Press, Los Alamitos, CA, USA, 1st edition, 1998. ISBN
0818685212.

Taubin G. A Signal Processing Approach to Fair Surface Design. Computer Graphics, 29(An-
nual Conference Series):351–358, 1995.

Xiping L. and Jie T. Active contour based segmentation of medical image series. 2002.

R. NAMIAS, J.P. D'AMATO, M. DEL FRESNO, M. VENERE3074

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	INTRODUCTION
	Active contours for mesh generation

	TRIDIMENSIONAL GEOMETRICAL MODEL GENERATION
	Region Growing Step
	Acceptance criterion

	Surface mesh generation
	Active Surface Models
	Stopping Criterion

	SELF-COLLISION DETECTION SCHEME
	CLASSIFICATION
	COLLISION DETECTION

	ACTIVE SURFACE WITH SELF-COLLISION DETECTION
	Implementation

	EXPERIMENTS
	Synthetic Evolution
	Checking Step Evaluation

	Real Case Evolution
	Loops
	Results

	Performance
	Subtle Part by Part Analysis
	Complete Simulation Comparison

	CONCLUSION

