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Abstract. In previous papers (Idelsohn et al., 2012) the numerical method called Particle Finite
Element Method - Second Generation (PFEM-2) was presented. It solves scalar and vectorial transport
phenomena such as Navier Stokes equations for transient, laminar and incompressible flows. This
method is characterized by a Lagrangian formulation that uses both particles and mesh to solve physics
equations. Taking advantage of that, particles can transport physics variables that any model includes,
this paper presents an evolution of the method for solving equations that govern the fluid flow coupled
with passive-scalar transport equations, such as species concentrations or temperature. Also, the explicit
streamline integration strategy used by the method allows to update each variable following its own
physic law in an efficient way. This paper places particular emphasis in the thermal coupling through a
buoyancy term added to fluid acceleration and transporting at each particle its temperature. Regarding to
the implementation, it follows the parallel computing strategy presented above. Finally, results obtained
in typical benchmark cases, such as thermal square and cubic cavity, are presented, comparing with
bibliographic and experimental data.
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1 REVIEW OF PFEM-2 METHOD

The goal of PFEM-2 is to solve transport-equations. The method is principally motivated
for solving viscous incompressible flow equations as fast as possible. Its formulation allows to
find numerical results of others scalar or vectorial transport equations, such as energy balance
equation, turbulence modeling, species transport and also, the coupling among them.

The Lagrangian expression for a scalar transport-equation is

Dφ

Dt
= ∇ · (α ∇φ) +Q. (1)

where the unknown is the scalar φ (if φ is the temperature, this equation is called Heat Equation,
where α is the thermal diffusivity), and Q is an external source.

On the other hand, Navier-Stokes equation system describes the behavior of newtonian
viscous incompressible fluid flow. Its formulation is based on momentum-transport equation
which is normally coupled with the equation for the local mass balance. The Lagrangian
expression is:

ρ
Dv

Dt
= −∇p+ µ(∇vT +∇v) + Q, (2)

∇ · v = 0. (3)

where the unknowns are the velocity vector v and the pressure p, and ρ is the density and µ the
dynamic viscosity.

It should be noted that the left terms in equations (1-2) include a material derivative instead
of a temporal derivative plus a convective term (equation 4) like is usual in Eulerian formulation.

Dφ

Dt
=
∂φ

∂t
+ v · ∇φ. (4)

Lagrangian formulation is used to simplify some calculations (especially the non-linear
convective term in momentum equation) normally found in Eulerian formulation and specially
because its natural adaptation for particle based methods.

It is well known that the time step selected in the solution of the transport equations is
stable only for time steps smaller than two critical values: the Courant-Friedrichs-Lewy (Co)
number and the Fourier (Fo) number (Donea and Huerta, 2003). The first one concerns with
the convective terms and the second one with the diffusive ones. In Eulerian formulation
both numbers must be less than a constant value close to one to have stable algorithms.
For convection dominant problems like high Reynolds number flows, the condition Co < 1
becomes crucial and limits the use of explicit methods or makes the solution scheme far from
being efficient.

However, the key of the PFEM-2 algorithm(Idelsohn et al., 2011) is the ability to reach
Co � 1 due to the information is transported on the particles. One of the novelty in PFEM-
2 respect to its predecessor PFEM concerns with the integration of particle trajectory and the
state variables defining the problem. This integration is performed following the streamlines
computed explicitly with the information of the previous time step. This new method was named
X-IVAS method (eXplicit Integration following the Velocity and Acceleration Streamlines). It
was presented in Idelsohn et al. (2012) and it represents a more stable explicit time integration
not limited by Co. Briefly, the algorithm takes the velocity field as stationary on each time
step (vn), then the particle position follows these streamlines and the particle state variables are
updated by the change rate determined by the physics equations.
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xn+1
p = xnp +

∫ ∆t

0

vn(xτp) dτ (5)

φn+1
p = φnp +

∫ ∆t

0

gn(xn+τ
p ) +Qn+τ dτ (6)

vn+1
p = vnp +

∫ ∆t

0

an(xn+τ
p ) + fn+τ dτ (7)

where an = −∇pn + µ(∇vnT +∇vn) and gn = ∇ · (α ∇φn), are nodal variables.

Figure 1: Streamline integration updating the particle position and state.

To solve the passive scalar transport equation with a known velocity field, the equations
(5-6) must be used. After streamline integration, nodal values must be updated. If you want
to transport N passive scalars with the same velocity field, you only have to solve equation
6 for each variable with a common convective transport for all the passive scalars. Thereby
multi-species problems also may be simulated with PFEM-2 in a more efficient way.

To solve the Navier Stokes equation, systems (5-7) are solved coupled with the pressure p.
Figure 1 shows a graphical interpretation of the streamline integration for incompressible flow
problems. The fractional-step method is used to solve the coupling between the pressure and the
velocity. Here, it is also necessary to update nodal states with the states transported by particles.

There are two approaches to update nodal states after streamline integration, each one
generates two versions of the method. They are:

• PFEM-2 Mobile Mesh: Remesh the geometry with new particles position (particles↔nodes).

• PFEM-2 Fixed Mesh: Project states from particles to nodes, preserving the mesh.

This work is based on PFEM-2 Fixed Mesh version because it avoids the remeshing at each
time-step, a very time consuming process. Even though the Mobile Mesh version was the first
developed, at present it is in stand-by status while an efficient algorithm for parallelizing the
remeshing is being done. The Fixed Mesh version has the advantage of no need remeshing and
due to the possibility of factorizing the matrix of the pressure equation only once it becomes
much more efficient. Moreover, this last feature may be extended also for the diffusion part
of the equation while constant in time coefficient parameters are involved, as in laminar flow
regime.

Finally, a brief review is presented in the Algorithms 1 and 2.
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Algorithm 1 - Time Step PFEM-2 Scalar Transport
1. Calculate scalar change rate on the nodes like a FEM (Finite Element Method):∫

Ω
N gn dΩ = −

∫
Ω
∇N α∇φn dΩ +

∫
Γ
N ∇φn · η dΓ

2. Evaluate new particles position and state following the streamlines:
xn+1
p = xnp +

∫ ∆t

0
vn(xτp) dτ

φn+1
p = φnp +

∫ ∆t

0
gn(xn+τ

p ) +Qn+τ dτ

3. Update particles inventory

4. Project state to the mesh:
φn+1
j = π(φn+1

p )

Algorithm 2 - Time Step PFEM-2 Incompressible Flow
1. Calculate acceleration on the nodes like a FEM:∫

Ω
N ∇ · τn dΩ = −

∫
Ω
∇N · (µ∇vn) dΩ +

∫
Γ
N ∇vn · η dΓ∫

Ω
N ∇pn dΩ = −

∫
Ω
∇N pn dΩ +

∫
Γ
N pn · η dΓ

an = ∇ · σ = −∇pn +∇ · τn

2. Evaluate new particles position and state following the streamlines:
xn+1
p = xnp +

∫ ∆t

0
vn(xτp) dτ

v̂n+1
p = vnp +

∫ ∆t

0
an(xn+τ

p ) + fn+τ dτ

3. Update particles inventory

4. Project state to the mesh:
vn+1
j = π(vn+1

p )

5. Find the pressure value solving the Poisson equation system using FEM:
ρ∇ · v̂n+1

j = ∆t
2 ∆[δpn+1]

6. Update the velocity value with the new pressure:
ρvn+1

j = ρv̂n+1
j − ∆t

2 (∇pn+1 −∇pn)

ρvn+1
p = ρv̂n+1

p − ∆t
2 π

−1(∇pn+1 −∇pn)

2 THERMAL COUPLING. MATHEMATICAL FORMULATION

The goal is to solve the Navier-Stokes equation system (2 - 3) coupled with the heat equation
(1). The coupling is achieved through the Boussinesq approximation that adds a buoyancy body
force in the momentum equation to relate density changes to temperature. It states that density
differences are sufficiently small to be neglected, except where they appear in terms multiplied
by the acceleration due to gravity g. The essence of the Boussinesq approximation is that the
difference in inertia is negligible but gravity is sufficiently strong to make the specific weight
significantly different along the domain. Using a constant density formulation (incompressible
flow) sound waves are filtered when the Boussinesq approximation is used since sound waves
move via density variations. The motion driven by physically density variations is replaced by
a buoyancy term acting with the gravity.

Boussinesq approximation can be written as equation 8 (Arpaci and Larsen, 1984)

f = gβ(φ− φc) (8)
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where v is the velocity, φ is the temperature, p the pressure, ρ the fluid density, g the
gravitational constant, β the thermal expansion coefficient and φc is a reference temperature.

In PFEM-2 taking advantage of that particles can transport physics variables that any model
includes, and having implemented successfully Navier-Stokes and heat problems separately, it
is not difficult to update the method to solve the thermal coupling. The explicit streamline
integration strategy used by the method allows to update the temperature and the velocity
(including the Boussinesq approximation) and performing the temporal integration only once.

Finally, the Algorithm 3 is used.

Algorithm 3 - Time Step PFEM-2 Thermal Coupling
1. Calculate acceleration and thermal changes rate on the nodes like a FEM:∫

Ω
N ∇ · τn dΩ = −

∫
Ω
∇N · (µ∇vn) dΩ +

∫
Γ
N ∇vn · η dΓ∫

Ω
N ∇pn dΩ = −

∫
Ω
∇N pn dΩ +

∫
Γ
N pn · η dΓ∫

Ω
N gn dΩ = −

∫
Ω
∇N α∇φn dΩ +

∫
Γ
N ∇φn · η dΓ

an = ∇ · σn = −∇pn +∇ · τn

2. Evaluate new particles position and state following the streamlines:
xn+1
p = xnp +

∫ ∆t

0
vn(xτp) dτ

v̂n+1
p = vnp +

∫ ∆t

0
an(xn+τ

p ) + fn+τ + gβ(φn − φc)dτ
φn+1
p = φnp +

∫ ∆t

0
gn(xn+τ

p ) +Qn+τ dτ

3. Update particles inventory

4. Project state to the mesh:
vn+1
j = π(vn+1

p )

φn+1
j = π(φn+1

p )

5. Find the pressure value solving the Poisson equation system using FEM:
ρ∇ · v̂n+1

j = ∆t
2 ∆[δpn+1]

6. Update the velocity value with the new pressure:
ρvn+1

j = ρv̂n+1
j − ∆t

2 (∇pn+1 −∇pn)

ρvn+1
p = ρv̂n+1

p − ∆t
2 π

−1(∇pn+1 −∇pn)

3 TESTS

Natural convection in closed cavities (where the temperature difference induces momentum)
is of great importance in many engineering and scientific applications such as energy transfer,
boilers, nuclear reactor systems, energy storage devices among others. Related to natural
convection in closed cavities in laminar regimes, there are significant benchmark problems of
numerical solution, in both two and three dimensions. This paper presents results for four values
of Rayleigh number, namely 103, 104, 105 and 106, with a Prandtl number of Pr = ν/α = 0.71
where ν is the kinematic viscosity.

3.1 Natural convection in a square cavity

The problem presented deals with the two dimensional flow with a Prandtl number Pr =
0.71 in a square cavity of side H = 1[m]. The boundary conditions for the momentum equation
are non slip at all boundaries. Horizontal walls are isolated, and the vertical sides are at different
temperatures Tc < T < Th (φ = T for natural convection problems). Figure 2 shows the
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geometry of the cavity. Simulations were carried out using a mesh of triangular elements with
100x100 nodes and refinement towards the walls. The wide range of Rayleigh number 9 (Ra)
was obtained by a constant temperature difference of ∆T = 1K adjusting the thermal expansion
coefficient β to supply the desired Ra.

Ra =
gβH3(φh − φc)

αν
(9)

where α is the thermal diffusivity corresponding to air with the above mentioned Pr in
standard temperature and pressure conditions.

Figure 2: Detail of cavity simulated, left wall at Th, right wall at Tc, top and bottom walls are
insulated.

3.1.1 Results and discussion

This section provides a set of solutions at low Ra number. The quantities under study are
the following:

[umax(1/2)] : The maximum horizontal velocity on the vertical mid-plane of the cavity
(together with its location).

[vmax(1/2)] : The maximum vertical velocity on the horizontal mid-plane of the cavity
(together with its location).

Table 1 shows PFEM-2 results for Ra = 103, 104 and 106 compared with the (Corzo et al.,
2011) and (Davis, 1983) solutions. Excellent agreement to experimental data in both results for
momentum and energy equations prove the accuracy of this approach for this low Ra number
range. The horizontal velocity component in the vertical mid-plane is shown in figure 3. Here
is worthy to note that when Ra number increases the boundary layer becomes thinner and the
maximum values in the velocity get closer to the walls. Finally figure 4 presents the temperature
profiles for the three cases.
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Ra Data PFEM2 Corzo G. V. Davis
103 umax (x=0.5) 3.605 3.640 3.634
103 ymax (x=0.5) 0.814 0.812 0.813
103 vmax (y=0.5) 3.650 3.700 3.679
103 xmax (y=0.5) 0.183 0.177 0.179
104 umax (x=0.5) 15.982 16.281 16.182
104 ymax (x=0.5) 0.824 0.822 0.823
104 vmax (y=0.5) 19.378 19.547 19.509
104 xmax (y=0.5) 0.116 0.123 0.120
106 umax (x=0.5) 64.483 64.558 65.330
106 ymax (x=0.5) 0.845 0.851 0.851
106 vmax (y=0.5) 218.054 221.572 216.750
106 xmax (y=0.5) 0.037 0.067 0.039

Table 1: Numerical solution for thermal square cavity with PFEM-2 comparing with reference
data.
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Figure 3: Horizontal velocity profiles at x mid-plane to a) Ra = 103, b) Ra = 104 and c)
Ra = 106.
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(a) (b)

(c)

Figure 4: Temperature field φ to a) Ra = 103, b) Ra = 104 and c) Ra = 106.

3.2 Natural Convection in a Cubic Cavity

The schematic model for the problem is shown in figure (5). The cubic cavity is one meter
length with an aspect ratio of unity and is filled with air as working fluid. The Prandtl number is
fixed at Pr = 0.71. All surrounding walls are rigid and impermeable. The vertical walls located
at x = 0 and x = 1 are retained to be isothermal but at different temperatures of Th and Tc,
respectively. The buoyancy force due to gravity works downwards (i.e., in negative z-direction).

Figure 5: Schematic model for the natural convection in a cubical cavity.
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3.2.1 Results and Discussion

For the present range of Ra numbers, solutions were obtained on a mesh with 81000
tetrahedral elements and around of eighteen thousand nodes, and with refinement towards the
walls. The following characteristic quantities are presented:

[umax(1/2)] : The maximum horizontal velocity for x-direction on center line (x = 0.5, y
= 0.5) of the cavity and its location.

[wmax(1/2)] : The maximum vertical velocity for z-direction on center line (y = 0.5, z =
0.5) of the cavity and its location.

Table 2 shows PFEM-2 results for Ra = 104, 105 and 106 compared with the Wakashima
and Saitoh (2004) and Fusegi et al. (1991) solutions. Finally figure 6 shows a wireframe of the
mesh used and temperature profiles (left: Ra = 104, rigth: Ra = 104) with slices of section at
mid-planes y = 0.5 and z = 0.5 respectively.

Ra Data PFEM-2 Wakashima Fusegi
104 umax(x = y = 0.5) 0.1978 0.1989 0.2013
104 zmax(x = y = 0.5) 0.8460 0.8250 0.8167
104 wmax(y = z = 0.5) 0.2190 0.2211 0.2252
104 xmax(y = z = 0.5) 0.1260 0.1253 0.1167
105 umax(x = y = 0.5) 0.1409 0.1423 0.1468
105 zmax(x = y = 0.5) 0.8460 0.8500 0.8547
105 wmax(y = z = 0.5) 0.2359 0.2407 0.2471
105 xmax(y = z = 0.5) 0.0680 0.0751 0.0647
106 umax(x = y = 0.5) 0.0766 0.0813 0.0842
106 zmax(x = y = 0.5) 0.8570 0.8500 0.8557
106 wmax(y = z = 0.5) 0.2897 0.2382 0.2588
106 xmax(y = z = 0.5) 0.0280 0.0500 0.0331

Table 2: Numerical solution for thermal cubic cavity with PFEM-2 comparing with reference
data.

Figure 6: Mesh with slices of section at mid-planes y = 0.5 and z = 0.5. Left: Ra = 104, rigth:
Ra = 104.
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4 CONCLUSIONS

The results achieved with PFEM-2 presented in this paper reveal a good agreement with
reference data not only in 2D (two dimensions) also in 3D (three dimensions) and for a range of
low and mediumRa numbers. In this sense they can be set as a reference for a future buoyancy-
driven tests. Higher Ra numbers than those presented in this paper require turbulence modeling
or a finer mesh to capture effects in smaller scales.

The presented method can be improved including an implicit treatment of the thermal and
the viscous diffusivity. This strategy allows to increase the time-step and, in this way, be more
competitive in computing times with other CFD (computational fluid dynamics) methods.

Finally, we prove that it is possible to solve the weak coupling between energy and
momentum equations with PFEM-2 through the Boussinesq approximation. This achievement
allows to use this strategy to solve several passive scalar transport species and also some active
ones, such as turbulence modeling, in an efficient way.
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