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the stabilization parameter involved, are suggested by bubble condensation. Numerical stability
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1 INTRODUCTION

The Navier-Stokes equation constitutes a major challenge in applied mathematics. Specifically,
its numerical solution presents two major difficulties, namely, the need for a compatibility con-
dition (the inf-sup condition, see1, 2) relating the discrete spaces used to approximate the velocity
field u and the pressure p, and the treatment of the spurious modes generated by the convective
term. For both these aspects, several solutions have been proposed in the last two decades. The
convective terms have been treated by appropriate upwinding strategies (cf.1, 3, 4 and the refer-
ences therein), or stabilized finite element methods (cf.5, 6 among others). On the other hand,
the inf-sup condition may be treated directly (cf.1, 2 and the references therein), or circumvented
via stabilized finite element methods (cf.7–11 in the context of a Stokes flow).

On the other hand, if we are dealing with the time discretization of the Navier-Stokes equa-
tion, and we choose the “classical” approach (i.e., discretizing in time by time-advancing finite
differences) we have different choices for the scheme (for a resume of these techniques, see3).
A common fact of all these techniques is the presence of a zeroth order term of type 1

∆t
u, where

∆t is the time step (usually very small), and u is the unknown velocity field. In the late nineties,
several works concerning stabilization procedures for problems with zeroth order terms (or re-
action terms), were proposed (see, e.g.12, 13 and the recent paper14 where edge stabilization
has been proposed for a scalar convection-diffusion-reaction problem). In particular, in15–17 the
connection between stabilized finite element methods and Galerkin methods enriched with bub-
ble functions was used to derive a new family of stabilized finite element method, namely, the
Unusual Stabilized Finite Element Method (USFEM), which are particularly suited for treating
problems with dominating reaction.

In this work we continue the work from18 where the method was originally proposed for a
problem including convection, and give some new error estimates and numerical experiments.
For completeness, we review the analysis of the method in Section 2, where an error estimate
is derived for the standard norms of velocity and pressure. Moreover, a new approximation
result is presented at the end of this section, now for the L2(Ω) norm of the velocity error,
obtained by modifying a duality argument. The estimate is suboptimal in the convection domi-
nated case, which has been observed for SDFEM and GLS methods (see,19–21 and specially the
introduction in22). Finally, in Section 3 we report some numerical experiments that confirm our
approximation results, and show some extra features of the method.

2 THE FINITE ELEMENT METHOD

First, we present the problem of interest. Let Ω be a bounded open subset of R
2, f ∈ [L2(Ω)]2,

σ a positive real number (typically, σ ≈ 1
∆t

where ∆t is the time step in a time discretization
procedure), and a : Ω → R

2 a vectorial function such that ∇· a = 0 in Ω (this function a may
be interpreted as the velocity field in the previous time step). Our generalized incompressible
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flow problem reads: Find (u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) such that

σu − ν∆u + a·∇u + ∇p = f in Ω ,

∇·u = 0 in Ω ,

u = 0 on ∂Ω ,

(1)

where L2
0(Ω)

def
= {q ∈ L2(Ω) : (q, 1)Ω = 0}, and (·, · )D denotes the L2 inner product in L2(D)

(or in L2(D)2, L2(D)2×2, when necessary). Also, by ‖· ‖l,D and |· |l,D we will denote the H l(D)
norm and seminorm, respectively, with the usual convention H 0(D)=L2(D).

From now on, let us suppose that Ω is a polygonal domain in R
2, and let Th be a triangulation

of Ω constituted by triangles (or quadrilaterals) which are shape regular. Let hK be the usual

element diameter, and denote h
def
= max{hK : K ∈ Th}. We suppose from now on that h ≤ 1.

Now, for k ≥ 1, let Vk be the space of piecewise polynomial functions given by

Vk
def
=

{

v ∈ C0(Ω)/v
∣

∣

K
∈ Rk(K) ,∀K ∈ Th

}

.

Here, Rk(K) = P k(K) for triangular elements and Rk(K) = {p ◦ F−1
K / p ∈ Qk(K̂)} for

quadrilateral elements, where FK stands for the usual transformation mapping the reference
element K̂ onto K.

In weak form, this problem reads: Find (u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) such that

A((u, p), (v, q)) = (f ,v)Ω ∀(v, q) ∈ [H1
0 (Ω)]2 × L2

0(Ω),

where

A((u, p), (v, q))
def
= σ(u,v)Ω + ν(∇u,∇v)Ω + (a · ∇u,v)Ω − (p,∇·v)Ω + (q,∇·u)Ω. (2)

Our stabilized finite element method reads: Find (uh, ph) ∈ Vh × Qh such that:

B((uh, ph), (v, q)) = F(v,q) ∀ (v, q) ∈ Vh × Qh , (3)

where Vh
def
= [Vk ∩ H1

0 (Ω)]2 and Qh
def
= Vl ∩ L2

0(Ω), k, l ≥ 1, B and F are given by

B((uh, ph), (v, q))
def
= A((uh, ph), (v, q)) +

∑

K∈Th

(δK∇·uh,∇·v)K

−
∑

K∈Th

(σuh − ν∆uh + a · ∇uh + ∇ph, τK(σv − ν∆v − a·∇v −∇q))K , (4)

F(v, q)
def
= (f ,v)Ω −

∑

K∈Th

(f , τK(σv − ν∆v − a·∇v −∇q))K . (5)
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Here, the stabilization parameters τK and δK are given by

τK
def
=

h2
K

σh2
Kξ(Pe1

K) +
4ν

mk

ξ(Pe2
K)

, (6)

δK
def
= λ |a(x)|2 hK min{1, P e2

K} , (7)

where λ ≥ 0 and

Pe1
K =

4ν

mkσh2
K

, (8)

Pe2
K =

mk|a|2hK

4ν
, (9)

|a(x)|2
def
= (|a1|

2 + |a2|
2)1/2 , (10)

mk = min{
1

3
, Ck} , (11)

Ckh
2
K ‖∆v‖2

0,K ≤ ‖∇v‖2
0,K ∀ v ∈ Vk , (12)

ξ(λ) = max{λ, 1} . (13)

Remark 1 The design of the stabilization parameter τK has been suggested by bubble conden-
sation, following very closely the arguments given in.17, 23 The least-squares parameter δK is
the one from.6 In the case of a generalized Stokes problem (a = 0) we recover the method
from.17 Now, in the case of a pure Oseen equation σ = 0, we recover the “plus” formulation
from6 with a stabilization parameter which satisfies τFF ≤ τK ≤ 2τFF , where τFF denotes the
stabilization parameter proposed in,6 given by

τFF
def
=

hK

2|a(x)|2
min{1, P e2

K} .�

Remark 2 In24 the orthogonal subscales approach was applied to a related problem contain-
ing a Coriolis terms and a zeroth order term. The resulting formulation involves stabilization
parameters with free constants to be set. The performance of the method depends on how these
constants are chosen. �

2.1 The stability of the method

Throughout all this section (and the following one), C will denote a positive constant indepen-
dent of h (but who may depend on the physical coefficients), whose value may vary whenever
it is written in two different places.

The following lemma provides the positive-definiteness of the stiffness matrix associated
with our method it’s proof is given in18 .
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Lemma 1 There exists a constant CΩ, depending only on Ω, such that

B((v, q), (v, q)) ≥ CΩν ‖v‖2
1,Ω +

∑

K∈Th

{

‖τ
1/2
K (a·∇v + ∇q)‖2

0,K + ‖δ
1/2
K ∇·v‖2

0,K

}

, (14)

for all (v, q) ∈ Vh × Qh.

Remark 3 From Lemma 1 above, a first error estimate involving the mesh dependent norm
appearing in the right hand side of (14) may be given (see17 for an estimate of this kind in the
case of a Stokes flow). However, this estimate has a couple of important drawbacks (see17 for a
discussion), and that is why in the rest of this section we follow an alternative approach. �

Now, in order to prove our main result in stability, namely the inf-sup condition for B, we
define the following mesh-dependent norm:

|||(v, q)|||h
def
=

{

‖v‖2
1,Ω +

∑

K∈Th

[

‖τ
1/2
K (a·∇v + ∇q)‖2

0,K + ‖δ
1/2
K ∇·v‖2

0,K

]

+ ‖q‖2
0,Ω

}1/2

,

(15)
for all (v, q) ∈ Vh × Qh.

We now state the main stability result.
Theorem 2 There exists a constant β = β(σ, a, ν), independent of h, such that

sup
θ 6=(w,t)∈Vh×Qh

B((u, p), (w, t))

|||(w, t)|||h
≥ β |||(u, p)|||h ,

for all (u, p) ∈ Vh × Qh.
Proof. - Let (u, p) ∈ Vh × Qh. Since p ∈ L2

0(Ω), there exists v ∈ [H1
0 (Ω)]2 such that

∇·v = −p in Ω and ‖v‖1,Ω ≤ C ‖p‖0,Ω. Now, let vh be the Clément interpolate of v (cf.1, 25),
which satisfies

‖v − vh‖0,K ≤ C hK ‖v‖1,V (K) , (16)

‖vh‖1,Ω ≤ C ‖v‖1,Ω , (17)

where V (K) is the set of elements in Th who share at least one node with K. After some
manipulations (for the datails, see18), we arrive at

B((u, p), (vh, 0)) ≥ −C∗∗

{

‖u‖2
1,Ω +

∑

K∈Th

[

‖τ
1/2
K (a·∇u + ∇p)‖2

0,K + ‖δ
1/2
K ∇·u‖2

0,K

]

}

+ C∗ ‖p‖2
0,Ω , (18)

where C∗ and C∗∗ are positive constants, independents of h.
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In this form, if we set (z, q)
def
= (u + γvh, p) , γ > 0, we have by the bilinearity of B and

Lemma 1

B((u, p), (z, q)) = B((u, p), (u, p)) + γ B((u, p), (vh, 0))

≥ CΩν ‖u‖2
1,Ω +

∑

K∈Th

[

‖τ
1/2
K (a·∇u + ∇p)‖2

0,K + ‖δ
1/2
K ∇·u‖2

0,K

]

− γC∗∗

{

‖u‖2
1,Ω +

∑

K∈Th

[

‖τ
1/2
K (a·∇u + ∇p)‖2

0,K + ‖δ
1/2
K ∇·u‖2

0,K

]

}

+ γ C∗ ‖p‖2
0,Ω

≥ C |||(u, p)|||2h , (19)

where C > 0 is independent of h if γ is chosen small enough. Finally, using that h ≤ 1 and
‖v‖1,Ω ≤ C ‖p‖0,Ω, we obtain

|||(z, q)|||2h ≤ 2 ‖u‖2
1,Ω + 2

∑

K∈Th

‖τ
1/2
K (a·∇u + ∇p)‖2

0,K + 2
∑

K∈Th

‖δ
1/2
K ∇·u‖2

0,K + ‖p‖2
0,Ω

+ 2γ2

[

‖vh‖
2
1,Ω +

∑

K∈Th

τK
1/2‖a·∇vh‖

2
0,K +

∑

K∈Th

‖δ
1/2
K ∇·vh‖

2
0,K

]

≤ C |||(u, p)|||2h ,

which, together with (19), finish the proof. �

2.2 Error Analysis

Let k, l be integers with k, l ≥ 1. We use the Lagrange interpolation operator I
k
h : (C0(Ω))2 →

[Vk]
2, we denote ũh

def
= I

k
h(u), define the interpolation error ηu def

= u − ũh, and we have (cf.26)

|ηu|m,K ≤ Chs−m
K |u|s,K , (20)

if u ∈ Hs(K)2 for all K ∈ Th, with 0 ≤ m ≤ 2 and max{m, 2} ≤ s ≤ k + 1. Now, for the

pressure we define p̃h as being the Clément interpolate of p. Denoting now by ηp def
= p − ph,

where

ph
def
= p̃h −

1

|Ω|
(p̃h, 1)Ω ∈ L2

0(Ω) ,

we have (cf.1)

‖ηp‖0,Ω ≤ Cht ‖p‖t,Ω , (21)

|ηp|1,K ≤ Cht−1 ‖p‖t,V (K) , (22)

if p ∈ H t(Ω), with 1 ≤ t ≤ l + 1.
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The main result concerning approximation is now stated.
Theorem 3 Let us suppose that the solution (u, p) of (1) belongs to (H k+1(Ω) ∩ H1

0 (Ω))2 ×

(H l(Ω) ∩ L2
0(Ω)). Then, there exists C > 0, independent of h, such that the error (eu, ep)

def
=

(u − uh, p − ph) satisfies

‖eu‖1,Ω + ‖ep‖0,Ω ≤ C
[

hk |u|k+1,Ω + hl ‖p‖l,Ω

]

.

Proof. - Let eu

h
def
= uh − ũh and ep

h

def
= ph − ph. From the proof of previous theorem, we see that

the suppremum is attained, and then there exists (v, q) ∈ Vh × Qh such that

|||(v, q)|||h ≤ C ,

and (using that 2(‖eu

h‖1,Ω + ‖eh‖0,Ω) ≤ |||(eu

h , eh)|||h)

2β
[

‖eu

h‖1,Ω + ‖ep
h‖0,Ω

]

≤ B((eu

h , ep
h), (v, q)) = B((ηu, ηp), (v, q)) , (23)

thanks to the consistency of the method. Now, for the right hand side of (23) we have by using
Schwartz’s inequality

B((ηu, ηp), (v, q)) = σ(ηu,v)Ω + ν(∇ηu,∇v)Ω + (a·∇ηu,v)Ω

− (ηp,∇·v)Ω + (q,∇· ηu)Ω +
∑

K∈Th

(∇· ηu, δK∇·v)K

−
∑

K∈Th

(σηu − ν∆ηu + a·∇ηu + ∇ηp, τK(σv − ν∆v − a·∇v −∇q))K

≤

{

∑

K∈Th

σ ‖ηu‖2
0,K + ν |ηu|21,K + ‖a·∇ηu‖2

0,K + ‖ηp‖2
0,K + ‖∇· ηu‖2

0,K

+ ‖δ
1/2
K ∇· ηu‖2

0,K + ‖τ
1/2
K (σηu − ν∆ηu + a·∇ηu + ∇ηp)‖2

0,K

}
1

2

·

{

∑

K∈Th

σ ‖v‖2
0,K + ν |v|21,K + ‖v‖2

0,K + ‖∇·v‖2
0,K + ‖q‖2

0,K

+ ‖δ
1/2
K ∇·v‖2

0,K + ‖τ
1/2
K (σv − ν∆v − a·∇v −∇q)‖2

0,K

}
1

2

.

Now, applying inequality (12) for the −ν2τK‖∆v‖2
0,K term and στK ≤ 1, previous inequality
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becomes

B((ηu, ηp), (v, q)) ≤ C

{

max{σ, ν, ‖a‖2
∞,Ω, ‖a‖∞,Ωh,

1

ν
}

∑

K∈Th

[

‖ηu‖2
0,K + |ηu|21,K + ‖ηp‖2

0,K

+ h2
K‖∆ηu‖2

0,K + h2
K |ηp|21,K

]}
1

2

·

{

max{σ, ν, 1}
∑

K∈Th

[

‖v‖2
0,K + |v|21,K + ‖q‖2

0,K + ‖δ
1/2
K ∇·v‖2

0,K

+ ‖v‖2
0,K + |v|21,K + ‖τ

1/2
K (a·∇v + ∇q)‖2

0,K

]}
1

2

.

Now, the second term in the product above is smaller than C |||(v, q)|||h and hence it is bounded
by a constant. Therefore, applying interpolation inequalities (20), (21) and (22) we arrive at

B((ηu, ηp), (v, q)) ≤ C(σ, ν, a)

{

∑

K∈Th

[

‖ηu‖2
0,K + |ηu|21,K + h2

K‖∆ηu‖2
0,K

]

+‖ηp‖2
0,Ω + h2|ηp|21,Ω

}
1

2

≤ C (hk |u|k+1,Ω + hl ‖p‖l,Ω) . (24)

Finally, applying triangle inequality and (24) we arrive at

‖eu‖1,Ω + ‖ep‖0,Ω ≤ |||(eu

h , ep
h)|||h + |||(ηu, ηp)|||h

≤
C

β
(hk |u|k+1,Ω + hl ‖p‖l,Ω)

+

{

‖ηu‖2
1,Ω + ‖ηp‖2

0,Ω +
∑

K∈Th

‖δ
1/2
K ∇· ηu‖2

0,K + ‖τ
1/2
K (a·∇ηu + ∇ηp)‖2

0,K

}
1

2

≤
C

β
(hk |u|k+1,Ω + hl ‖p‖l,Ω)

+ C

{

‖ηu‖2
1,Ω + ‖ηp‖2

0,Ω + ‖a‖∞,Ωh |ηu|21,Ω + ‖a‖2
∞,Ω

h2

ν
|ηu|21,Ω +

h2

ν
|ηp|21,Ω

}
1

2

≤
C

β
(hk |u|k+1,Ω + hl ‖p‖l,Ω) + C

{

‖ηu‖2
1,Ω + ‖ηp‖2

0,Ω + h2 |ηp|21,Ω

}
1

2 ,

and the proof follows by applying interpolation inequalities (20), (21) and (22) once again.�
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2.3 An error estimate in L2(Ω)-norm

In the sequel, we will assume that the solution of the following auxiliary dual problem :

σϕ − ν∆ϕ − a · ∇ϕ −∇π = u − uh in Ω ,

∇ · ϕ = 0 in Ω ,

ϕ = 0 on ∂Ω ,

(25)

belongs to [H2(Ω) ∩ H1
0 (Ω)]2 × [H1(Ω) ∩ L2

0(Ω)] and satisfies the following a priori estimate:

‖ϕ‖2,Ω + ‖π‖1,Ω ≤ C‖u − uh‖0,Ω. (26)

Theorem 4 Let us suppose that (u, p) belongs to [Hk+1(Ω)]2 × Hk(Ω), and the regularity
hypotheses (26) . Then, there exists a constant C > 0, independent of h, such that

‖u − uh‖0,Ω ≤

{

C hk+1
(

|u|k+1,Ω + ‖p‖k,Ω

)

, if Pe2
K < 1

C hk+1/2
(

|u|k+1,Ω + ‖p‖k,Ω

)

, if Pe2
K > 1.

(27)

Proof. - Multiplying the first equation on (25) by u− uh, the second by −(p− ph), integrating
by parts, additioning and using the consitency of the method we obtain

‖u − uh‖
2
0,Ω = B

(

(u − uh, p − ph), (ϕ − ϕh, π − πh)
)

+
∑

K∈Th

(

σ(u − uh) − ν∆(u − uh) + a · ∇(u − uh) + ∇(p − ph), τK(u − uh)
)

K

where ϕh ∈ Vh and πh ∈ Qh denote the Lagrange and Clément interpolate of ϕ and π,
respectively. Then

‖u − uh‖
2
0,Ω ≤ C

{

∑

K∈Th

σ ‖u − uh‖
2
0,K + ν |u − uh|

2
1,K + ‖a·∇(u − uh)‖

2
0,K

+ ‖p − ph‖
2
0,K + ‖∇· (u − uh)‖

2
0,K + σ2 ‖τ

1/2
K (u − uh)‖

2
0,K

+ ν2 ‖τ
1/2
K ∆(u − uh)‖

2
0,K + ‖τ

1/2
K (a · ∇(u − uh) + ∇(p − ph))‖

2
0,K

+ ‖δ
1/2
K ∇· (u − uh)‖

2
0,K

}1/2

{

∑

K∈Th

σ ‖ϕ − ϕh‖
2
0,K + ν |ϕ − ϕh|

2
1,K + ‖ϕ − ϕh‖

2
0,K

+ ‖∇· (ϕ − ϕh)‖
2
0,K + ‖π − πh‖

2
0,K + σ2 ‖τ

1/2
K (ϕ − ϕh)‖

2
0,K

+ ν2 ‖τ
1/2
K ∆(ϕ − ϕh)‖

2
0,K + ‖τ

1/2
K (a · ∇(ϕ − ϕh) + ∇(π − πh))‖

2
0,K

+ ‖δ
1/2
K ∇· (ϕ − ϕh)‖

2
0,K + ‖τ

1/2
K (u − uh)‖

2
0,K

}1/2

.
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Now, let ũh be the Lagrange interpolate of u. Since τK ≤ C
h2

K

ν
, using interpolation inequalities

(20) and inverse inequality (12) we arrive at

ν2 ‖τ
1/2
K ∆(u − uh)‖

2
0,K ≤ C ν h2

K ‖∆(u − uh)‖
2
0,K

≤ Cν h2
K

(

‖∆(u − ũh)‖
2
0,K + ‖∆(ũh − uh)‖

2
0,K

)

≤ Cν h2k
K |u|2k+1,K + Cν |u − uh|

2
1,K .

Using the error estimate for |||(u − uh, p − ph)|||h given in Theorem 3 we arrive at

‖u − uh‖
2
0,Ω ≤ C(|||(u − uh, p − ph)|||

2
h + νh2k |u|2k+1,Ω + ν |u − uh|

2
1,K)1/2

{

∑

K∈Th

‖ϕ − ϕh‖
2
1,K + ‖π − πh‖

2
0,K + ν2‖τ

1/2
K ∆(ϕ − ϕh)‖

2
0,K + ‖τ

1/2
K a·∇(ϕ − ϕh)‖

2
0,K

+ ‖τ
1/2
K ∇(π − πh)‖

2
0,K + ‖δ

1/2
K ∇· (ϕ − ϕh)‖

2
0,K + ‖τ

1/2
K (u − uh)‖

2
0,K

}1/2

≤ C hk
(

|u|k+1,Ω + ‖p‖k,Ω

)

{

∑

K∈Th

‖ϕ − ϕh‖
2
1,K + ‖π − πh‖

2
0,K + ν2‖τ

1/2
K ∆(ϕ − ϕh)‖

2
0,K + ‖τ

1/2
K a·∇(ϕ − ϕh)‖

2
0,K

+ ‖τ
1/2
K ∇(π − πh)‖

2
0,K + ‖δ

1/2
K ∇· (ϕ − ϕh)‖

2
0,K + ‖τ

1/2
K (u − uh)‖

2
0,K

}1/2

.

The rest of the proof is separated in two cases:
i). Pe2

K < 1 (i.e., mk|a|2hK < 4ν). In this case, we have

τK =
h2

K

σh2
Kξ(Pe1

K) + 4ν
mk

≤
mkh

2
K

4ν
, δK =

λ|a|22h
2
Kmk

4ν
.

Hence, applying interpolation inequalities (20)-(21) and apriori estimate (26) we obtain

‖u − uh‖
2
0,Ω ≤ C hk

(

|u|k+1,Ω + ‖p‖k,Ω

)

{

∑

K∈Th

h2
K ‖ϕ‖2

2,K + h2
K ‖π‖2

1,K + ν h2
K ‖∆(ϕ − ϕh)‖

2
0,K +

‖a‖2
∞,Ωh2

K

ν
|ϕ − ϕh|

2
1,K

+
h2

K

ν
|π − πh|

2
1,K +

λ‖a‖∞,Ωh2
K

ν
|ϕ − ϕh|

2
1,K +

h2
K

ν
‖u − uh‖

2
0,K

}1/2

≤ C hk
(

|u|k+1,Ω + ‖p‖k,Ω

)

{

∑

K∈Th

h2
K ‖ϕ‖2

2,K + h2
K ‖π‖2

1,K +
h2

K

ν
‖u − uh‖

2
0,K

}1/2
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≤ C hk+1 (|u|k+1,Ω + ‖p‖k,Ω) ‖u − uh‖0,Ω ,

and the result follows.
ii). Pe2

K > 1 (i.e., 4ν < mk|a|2hK). In this case, we get

τK =
h2

K

σh2
Kξ(Pe1

K) + |a|2hK

=
hK

σhK + |a|2
,

δK = λ|a|2hK .

Thus, supposing, without loss of generality, that |a(x)|2 ≥ a∗ > 0 in Ω, using interpolation

inequalities and using the fact that τk ≤ C
h2

K

ν
we get the following inequalities

ν2 ‖τ
1/2
K ∆(ϕ − ϕh)‖

2
0,K ≤ Cν h2

K ‖ϕ‖2
2,K ,

‖τ
1/2
K a·∇(ϕ − ϕh)‖

2
0,K ≤

∥

∥

∥

∥

∥

√

hK

σhK + |a|2
|a|2 |∇(ϕ − ϕh)|2

∥

∥

∥

∥

∥

2

0,K

≤ C ‖a‖∞,ΩhK |ϕ − ϕh|
2
1,Ω

≤ C ‖a‖∞,Ωh3
K ‖ϕ‖2

2,K ,

‖τ
1/2
K ∇(π − πh)‖

2
0,K ≤

hK

σhK + a∗
|π − πh|

2
1,K

≤
hK

a∗
‖π‖2

1,K ,

‖δ
1/2
K ∇· (ϕ − ϕh)‖

2
0,K ≤ λ‖a‖∞,ΩhK |ϕ − ϕh|

2
1,K

≤ λ‖a‖∞,Ω h3
K ‖ϕ‖2

2,K ,

‖τ
1/2
K (u − uh)‖

2
0,K ≤

hK

a∗
‖u − uh‖

2
0,K .

The above inequalities lead to the final estimate

‖u − uh‖
2
0,Ω ≤ C hk (|u|k+1,Ω + ‖p‖k,Ω)

{

∑

K∈Th

h2
K ‖ϕ‖2

2,K + h2
K ‖π‖2

1,K +
hK

a∗
‖π‖2

1,K +
hK

a∗
‖u − uh‖

2
0,K

}1/2

≤ C hk
(

|u|k+1,Ω + ‖p‖k,Ω

) {

h
(

‖ϕ‖2
2,Ω + ‖π‖2

1,Ω

)

+ h ‖u − uh‖
2
0,Ω

}1/2

≤ C hk+1/2
(

|u|k+1,Ω + ‖p‖k,Ω

)

‖u − uh‖0,Ω ,

and the result follows. �
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Remark 4 The error analysis carried out in previous sections allows the constants to depend
on the physical coefficientes σ, ν and a. This is, of course, a problem from both the theoretical
and numerical point of vue. Now, up to our knowledge, no general proof of error analysis in-
dependently of the physical coefficients is given for any stabilized finite element method. For a
scalar reaction-difusion equation, in15 there is an error analysis for the linear element case in
which the authors give a constant which is independent of the physics, but if a higher order ap-
proximation is used, the proof is no longer valid. Due to these remarks, in the following section
we perform numerical experiments tending to study the behavior of the error with respect to the
physical constants, and show that our method is not dramatically affected by the limiting cases
ν → 0 and σ → ∞. �

3 NUMERICAL EXPERIMENTS

We use as domain the square (0, 1)× (0, 1), and we set f to be such as the exact solution of our
problem (1) is given by

u1(x1, x2) = −256 x2
1(x1 − 1)2x2(x2 − 1)(2x2 − 1) ,

u2(x1, x2) = −u1(x2, x1) ,

p(x1, x2) = 150 x1(x1 − 0.5)(x2 − 0.5) .

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01  0.1

‖p − ph‖0,Ω h2

‖u− uh‖1,Ω

‖u− uh‖0,Ω

h

h

Figure 1: Convergence history: σ = 1, ν = 1, a = (1, 1)

First of all, in18 is shown that div-div term,
∑

K∈Th
(∇ · u, δK∇ · v)K , does not provide a

significant improvement of the convergence rate. Because of this, in the sequel we will consider
only λ = 0 in our computations. Using Q1/Q1 bilinear elements, we first report the diffusive
dominated case with σ = 1, ν = 1 and a = (1, 1). The results is depicted in Figure 1, we
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‖p − ph‖0,Ω
h2
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h
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Figure 2: Convergence history: σ = 100, ν = 0.001, a = (1, 1)

recover optimal orders of convergence for velocity and pressure. In particular, we recover the
h2 order of convergence for ‖u − uh‖0,Ω which agrees with Theorem 4 since for this case
Pe2

K < 1 even for the coarser mesh.
Next, we have considered the reaction-convection dominated case with σ = 102, ν = 10−3,

a = (1, 1), see Figure 2 for the results. Since this case is convection dominated (indeed, we have
Pe2

k > 1 even for the finer mesh), we recover the h3/2 order of convergence on the ‖u−uh‖0,Ω

error.
To stress this fact in Figure 3 we show the convergence history for estimate L2(Ω)-norm with

σ = 100, ν = 0.005 and a = (1, 1), where we see that there is a zone in which the order is h3/2

and when the mesh becomes fine enough (so that Pe2
K < 1) we recover the h2 order.

σ ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖p − ph‖0,Ω

0.1 2.7874 × 10−3 0.3958 8.6038 × 10−3

1 2.6803 × 10−3 0.3957 8.4365 × 10−3

10 2.3850 × 10−3 0.3955 7.6346 × 10−3

100 2.1733 × 10−3 0.3958 7.4289 × 10−3

103 2.1593 × 10−3 0.3965 7.4812 × 10−3

104 2.1606 × 10−3 0.3968 7.4945 × 10−3

Table 1: Behavior of the Finite Element error when σ grows

Now, we address the study of the sensitivity of the error to the physical coefficients. To this
purpose, we use a uniform 40× 40 mesh (= 1600 Q1/Q1 elements), and we measure the errors
in velocity and pressure.
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Figure 3: Convergence history: ‖u− uh‖0,Ω with σ = 100, ν = 0.005 and a = (1, 1)

ν ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖p − ph‖0,Ω

1 3.2727 × 10−3 0.3950 1.00625 × 10−2

0.1 3.6313 × 10−3 0.3951 7.8391 × 10−3

0.01 6.4479 × 10−3 0.3981 6.6037 × 10−3

10−3 2.1733 × 10−3 0.3958 7.4289 × 10−3

10−4 1.5185 × 10−3 0.3985 7.9905 × 10−3

10−5 1.5045 × 10−3 0.3990 8.0514 × 10−3

10−6 1.5038 × 10−3 0.3990 8.0575 × 10−3

Table 2: Behavior of the Finite Element error when ν decreases

a ‖u − uh‖0,Ω ‖u − uh‖1,Ω ‖p − ph‖0,Ω

(0.1,0.1) 6.4927 × 10−3 0.3987 7.8081 × 10−3

(1,1) 2.1733 × 10−3 0.3958 7.4289 × 10−3

(5,5) 1.6817 × 10−3 0.3980 8.8848 × 10−3

(10,10) 1.7967 × 10−3 0.3993 1.5086 × 10−2

(20,20) 1.9944 × 10−3 0.4011 3.6076 × 10−2

(40,40) 2.2162 × 10−3 0.4033 8.8978 × 10−2

Table 3: Behavior of the Finite Element error when |a| grows

First, we fix ν = 10−3 and a = (1, 1) and make σ grow. The results are shown in Table 1,
where we see that the velocity error remains bounded while σ grows and that the pressure error
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presents a good behavior even for very large values of σ. Next, we fix σ = 100 and a = (1, 1),
and make the viscosity ν decrease. The results are shown in Table 2, where we see that both
errors are not singnificantly affected by the viscosity. Now, we fix σ = 100 and ν = 10−3, and
let |a| grow. We observe, in Table 3, that the error in velocity remains bounded, while the error
in pressure remains bounded for a quite large range of local Péclet numbers mk|a|hK

4ν
. Numerical

experiences beyond that range of Péclet numbers, have shown that the pressure error grows.
This is reasonable since we are already dealing with relatively high Reynolds number.
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