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Abstract. In this paper, the efficiency of a parallelizable preconditioner for Domain
Decomposition Methods in the context of the solution of non-symmetric linear equations
arising from the discretization of the conservation laws in hydrology (e.g., the coupled
surface and sub-surface flow over a freatic acuifer) is investigated. The Interface Strip
Preconditioner (IS) proposed is based on solving a problem in a narrow strip around the
interface. It requires much less memory and computing time than classical Neumann-
Neumann preconditioner, and handles correctly the flux splitting among subdomains that
share the interface. The performance of this preconditioner is assessed with an analytical
study of Schur complement matrix eigenvalues and numerical experiments conducted in a
parallel computational environment (consisting of a Beowulf cluster of twenty-nodes).
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1 INTRODUCTION

The large spread in length scales present in hydrological problems (like river, estuaries,
lakes, open channels, levees or dam breaks, etc.) requires a high degree of refinement in
the finite element mesh and, then, requires very large computational resources. Also, in a
2D coupled surface-subsurface flow problem, a typical multi-aquifer model, the number of
unknowns per surface node is, at least, equal to the number of aquifers and aquitards. Due
to this fact, it is expected to have a very high demand of CPU computation time, calling
for parallel processing techniques. Linear systems obtained from discretization of PDE’s
by means of Finite Difference or Finite Element Methods are normally solved in parallel
by iterative methods [1, 2] because they require much less communication compared to
direct solvers.

The Schur complement domain decomposition method leads to a reduced system better
suited for iterative solution than the global system, since its condition number is lower
(∝ 1/h vs. ∝ 1/h2 for the global system, h being the mesh size) and the computational
cost per iteration is not so high once the subdomain matrices have been factorized.

The efficiency of iterative methods can be further improved by using precondition-
ers [3]. Iterative substructuring methods rely on a non-overlapping partition into subdo-
mains (substructures). Once the degrees of freedom inside the substructures have been
eliminated by block Gaussian elimination (or other algorithm), a preconditioner for the
resulting Schur complement system is built with matrix blocks relative to a decompo-
sition of interface finite element functions into subspaces related to geometrical objects
(vertices, edges, faces, single substructures). Iterative methods like Conjugate Gradient
and GMRES are then employed. The early works [4] and [5] has influenced much of the
later work in the field. They proposed two spaces for the coarse problem. One of their
coarse spaces is given in terms of the averages of the nodal values over the entire sub-
structure boundaries ∂Ωi. The other space is defined by extending the wire basket (we
recall that the wire basket is the union of the boundaries of the faces which separate the
substructures) values as a two dimensional discrete harmonic function on to the faces,
and then as discrete harmonic function into the interiors of the subdomains.

For auto-adjoint positive semidefinite problems, Neumann-Neumann is the most clas-
sical preconditioner. From a mathematical point of view, the preconditioner is defined by
approximating the inverse of the global Schur complement matrix by the weighted sum
of local Schur complement matrices. From a physical point of view, Neumann-Neumann
preconditioner is based on splitting the flux applied to the interface in the preconditioning
step and solving local Neumann problems in each subdomain. This strategy is good only
for symmetric operators.

The preconditioner proposed here is based on solving a problem in a “strip” of nodes
around the interface (figure 1). When the width of the strip is narrow, the computational
cost and memory requirements are low and the iteration count is relatively high, when
the strip is wide, the converse is verified.
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This preconditioner performs better for non-symmetric operators and do not deal
with rigid body modes for internal floating subdomains as is the case for the Neumann-
Neumann preconditioner. In the later, floating subdomains results due to the fact that the
intersection between subdomain boundaries (interfaces) and domain boundary is empty.
If no Dirichlet conditions are superimposed on subdomain interfaces, rigid body motion
results.

The IS preconditioner is merely algebraic (it can be assembled with a subset of subdo-
main matrices coefficients) and the interface width is variable (i.e., zero, one, or several
layers of nodes can define it).

I
Strip

Interface

21

interface  strip
nodes  in  the

interior  nodes

Figure 1: Domain Decomposition.

2 THE HYDROLOGICAL FLOW MODEL

2.1 Subsurface Flow.

The equation for the flow in a confined (freatic) aquifer integrated in the vertical direction
is

∂

∂t
(S(φ− η)φ) = ∇ · (K(φ− η)∇φ) +

∑
Ga, on Ωaq × (0, t], (1)

where the per-node property η represents the height of the aquifer bottom to a given
datum. The corresponding unknown for each node is the piezometric height or the level
of the freatic surface at that point φ and Ωaq is the aquifer domain, S the storativity, K
the hydraulic conductivity and Ga is a source term, due to rain, losses from streams or
other aquifers.
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2.2 Surface flow [6, 7]

2.2.1 2D Saint-Venant Model

The equations for the 2D Saint-Venant open channel flow are the well known mass and
momentum conservation equations integrated in the vertical direction. If we write these
equations in the conservation matrix form (Einstein summation convention is assumed),
we have

∂U

∂t
+
∂Fi(U)

∂xi

= Gi(U), i = 1, 2, on Ωst × (0, t], (2)

where Ωst is the stream domain, U = (h, hu, hv)T is the state vector and the advective
flux functions in (2) are

F1(U) = (hu, hu2 + g
h2

2
, huv)T ,

F2(U) = (hv, huv, hv2 + g
h2

2
)T ,

(3)

where h is the height of the water in the channel with respect to the channel bottom,
ū = (u, v)T is the velocity vector and g is the acceleration due to gravity. Gs represents
the gain (or loss) of the river, the source term is

G(U) = (Gs, gh(S0x − Sfx), gh(S0y − Sfy))
T (4)

where S0 is the bottom slope and Sf is the slope friction.

Sfx =
1

C2
hh
u|ū|, Sfy =

1

C2
hh
v|ū| Chézy model.

Sfx =
n2

h4/3
u|ū|, Sfy =

n2

h4/3
v|ū|, Manning model.

(5)

where Ch and n (the Manning roughness) are model constants. In the case of great lakes,
wide rivers and estuaries we should take in account the effect of Coriolis force (see [8]).

2.2.2 1D Saint-Venant Model.

When velocity variations on the channel cross section are neglected, the flow can be
treated as one dimensional. The equations of mass and momentum conservation on a
variable cross sectional stream (in conservation form) are,

∂A(s, t)

∂t
+
∂Q(A(s, t))

∂s
= Gs(s, t),

1

A(s, t)

∂Q

∂t
+

1

A(s, t)

∂

∂s
(β

Q2

A(s, t)
) + g(S0 − Sf )+

+g
∂h

∂s
=

qt
A(s, t)

(v − vt), on Ωst × (0, t],

(6)
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where A is the cross sectional area, Q is the discharge, Gs(s, t) represents the gain or loss
of the stream (i.e. the lateral inflow per unit length of channel), s is the arc-length along
the channel, v = Q/A the average velocity in s-direction, vt the velocity component in
s-direction of lateral flow from tributaries and the Boussinesq coefficient β = 1

v2A

∫
u2dA

(u the flow velocity at a point). The bottom shear stresses are approximated by using
the Chèzy or Manning equations,

Sf =
v2

C2
h

P (h)

A(h)
, Chèzy model.

Sf =

(
n

a

)2

v2P
4/3(h)

A4/3(h)
, Manning model.

(7)

where P is the wetted perimeter of the channel and a is a conversion factor (a = 1 for
metric units).

2.3 Boundary Conditions.

2.3.1 Boundary Conditions to simulate River-Aquifer Interactions/Coupling
Term.

The stream/aquifer interaction process occurs between a stream and its adjacent flood-
plain aquifer. The coupling term is not explicitly included in Eq. 1 but it is treated as a
boundary flux integral. At a nodal point we can write the coupling,

Gs = P/Rf (φ− hb − h), (8)

where Gs represents the gain or loss of the stream, and the main component is the loss
to the aquifer and Rf is the resistivity factor per unit arc length of the perimeter. The
corresponding gain to the aquifer is

Ga = −Gs δΓs , (9)

where Γs represents the planar curve of the stream and δΓs is a Dirac’s delta distribution
with a unit intensity per unit length, i.e.∫

f(x) δΓs dΣ =

∫ L

0

f(x(s)) ds. (10)

The stream loss element set represents this loss, and a typical discretization is shown in
Fig. 2. The stream loss element is connected to two nodes on the stream and two on the
aquifer. If the stream level is over the freatic aquifer level (hb + h > φ) then the stream
losses water to the aquifer and vice versa. Contrary to standard approaches, the coupling
term is incorporated through a boundary flux integral that arises naturally in the weak
form of the governing equations rather than through a source term.
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Figure 2: Stream/Aquifer coupling.

2.3.2 Initial Conditions. First, Second and Third Kind Boundary Conditions.

Groundwater flow. In the previous section, the equation that governs subsurface flow
was established. In order to obtain a well posed PDE problem, initial and boundary con-
ditions must be superimposed on the flow domain and on its limits. The initial condition
for the groundwater problem is a constant hydraulic head in the whole region that obeys
levels observed in the basin history.
Now, consider a simply connected region Ω bounded by a closed curve ∂Ω such that
∂Ωφ ∪ ∂Ωσ ∪ ∂Ωφσ = ∂Ω. We conside the stream partially penetrating and connected, in
a Hydraulic sense, to the aquifer, hence, we set

φ = φ0, on ∂Ωφ × (0, t]

K(φ− η)
∂φ

∂n
= σ0, on ∂Ωσ × (0, t]

K(φ− η)
∂φ

∂n
= C(φ− h), on ∂Ωφσ × (0, t]

(11)

where φ0 is a given water head, σ0 is a given flux normal to the flux boundary ∂Ωσ and
C the conductance at the river/stream interface.

Surface Flow - Fluid Boundary. We recall that the type of a flow in a stream or in
an open channel depends on the value of the Froud number Fr = |u|/c (where c =

√
gh

is the wave celerity ), a flow is said

• fluvial, for |u| < c.

• torrential, for |u| > c

Saint-Venant equations.

Fluvial Boundary.
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• inflow boundary: u specified and the depth h is extrapolated from interior points,
or vice versa.

• outflow boundary: depth h specified and velocity field extrapolated from interior
points, or vice versa.

Torrential Boundary.

• inflow boundary: u and the depth h are specified.

• outflow boundary: all variables are extrapolated from interior points.

Solid Wall Boundary Condition. We prescribe the simple slip condition over Γslip (⊂
Γst)

u · n = 0 (12)

Upon using the Galerkin finite element discretization procedure with linear triangles
and/or bilinear rectangular elements, and the trapezoidal rule for time integration we
obtain the system to be solved at each time step,

R = K(U)[θUk+1 + (1− θ)Uk] + B(U)
Uk+1 −Uk

∆t
−Qk+1, (13)

where θ is the time-weighting factor satisfying 0 ≤ θ ≤ 1, ∆t is the time increment and
k denotes the number of time steps. K and B are the stiffness nonsymmetric matrix and
the symmetric mass matrix, respectively (K and B depend on U), Q is the source vector
and R is the residual vector.

3 SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD

We consider solving in each time step a linearized form of system (13) (i.e Au = f) result-
ing from finite element discretization as described in the previous section. Let Ω denote
the computational domain of the hydrological problem, and {Ωi}i=n

i=1 its decomposition
into n non-overlapping subdomains. We shall re-order u and f as u = (uL, uI)

T and
f = (fL, fI)

T , numbering the global nodes such that the coefficient matrices of hydraulic
height (freatic aquifer and surface flow) and velocities assume block-ordered structure

A =

[
ALL ALI

AIL AII

]
, (14)

where ALL = diag[A11, A22, ..., Ann] is a block-diagonal with each block Ai, i = 1, 2, ..., n
being the matrix corresponding to the unknowns belonging to the interior vertices of
subdomain Ωi. ALI and AIL represents connections between subdomains to interfaces.
AII corresponds to the discretization of the differential operator restricted to the in-

terfaces and represents the coupling between local interfaces points.

R. Paz, M. Storti

3171



The numerical solution of Au = f is equivalent to solving

SuI = g on interfaces Γ, (15)

ALLuL = fL −ALIuI in Ωi (16)

where

S = AII −
n∑

i=1

AILA
−1
LLALI, (17)

and

g = fI −
n∑

i=1

AILA
−1
LLfL, (18)

where S is the well-known Schur complement matrix.
The Schur domain decomposition method starts by first determining uI on the in-

terfaces between subdomains by solving (15). Upon obtaining uI , the subdomain prob-
lems (16) decouple and may be solved in parallel. The main computational cost for the
iterative solution of (15) depends on the number of iteration, i.e. the condition number,
to achieve convergence to a given accuracy criterion.

4 PRECONDITIONERS FOR DOMAIN DECOMPOSITION METHODS

It is clear that knowing the eigenvalue spectrum of the Schur complement matrix is one
of the most important issues in order to develop suitable preconditioners. Although the
Poisson equation is not often used in hydrology, we consider this simplyfied problem to
obtain analytical expressions for Schur complement matrix eigenvalues and to study the
influence of several preconditioners.

The Poisson problem in a unit square is given by

∆φ = g, in Ω = {0 < x, y < 1}, (19)

and the boundary conditions

φ = φ̄, at Γ = {x, y = 0, 1}, (20)

where φ is the unknown, g(x, y) is a given source term and Γ is the boundary.
Consider now the partition of Ω in Ns non-overlapping subdomains Ω1,Ω2, . . . ,ΩNs ,

such that Ω = Ω1

⋃
Ω2

⋃
. . .

⋃
ΩNs . For the sake of simplicity, we assume that the subdo-

mains are rectangles of unit height and width Lj. In practice this is not the best partition,
but it is used in [9] to compute the eigenvalues of the interface problem in closed form.
Let Γint = Γ1

⋃
Γ2

⋃
. . .

⋃
ΓNs−1 be the interior interfaces among adjacent subdomains.

Given a guess ψj for the trace of φ in the interior subdomains φ|Γj
, we can solve each
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interior problem independently as

∆φ = g, in Ωj,

φ =


ψj−1, at Γj−1,

ψj, at Γj,

φ̄, at Γup,j + Γdown,j,

(21)

where ψ0 = φ̄
∣∣
x=0

and ψNs = φ̄
∣∣
x=1

are given.

4.1 The Steklov operator

Not all combinations of trace values {ψj} give the solution of the original problem (19).
Indeed, the solution to (19) is obtained when the trace values are chosen in such a way
that the flux balance condition at the internal interfaces is satisfied,

fj =
∂φ

∂x

∣∣∣∣−
Γj

− ∂φ

∂x

∣∣∣∣+
Γj

= 0, (22)

where the ± superscripts stand for the derivative taken from the left and right sides of
the interface. We can think of the correspondence between the ensemble of interface
values ψ = {ψ1, . . . , ψNs−1} and the ensemble of flux imbalances f = {f1, . . . , fNs−1} as
an interface operator S such that

Sψ = f − f0, (23)

where all inhomogeneities coming from the source term and Dirichlet boundary conditions
are concentrated in the constant term f0, and the homogeneous operator S is equivalent to
solving the equation set (21) with source term g = 0 and homogeneous Dirichlet boundary
conditions φ̄ = 0 at the external boundary Γ.

Here, S is the Steklov operator. In a more general setting, it relates the unknown
values and fluxes at boundaries when the internal domain is in equilibrium. In the case of
internal boundaries, it can be generalized by replacing the fluxes by the flux imbalances.
The Schur complement matrix is a discrete version of the Steklov operator. In [9] the
eigenvalues of Steklov operator are computed in a closed form for this simplified case.
Hence, good estimates for the corresponding Schur complement matrix eigenvalues are
obtained.

4.2 Eigenvalues of Steklov operator

We assume that only two subdomains are present, one of them at the left of width L1

and the other at the right of width L2, so that L = L1 + L2 = 1 is the side length.
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We solve first the Laplace problem in each subdomain with homogeneous Dirichlet
boundary condition at the external boundary and ψ at the interface,

∆φ = 0, in Ω1,2,

φ =

{
0, at Γ,

ψ, at Γ1.

(24)

The flux imbalance resulting from the solution φn(x, y) of (24) on each subdomain is
(see [9])

fn =
∂φn

∂x

∣∣∣∣
x=L−1

− ∂φn

∂x

∣∣∣∣
x=L+

1

=

= kn [coth(knL1) + coth(knL2)] sin(kny),

(25)

where the wave number kn and the wavelength λn are defined as

kn = 2π/λn, λn = 2L/n, n = 1, . . . ,∞. (26)

A given interface value function ψ is an eigenfunction of the Steklov operator if the
corresponding flux imbalance f = Sψ is proportional to ψ, i.e. Sψ = ωψ, ω being the
corresponding eigenvalue. The eigenfunctions of the Steklov operator are

ψn(y) = sin(kny) (27)

with eigenvalues
ωn = eig(S)n = eig(S−)n + eig(S+)n =

= kn [coth(knL1) + coth(knL2)] ,
(28)

where S∓ are the Steklov operators of the left and right subdomains,

S∓ψ = ± ∂φ

∂x

∣∣∣∣
L∓1

, (29)

and their eigenvalues are
eig(S∓)n = kn coth(knL1,2). (30)

For large n, the hyperbolic cotangents in (30) both tend to unity. This shows that
the eigenvalues of the Steklov operator grow proportionally to n for large n, and then
its condition number is infinity. However, when considering the discrete case the wave
number kn is limited by the largest frequency that can be represented by the mesh, which
is kmax = π/h where h is the mesh spacing. The maximum eigenvalue is

ωmax = 2kmax =
2π

h
, (31)
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which grows proportionally to 1/h. As the lowest eigenvalue is independent of h, this
means that the condition number of the Schur complement matrix grows as 1/h. Note that
the condition number of the discrete Laplace operator typically grows as 1/h2. Of course,
this reduction in the condition number is not directly translated to total computation time,
since we have to take account of factorization of subdomain matrices and forward and
backward substitutions involved in each iteration to solve internal problems. However, the
overall balance is positive and reduction in the condition number, beside being inherently
parallel, turns out to be one of the main strengths of domain decomposition methods.

The eigenvalue magnitude is related to eigenfunction frequency along the inter-subdomain
interface, and the penetration of the eigenfunctions towards subdomains interiors decays
strongly for higher modes.

5 PRECONDITIONERS FOR THE SCHUR COMPLEMENT MATRIX

In order to further improve the efficiency of iterative methods, a preconditioner has to
be added so that the condition number of the Schur complement matrix is lowered. The
most known preconditioners for structural (symmetric and positive semidefinite) prob-
lems are Neumann-Neumann and its variants [10, 11] for Schur complements methods,
and Dirichlet for Finite Element Tearing and Interconnecting (FETI) methods and its
variants [12, 13, 14, 15]. It can be proved that they reduce the condition number of the
preconditioned operator to O(1) (i.e. independent of h) in some special cases.

5.1 The Neumann-Neumann preconditioner

Consider the Neumann-Neumann preconditioner

PNNv = f, (32)

where
v(y) = 1/2[v1(L1, y) + v2(L1, y)], (33)

and vi, i = 1, 2, are defined through the following problems

∆vi = 0 in Ωi,

vi = 0 at Γ0 + Γup,i + Γdown,i,

(−1)i−1∂vi

∂x
= 1/2f at Γ1.

(34)

The preconditioner consists in assuming that the flux imbalance f is applied on the
interface. Since the operator is symmetric and the domain properties are homogeneous,
this “load” is equally split among the two subdomains. Then, we have a problem in
each subdomain with the same boundary conditions in the exterior boundaries, and a
non-homogeneous Neumann boundary condition at the inter-subdomain interface.
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Again, we will show that the eigenfunctions of the Neumann-Neumann preconditioner
are (27). Effectively, we can propose for v1 the form

v1 = C sinh(knx) sin(kny), (35)

where C is determined from the boundary condition at the interface in (34) and results
in

C =
1

2kn cosh(knL1)
, (36)

and similarly for v2, so that

v1(x, y) =
1

2kn

sinh(knx)

cosh(knL1)
sin(kny),

v2(x, y) =
1

2kn

sinh(kn(L− x))

cosh(knL2)
sin(kny).

(37)

Then, the value of v = P−1
NNf can be obtained from (33)

v(y) = P−1
NNf =

1

4kn

[tanh(knL1) + tanh(knL2)] sin(kny), (38)

so that the eigenvalues of PNN are

eig(PNN)n = 4kn [tanh(knL1) + tanh(knL2)]
−1 . (39)

As its definition suggests, it can be verified that

eig(PNN)n = 4 [eig(S−)−1
n + eig(S+)−1

n ]−1. (40)

As the Neumann-Neumann preconditioner (32) and the Steklov operator (23) diago-
nalize in the same basis (27) (i.e., they “commute”), the eigenvalues of the preconditioned
operator are simply the quotients of respective eigenvalues, i.e.

eig(P−1
NNS)n = 1/4[tanh(knL1) + tanh(knL2)] [coth(knL1) + coth(knL2)]. (41)

We see that all tanh(knLj) and coth(knLj) factors tend to unity for n→∞, then we have

eig(P−1
NNS)n → 1 for n→∞, (42)

so that this means that the preconditioned operator P−1
NNS has a condition number O(1),

i.e. it does not degrade with mesh refinement. This is optimal, and is a well known feature
of the Neumann-Neumann preconditioner. In fact, for a symmetric decomposition of the
domain (i.e. L1 = L2 = 1/2), we have

eig(P−1
NNS)n =

1

4
2 tanh(kn/2) 2 coth(kn/2) = 1, (43)
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so that the preconditioner is equal to the operator and convergence is achieved in one
iteration.

Note that comparing (28) and (40) we can see that the preconditioning is good as long
as

eig(S−)n ≈ eig(S+)n. (44)

This is true for symmetric operators and symmetric domain partitions (i.e. L1 ≈ L2).
Even for L1 6= L2, if the operator is symmetric, then (44) is valid for large eigenvalues.
However, this fails for non-symmetric operators as in the advection-diffusion case, and
also for irregular interfaces.

Another aspect of the Neumann-Neumann preconditioner is the occurrence of indefinite
internal Neumann problems, which leads to the need of solving a coarse problem [10, 11] in
order to solve the “rigid body modes” for internal floating subdomains. The coarse problem
couples the subdomains and hence ensures scalability when the number of subdomains
increases. However, this adds to the computational cost of the preconditioner.

5.2 The Interface Strip (IS) Preconditioner

A key point about the Steklov operator is that its high frequency eigenfunctions decay
very strongly far from the interface, so that a preconditioning that represents correctly
the high frequency modes can be constructed if we solve a problem on a narrow strip
around the interface. In fact, the n-th eigenfunction with wave number kn given by (27)
decays far from the interface as exp(−kn|s|) where s is the distance to the interface
(the hyperbolic sine factors appearing in (25)). Then, this high frequency modes will be
correctly represented if we solve a problem on a strip of width b around the interface,
provided that the interface width is very large with respect to the mode wave length λn.

The Interface Strip preconditioner is defined as

PISv = f, (45)

where

f =
∂w

∂x

∣∣∣∣
x=L−1

− ∂w

∂x

∣∣∣∣
x=L+

1

(46)

and
∆w = 0 in |x− L1| < b,

w = 0 at |x− L1| = b and y = 0, 1,

w = v at x = L1.

(47)

Please note that for high frequencies (i.e. knb large) the eigenfunctions of the Steklov
operator are negligible at the border of the strip, so that the boundary condition at
|x−L1| = b is justified. The eigenfunctions for this preconditioner are again given by (27)
and the eigenvalues can be taken from (28), replacing L1,2 by b, i.e.

eig(PIS)n = 2 eig(Sb)n = 2kn coth(knb), (48)
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where Sb is the Steklov operator corresponding to a strip of width b.
For the preconditioned Steklov operator, we have

eig(P−1
IS S)n = 1/2 tanh(knb) [coth(knL1) + coth(knL2)] . (49)

We note that eig(P−1
IS S)n → 1 for n → ∞, so that the preconditioner is optimal, in-

dependently of b. Also, for b large enough we recover the original problem so that the
preconditioner is exact (convergence is achieved in one iteration). However, in this case
the use of this preconditioner is impractical, since it implies solving the whole problem.
Note that in order to solve the problem for v, we need information from both sides of
the interface, while the Neumann-Neumann preconditioner solves the problem without
communication of information between subdomains. This is a disadvantage in terms of
efficiency, since we have to waste communication time in sending the matrix coefficients
in the strip from one side to the other or otherwise compute them in both processors.
However, we will see that efficient preconditioning can be achieved with few node layers
and negligible communication. Moreover, we can solve the preconditioner problem by
iteration, so that no migration of coefficients is needed.

6 THE SCALAR ADVECTIVE-DIFFUSIVE CASE

Consider now the advective diffusive case,

κ∆φ− uφ,x = g in Ω, (50)

where κ is the thermal conductivity of the medium and u the advection velocity. The
problem can be treated in a similar way, and the Steklov operators are defined as

S∓ψ = ± φ,x|L∓1 , (51)

where
κ∆φ− uφ,x = 0 in Ω1,2,

φ =

{
0 at Γ,

ψ at Γ1.

(52)

The eigenfunctions are still given by (27). Looking for solutions of the form v ∝ exp(µx) sin(kny)
we find that the eigenvalues are

eig(S−)n =
u

2κ
+ δn coth(δnL1)

eig(S+)n = − u

2κ
+ δn coth(δnL2).

(53)

For low frequency modes, advective effects are more pronounced and the first eigen-
function is notably biased to the right. In contrast, for high frequency modes the diffusive
term prevails and the eigenfunction is more symmetric about the interface, and (as in the
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pure diffusive case) concentrated around it (see [9]). Note that now the eigenvalues for
the right and left part of the Steklov operator may be very different due to the asymmetry
introduced by the advective term. This difference in splitting is more important for the
lowest mode.

In figures 2 to 5 [16], we can see the eigenvalues of the Steklov operator as a function
of the wave number kn for the operators treated. Note that for a given side length L only
a certain sequence of wave numbers, given by (27) should be considered. However, it is
perhaps easier to consider the continuous dependence of the different eigenvalues upon
the wave number k.

For a symmetric operator and a symmetric partition (see figure 2, [16]), the symmet-
ric flux splitting is exact and the Neumann-Neumann preconditioner is optimal. The
largest discrepancies between the IS preconditioner and the Steklov operator occur at low
frequencies and yield a condition number less than two.

If the partition is non-symmetric (figure 3, [16]) then the Neumann-Neumann precon-
ditioner is no longer exact, because S+ 6= S−. However, its condition number is very low
whereas the IS preconditioner condition number is still under two.

For a relatively important advection term, given by a global Pèclet number of uL/2κ =
5 (see figure 4, [16]), the asymmetry in the flux splitting is much more evident, mainly
for small wave numbers, and this results in a large discrepancy between the Neumann-
Neumann preconditioner and the Steklov operator. On the other hand, the IS precondi-
tioner is still very close to the Steklov operator.

The difference between the Neumann-Neumann preconditioner and the Steklov opera-
tor increases for larger Pe (see figure 5, [16]).

This behavior can be directly verified by computing the condition number of Schur
complement matrix and preconditioned Schur complement matrix for the different pre-
conditioners (see tables 1 and 2). We can see that both the Neumann-Neumann and IS
preconditioners give a similar preconditioned condition number regardless of mesh refine-
ment (it almost doesn’t change from a mesh of 50×50 to a mesh of 100×100), whereas the
Schur complement matrix exhibits a condition number roughly proportional to 1/h. How-
ever, the Neumann-Neumann preconditioner exhibits a large condition number for high
Pèclet numbers whereas the IS preconditioner performs better for advection dominated
problems.

7 SOLUTION OF THE STRIP PROBLEM

Some hints are given for an efficient implementation of the IS preconditioner in a parallel
environment.
A direct solution of the interface problem is not easily parallelizable. This approach
involves transferring all the interface matrix to a single processor and solving the problem
there. So that, the possibility is partitioning the strip problem among processors, much in
the same way as the global problem is. Then, the preconditioning problem can be solved
by an iterative method. Care must be taken to avoid nesting a non-stationary method like
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Table 1: Condition number for the Steklov operator and several preconditioners mesh: 50× 50 elements,
strip: 5 layers of nodes

Pe cond(S) cond(P−1
NNS) cond(P−1

IS S)
0 41.00 1.00 4.92

0.5 40.86 1.02 4.88
5 23.81 3.44 2.92

25 5.62 64.20 1.08

Table 2: Condition number for the Steklov operator and several preconditioners (mesh: 100×100 elements,
strip: 10 layers of nodes).

u cond(S) cond(P−1
NNS) cond(P−1

IS S)
0 88.50 1.00 4.92

0.5 81.80 1.02 4.88
5 47.63 3.44 2.92

25 11.23 64.20 1.08

CG or GMRES inside another outer non-stationary method. We recall that in a stationary
method the solution x at the iteration k depends, only, on the solution at the previous step
(i.e., xk = f(xk−1)), then we can find the guess xk after k successive applications of the
same operator to the initial value x0). The problem here is that a non stationary method
executed a finite number of times is not a linear operator, unless the inner iterative method
is iterated enough and then approaches the inverse of the preconditioner. In this respect,
relaxed Richardson iteration is suitable. The idea of an iterative method is also suggested
by the fact that the preconditioning matrix (i.e. the matrix obtained by assembling on the
strip domain with Dirichlet boundary conditions at the strip boundary) is highly diagonal
dominant for narrow strips. For example, for the strip in figure 3, there are two layers of
elements at each side of the interface subdomains (and five node layers), hence we solve the
systemMx = y (being x the dof’s in the strip) setting zero Dirichlet conditions at the strip
boundaries. A few Richardson iterations are needed for the convergence of this step. We
do not take into account the directions computed in the previous preconditioning step. A
subsequent possibility is preconditioning the Interface Strip preconditioner problem itself
with block Jacobi. In general, in parallel implementation, each processor may have several
sudomains. In this way, the memory and time computation requirements (i.e. the cost of
factorize smaller matrices is reduced) are reduced. If the number of dof’s in the interfaces
grows toward the number of total dof’s the method results in a fully iterative method.
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1 2

strip
nlay = 2

interfacestrip boundaries

Figure 3: Strip Interface problem.

8 SOME NUMERICAL EXAMPLES IN PARALLEL ENVIRONMENT

In this section, we present numerical results for diffusive and advective problems and some
discussions about these results. The tests were carried out on a Beowulf cluster of PC’s.
The cluster at CIMEC laboratory has twenty (uniprocessor) nodes; where 10 nodes are
Pentium IV - 2.4 GHz, 1 GB RAM (DDR, 333 MHz), 7 nodes Pentium IV - 1.7 GHz,
512 MB RAM (RIMM, 400/800 MHz) and 2 nodes Pentium IV 1.7 GHz, 256 MB RAM
(RIMM, 400/800 MHz). Usually, the first node works as server. The nodes are connected
through a switch Fast Ethernet (100 Mbit/sec, latency=O(100) µsecs).

The iteration counts of the IS and Neumann-Neumann preconditioners are shown,
for a sequential environment, in [9]. In this paper, the performance of the proposed
preconditioner is studied in a parallel environment. For this purpose, we consider two
different problems. The domain Ω in both cases is the unit square discretized on an
structured mesh of 500 × 500 nodes, and decomposed in 4 rectangular subdomains. We
compare the residual norm versus iteration count by using no preconditioner, Neumann-
Neumann preconditioner, block Jacobi preconditioner, global Jacobi preconditioner and
the IS preconditioner (with several strip widths at the interfaces). Global Jacobi is a
diagonal scaling preconditioning algorithm while Block Jacobi preconditioner is a block-
diagonal preconditioner and is obtained by (approximately) inverting the local diagonal
blocks on each processor (see [1] for a detailed description of these preconditioners).

The first example is the Poisson’s problem ∆φ = g, where g = 1 and φ = 0 on all the
boundary Γ. The iteration counts and the problem solution (obtained in a coarse mesh for
visualization purposes) are plotted in figure 4. As it can be seen, the Neumann-Neumann
preconditioner has a very low iteration count, as it is expected for a symmetric operator.
The IS preconditioner has a larger iteration count for thin strip widths, but it decreases
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Table 3: Cpu time and memory requirements per proc. for poisson problem (mesh 500× 500 elements).
Note: * in table means iteration failed to converge to a specified tolerance in a maximum of 200 its.

Precond. none Jacobi glob. block Jacobi N −N IS(n = 1) IS(n = 5)
factorization [secs] - - 1.9 4.7 2.3 2.3

GMRES stage [secs] * * * 1.51 5.4 4.9
tolerance 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10

memory/proc [Mb] - - - - 62 62.5

as the strip is thickened. Regarding memory use, the required core memory for thin strip
is much less than for the Neumann-Neumann preconditioner. The strip width acts in
fact as a parameter that balances the required amount of memory and the preconditioner
efficiency. We split the system solution in two stages, the factorization stage (for local
problems) and the GMRES iteration stage, in order to compute the time consumed to
achieve a given tolerance in the residual vector (see table 3).
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Figure 4: Solution of Poisson’s problem (mesh 500× 500).

The second example is an advective-diffusive problem at a global Péclet number of
Pe = 25, g = δ(1/4, 3/4) + δ(3/4, 1/4), and φ(−0.5, y) = 0, where δ is the Dirac’s delta func-
tion. Therefore, the problem is strongly advective. We compare the iteration counts in
two different meshes and two diferent decompositions. The mesh of 500 × 500 nodes is
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decomposed in 4 rectangular domains, one per processor, and the mesh of 1000 × 1000
is partitioned into 7 subdomains. The iteration count and the problem solution (inter-
polated in a coarse mesh for visualization purposes) are plotted in figure 5 and 6. In
this example, the advective term introduces a strong asymmetry. The required memory
for N-N preconditioner (coarse mesh) for levels where IS is converged (i.e., 50-60 its.) is
73 Megabytes (Mb). For the maximum number of iterations considered the consumed
memory is 120 Mb. For the refined mesh, the memory used in 70-80 iterations is 210 Mb
and for the maximum number of iterations is 320 Mb. The Neumann-Neumann precon-
ditioner is far from being optimal. It is outperformed by IS preconditioner in iteration
count (and consequently in computing time) and memory demands, even for thin strips.
The cpu time and memory used (per processor) are shown in table 4.
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Figure 5: Solution of advective-diffusive problem (mesh 500× 500).

9 SAINT-VENANT NUMERICAL EXAMPLES

The example is a 2D Saint-Venant subcritical flow over an impermeable unit square chan-
nel with a parabolic bump in the bottom and a sinusoidal wavetrain perturbation in
x−velocity at the inflow boundary. The parabolic variation of the bottom has the form
η(x, y) = min{h1, h2 + (h1 − h2)(r/R)2}, where r is the distance to the center of the
bump, located at (0, 0), h1 = 1, h2 = 0.5 and R = 0.3. The period of the plane incid-
ing wave is T = 0.1 sec. Hence, roughly, five wave-lengths enter in the diameter of the
bump. The initial global Froude and Courant numbers (based in longitudinal velocity u)
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Figure 6: Iteration counts for advective-diffusive problem (mesh 1000× 1000).

Table 4: Cpu time and memory requirements per proc. for advective-diffusive problem (mesh 1000×1000
elements). Note: * in table means iteration failed to converge to a specified tolerance in a maximum of
200 its.

Preconditioner none Jacobi glob. N −N IS(nlay = 1) IS(nlay = 5)
factorization [secs] - - 4.0 8.0 7.8

GMRES stage [secs] * * * 13.0 12.0
tolerance 0.25e-06 0.25e-06 0.25e-06 0.25e-06 0.25e-06

memory/proc [Mb] - - - 140 142
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are Fr = u/
√

(gh) = 0.3 and C = u∆t
∆x

= 15. Null flux is considered in y = ±0.5 and
fluvial boundary conditions at the inflow/outflow sections. For the computations we use

the Chézy model with friction coeficient Ch = 110 m1/2

sec
. The mesh of 105 linear triangles

was partitioned with METIS into 5 subdomains (one per processor).
SUPG term was added to the FEM formulation in order to avoid spurious oscillations

in solution. Coriolis force and wind stresses are neglected.
The iteration counts for a linearized time step and the problem solution (converged

to a steady regime after a complete time integration) are plotted in figures 7 and 8,
respectively. In this example, the system of conservation laws (2) introduces a strong
asymmetry. As in the linear advection-diffusion problem, the IS preconditioner improves
the iteration counts and memory demands. Although each iteration is more expensive for
the IS preconditioner, the consumed time to reach a given tolerance is smaller. The cpu
consumed time, tolerances and consumed memory are shown in table 5.
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Figure 7: Iteration counts for Saint-Venant system of equations (mesh 500× 500).

10 COUPLED SURFACE-SUBSURFACE FLOW NUMERICAL TESTS

We present an examples of surface (1D Saint-Venant) and subsurface interaction flow for
the Cululú basin. The case have periodic rainfall. The case is a random soybean plantation
(50 % of total area and an evapotranspiration 50% less than eucalyptus plantation). We
simulate a year where the total precipitation is the annual average precipitation observed
in last years (1,000 mm/year), but divided in two wet seasons with a rainfall rate of 2000
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Figure 8: Solution of Saint-Venant system of equations (mesh 500× 500).

Table 5: Cpu time and memory requirements for Saint-Venant equations (mesh 500 × 500 elements).
Note: * in table means iteration failed to converge to a specified tolerance in a maximum of 500 iterations.

Preconditioner none Jacobi glob. IS(nlay = 1) IS(nlay = 5)
factorization [secs] - - 9.0 9.2

GMRES stage [secs] * * 68 43
tolerance 1.e-05 1.e-05 1.e-05 1.e-05

memory/proc. [Mb] - - 548 550
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mm/year (april-march and september-october) and dry seasons of 500 mm/year (the rest
of the year). At time t = 0 the piezometric height in the freatic aquifer is 30 meters above
the aquifer bottom, while the water height in stream is 10 meters above the streambed.
The hydraulic conductivity and storativity of freatic aquifer are 2 · 10−3 m

sec
and 2.5 · 10−2,

respectively. We adopt the Manning friction law. The roughness of stream channel is
3 · 10−3 and the river width is 10 meters. The stream loss resistivity average value is
105sec. A mesh of 96,131 triangular elements and 48,452 nodal points is used to represent
the aquifer domain. The average space between nodal river points is 100 meters. The
time step adopted is Dt = 1 day. The system of equations was partitioned into seven
subregions.
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Figure 9: Iteration counts for the coupled flow.

In figure 9 we can see the iteration counts for different preconditioners.

11 CONCLUSIONS

We have presented the application of a new preconditioner for Schur complement domain
decomposition methods and the convergence improvement for hydrological problems. This
preconditioner is based on solving a problem posed in a narrow strip around the inter-
subdomain interfaces. Some analytical results have been derived to present its mathe-
matical basis. Numerical experiments of several physical problems have been carried out
to show its convergence properties and the computation time.

The IS preconditioner is easy to construct as it does not require any special calculation
(it can be assembled with a subset of subdomain matrices coefficients). It is much less
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memory-consuming than classical optimal preconditioners such as Neumann-Neumann in
primal methods (or Dirichlet in FETI methods). Moreover, it permits to decide how much
memory to assign for preconditioning purposes.

The IS preconditioner is well suited for hydrological problems where advective terms
are present in governing equations, while it is capable to handle reasonably well diffusion-
dominated regions.
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