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Abstract. This paper investigates the impact of two probabilistic models of the flexural stiffness of a
beam on its frequency response. The probabilistic models of the stochastic field are constructed using
the maximum entropy principle, where different information is considered, such as bounds, mean value,
etc. Each probabilistic model has a level of entropy; as the information given increases, the level of
entropy of the model decreases. The response of the computational model of the beam is given in the
frequency domain, and the entropy of the response is analyzed. Doing so, it is possible to quantify the
propagation of the information, given the costruction of the probabilistic model, measured by Shannon’s
entropy, throughout the system.
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1 INTRODUCTION

This paper investigates the random dynamical response of a beam with uncertain flexural
stiffness. This uncertainty is relative to the variability appearing during the manufacturing pro-
cess or during the cycle life (uncontrolled damages) of the structure. The propagation of the
uncertainty throughout the response of the beam is analyzed in terms of Shannon’s Entropy
(Shannon, 1948).

Usually, the propagation of uncertainties is analyzed through the observation of the in-
put/output variance (Arnoux et al., 2013; Ritto et al., 2009). The main drawback with such
a methodology is that some distribution with few uncertainty can have a large variance (for in-
stance, a bi-modal distribution for which the distance between the two peaks is large), then the
variance might not be reliable measure of uncertainty. For this reason entropy-based sensitivity
indexes have been introduced in H. Liu (2005) as an alternative to the classical Sobol indexes
(Shannon, 1993) which are variance-based.

The first step consists in constructing a probabilistic model for these parameters, i.e., con-
struct the probability density functions (pdf) for the random variables modeling the uncertain
parameters. The Shannon’s entropy measures the relative uncertainty associated to a pdf. The
Maximum Entropy (MaxEnt) principle (Shannon, 1948; Jaynes, 1994; Kapur and Kevasan,
1992) is a powerful method which allows the pdf of a random variable to be constructed from
a set of available information. This method consists in choosing the pdf which maximizes the
entropy (and thus the uncertainty) under the constraints defined by the available information.
Therefore, the entropy (uncertainty) level in the input parameters depends on the amount of in-
formation available for the uncertain parameters. It is then interesting to analyze how this level
of entropy propagates into the quantities of interest.

This paper is organized as follows. In Section 2, the deterministic model is presented. Then,
Section 3 is devoted to the construction of the stochastic computational model. Finally, in
Section 4, the numerical results are analyzed. The conclusions are made in Section 5.

2 NOMINAL COMPUTATIONAL MODEL

In this section the reduced nominal computational model is constructed using the Finite
Element method and the model reduction is performed using a classical modal analysis.

Considering a homogeneous Euler-Bernoulli beam, the partial differential equation govern-
ing the dynamics of the structure is written as:

m
∂2v(x, t)

∂t2
+ EI

∂4v(x, t)

∂x4
= f(x, t) x ∈ [0, L] , t ∈ [0, T ] , (1)

where v is the transversal displacement, L is the length of the beam, m is the mass per unit
length, E is the elasticity modulus, I is the area moment of inertia and f is the external force
per unit length.

Let v = v̂ exp (iωt) and f = f̂ exp (iωt), in which the hat means the amplitude in a given
frequency ω (steady state response), and i =

√
−1. Substituting v = v̂ exp (iωt) and f =

f̂ exp (iωt) in Eq.(1) leads to:

−ω2mv̂ + EI
∂4v̂

∂x4
= f̂ . (2)

The partial differential equation, Eq. (2), is discretized by means of the Finite Element method:
v̂(e)(ξ, ω) = N(ξ)T v̂(e)(ω), in which N are the shape functions (Hermitian functions), ξ is the
element coordinate, and v̂(e) is the vector with the element displacements.
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After assembling the element matrices, and including a proportional damping matrix, the
discretized system is given by:

−ω2[M ]v̂(ω) + iω[C]v̂(ω) + [K]v̂(ω) = f̂(ω) , (3)

where [M ], [K] are the mass and stiffness matrices, and [C] = α[M ] + β[K] ∈ Rm×m , v̂(ω)
∈ Cm is the response vector and f̂(ω) ∈ Cm is the force vector.

We are interested in the frequency response of the structure on the frequency band of analysis
B = [0, ωmax]. For all ω ∈ B, the vector v(ω) is the solution of the following matrix equation

(−ω2[M ] + iω[C(h)] + [K(h)])v(ω) = f̂ (ω) , (4)

in which h is the set of parameters that will later, in the next Section, be modeled with random
variables.

The reduced nominal computation model is constructed using the modal analysis reduc-
tion method. Let Ch be the admissible set for the vector h. Then for all h in Ch, the n
first eigenvalues 0 < λ1(h) ≤ λ2(h) ≤ . . . ≤ λn(h) associated with the elastic modes
{φ1(h), φ2(h), . . . , φn(h)} are solutions of the following generalized eigenvalue problem

[K(h)]φ(h) = λ(h)[M ]φ(h) . (5)

The reduced-order nominal computation model is obtained by projecting the nominal compu-
tation model on the subspace spanned by the n first elastic modes calculated using Eq. (5). Let
[Φ(h)] be the m× n matrix whose columns are the n first elastic modes. We then introduce the
approximation

v̂(ω) = [Φ(h)]q(ω) , (6)

in which the vector q(ω) is the vector of the n generalized coordinates and is the solution of the
following reduced matrix equation

(−ω2[Mr(h)] + iω[Cr(h)] + [Kr(h)])q(ω) = [Φ(h)]T f̂(ω) , (7)

in which [Mr(h)] = [Φ(h)]T [M ] [Φ(h)], [Cr(h)] = [Φ(h)]T [C(h)] [Φ(h)] and [Kr(h)] =
[Φ(h)]T [K(h)] [Φ(h)] are the n× n mass, damping and stiffness reduced matrices.

3 STOCHASTIC COMPUTATIONAL MODEL

In this section, the stochastic computational model is derived from the reduced nominal
computational model introduced in the previous section. The uncertain parameter field of the
dynamical system considered is the bending stiffness EI(x). It is modeled by a random field,
which means that the field {h(x),x ∈ Ω} is modeled by the random field {H(x),x ∈ Ω}.
Furthermore, it is assumed that the random field {H(x),x ∈ Ω} is homogeneous. Therefore,
in the context of the FE discretization introduced in the previous section, the vector h which
corresponds to the spatial discretization of h(x), is modeled by a random vector H. It should
be remarked that the bending stiffness EI(x) is constant along each element and, therefore,
piecewise discontinuous. The probabilistic model of this random vector is constructed using
the MaxEnt principle (Shannon, 1948; Jaynes, 1994; Kapur and Kevasan, 1992). Finally, the
stochastic reduced-order computational model is presented.

In the present analysis the random field is considered independent, which means that for
(x,x′) in Ω2, h(x) and h(x′) are independent random variable. Then the available information
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is introduced independently for each component of the random vector H. Since it is assumed
that the random field {H(x),x ∈ Ω} is homogeneous, the available information is the same
for all the components of the random vector H. The support of the pdf of each component
Hi is denoted by K such that K ⊂ R. Let E{.} be the mathematical expectation. For each
component, Hi (i = 1, . . . , N ), the available information is written as

E{g(Hi)} = fi , (8)

in which h 7→ g(h) is a given function from R into Rµ and where fi is a given function in Rµ.
Equation (8) can be rewritten as ∫

R
g(hi)phi(hi)dhi = fi . (9)

An additional constraint relative to the normalization of the joint pdf pH(h) is introduced
such that ∫

RN

pH(h)dh = 1 . (10)

The entropy of the joint pdf h 7→ pH(h) is defined by

S(pH) = −
∫
RN

pH(h) log(pH(h))dh , (11)

where log is the Neperian logarithm. This functional measures the uncertainty for pH. Let C
be the set of all the pdf defined on RN with values in R+, verifying the constraints defined by
Eqs. (9) and (10). Then the MaxEnt principle consists in constructing the probability density
function h 7→ pH(h) as the unique pdf in C which maximizes the entropy S(pH). Then by
introducing a Lagrange multiplier λ0 in R+ associated with Eq. (10) andN Lagrange multipliers
λi associated with Eq. (9) and belonging to an admissible open subset Lµ of Rµ, it can be shown
(see Jaynes (1994); Kapur and Kevasan (1992)) that the MaxEnt solution, if it exists, is defined
by

pH(h) =
N∏
i=1

{1lK(hi)} csol
0 exp(−

N∑
i=1

〈λsol
i ,g(hi)〉) , (12)

in which the indicator function hi 7→ 1lK(hi) is such that it is equal to 1 if hi ∈ K and is zero
otherwise. In Eq. (12), csol

0 = exp(−λsol
0 ), 〈x,y〉 = x1y1 + . . . + xµyµ and λsol

0 and λsol
i are

respectively the values of λ0 and λi for which Eqs. (9) and (10) are satisfied. Equation (12)
shows that the components hi of the the random vector H are independent random variables for
which the pdfs are given for i in {1, . . . , N} by

pHi
(hi) = 1lK(hi) c

sol
i exp(−〈λsol

i ,g(hi)〉) , (13)

Using the normalization condition, the parameter csol
i can be eliminated, and Eq. (13) can be

rewritten as

pHi
(hi) = 1lK(hi) ci(λ

sol
i ) exp(−〈λsol

i ,g(hi)〉) , (14)
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in which ci(λi) is defined by

ci(λi) =

{∫
K

exp(−〈λi, g(hi)〉) dhi

}−1
. (15)

The N Lagrange multipliers λi are then calculated using Eqs. (9), (14) and (15). The inte-
grals can be calculated explicitly for some particular cases of available information. Since,
the dimension of these integrals is one, they can be calculated using any numerical integration
method.

If we consider that the support K is compact, and no more information is introduced, the
MaxEnt distribution is the uniform distribution. Then, if information is added, a constraint is
added and the research manifold for the maximum of the entropy is reduced yielding a smaller
maximum. More specifically, if we introduce the two random variables H1 and H2, with the
same support, for which the available information are respectively defined by

E{g1(H1)} = f 1 , (16)

E{g1(H2)} = f 1 , E{g2(H2)} = f 2 , (17)

in which the functions g1 and g2 are independent. Then, the available information relative toH1

is included in the available information relative to H2. Let S1 be the maximum entropy relative
to H1 with the constraint defined by Eq. (16) and S2 be the maximum entropy relative to H2

with the constraint defined by Eq. (17). We then have

S1 ≥ S2 . (18)

Proceeding in this manner, it is possible to create nested probabilistic models with increasing
information, and hence decreasing entropy.

The stochastic computational model is derived from the reduced nominal computational
model introduced in the last Section, for which the deterministic vector h of the discretiza-
tion of the uncertain fields is replaced by the random vector H. The n first random eigenvalues
0 < Λ1(H) ≤ . . . ≤ Λn(H) associated with the random elastic modes {ψ1(H), . . . , ψn(H)}
are solutions of the following random eigenvalue problem

[K(H)]ψ(H) = Λ(H)[M ]ψ(H) . (19)

Then for all ω in B, the random response V(ω) of the stochastic reduced-order computational
model, is written as

V(ω) = [Ψ(H)]Q(ω) , (20)

in which the random vector Q(ω) of the random generalized coordinates, is the solution of the
following random reduced-order matrix equation,

(−ω2[Mr(H)] + iω[Cr(H)] + [Kr(H)])Q(ω) = [Ψ(H)]T f . (21)

in which [Mr(H)] = [Ψ(H)]T [M ] [Ψ(H)], [Cr(H)] = [Ψ(H)]T [C(H)] [Ψ(H)] and [Kr(H)] =
[Ψ(H)]T [K(H)] [Ψ(H)] are the random n × n mass, damping and stiffness reduced matrices.
This equation can be solved using the Monte Carlo simulation method (Rubinstein and Kroese,
2007).

Mecánica Computacional Vol XXXII, págs. 605-613 (2013) 609

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



4 NUMERICAL RESULTS

A clamped-clamped beam is considered in the present analysis, with length L = 1 m, di-
ameter D = 0.01 m, cross sectional area A = πD2/4, Elasticity Modulus E = 200 GPa and
mass density ρ = 7850 kg/m3. Fifteen normal modes are used in the reduced-order model and
the frequency band analyzed is [0,3000] Hz. The observation is taken at x = 0.41 m and the
velocity spectrum of the response is analyzed.

Two input stochastic model are analyzed for H: (1) independent Uniform, where only
a compact support is given as information for the construction of the probabilistic model,
[Hmin,Hmax], and (2) independent Beta, where, besides the compact support, two more con-
straints are considered: (a) E{log(Hi − Hmin)} = c1 < +∞ and (b) E{log(Hmax − Hi)} =
c2 < +∞, which means that the likelihood of the random variables reaches zero near the
boundaries.

Figure 1 shows the response of the nominal model at x = 0.41 m. The velocity spectrum
show some peaks corresponding to the natural frequencies of the structure.

Let us consider plus or minus 25% of the mean bending stiffness as the compact support for
the random Uniform field, [0.75EI, 1.25EI], and the Beta parameters α = 2 and β = 2. Figure
2 shows the stochastic response in the frequency domain. The mean response is plotted together
with the 98% confidence envelope. The results are quite similar for the two models. Figure 3
shows the coefficient of variation (standard deviation over the mean) at each frequency. It is
noted that the uncertainty is greater close to the resonance and anti-resonance frequencies of
the structure.

The level of the uncertainty measured by Shannon’s entropy can easily be computed for the
random bending stiffness at each x: Sunif = 3.8936 for the Uniform pdf and Sbeta = 3.7684
for the Beta pdf. It is observed that the entropy related to the Uniform field is bigger than the
entropy related to the Beta field, as expected. To better compare the response entropy with the
coefficient of variation, the marginal entropies of the response at each frequency is computed.
Figure 4 shows the entropy of the marginal pdf of the response. Note that the level of uncertainty
of the response for the Uniform pdf is bigger than the response for the Beta pdf. Also as
expected, the behavior of the Entropy is similar to the behavior of the coefficient of variation,
since both measure the uncertainty of the response. Nevertheless, the curves in Figures 3 and
4 are different. Finally, Figure 5 shows the histogram of the random variable related to the
response at frequency (860 Hz): in the present analysis the output pdf is uni-modal.

It is concluded that the entropy of the response can be used as an alternative analysis of
uncertainty propagation in random structural dynamics.

5 CONCLUDING REMARKS

The random response of a linear clamped-clamped Euler-Bernoulli beam with uncertain
bending stiffness was analyzed. Two random fields related to the bending stiffness were con-
structed using the MaxEnt principle with different information. The uncertainty propagation
throughout the system was analyzed in terms of Shannon’s entropy measure. It is argued that
the propagation viewed in terms of entropy is well suited for the problem. One advantage of
the entropy measure is that it is more appropriate than the variance in some cases, such as a
bi-modal distribution.

An ongoing work is been performed to construct correlated random input random fields, and
their propagation throughout the system.
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Figure 1: Spectrum of velocity of the nominal model at x = 0.41 m.

(a)

(b)
Figure 2: Mean and 98% confidence limits of the response at x = 0.41 m: (a) Uniform input and (b) Beta input.
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Figure 3: Coefficient of variation of the response for two different input random fields.

Figure 4: Marginal entropies of the response for two different input random fields.

Figure 5: Histogram of the speed at 860 Hz.
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