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Abstract. Computational simulation of phenomena that are present in internal combustion engines is a
suitable design tool for energetic efficiency optimization. OpenFOAM capabilities as computational code
need to be extended to approach more complex problems that appear in the modelling of thermodynamic
engine cycles. The present work reports the development and testing of a new application for Open-
FOAM that enables the use of a compressible fluid solver with dynamic mesh technology. Both features
are essential to model internal combustion engines. Therefore, the implementation in OpenFOAM suite
of a topological mesh adaptation technique known as layering is presented. The layering technique is
added to the diffusion based mesh movement among others, in the mesh dynamics capabilities of Open-
FOAM. This approach is used in the compressible solver called rhoPimpleDyMFoamMC to solve fluid
problems where the energy transfer on moving domains is carried out. The new computational tool is
used to solve several problems with different boundary conditions in a closed piston-cylinder system. A
detailed analysis of the accuracy and convergence of the pressure-velocity-energy coupling is achieved
and the results are compared with theoretical change of state equations.
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1 INTRODUCTION

Internal combustion engines (ICE) are an important challenge for the computational fluid
dynamics. ICE demand a complex physics formulation that involves combustible injection and
vaporization, ignition and reaction of the combustible mixture, and compressible fluid flow with
energy transfer. All of this in a context of moving domains that involves different moving zones
including for instance variable inlets and outlets.
This work describes the handling of cases where the domain boundary moves like a ICE pistone-
cylinder system with the simultaneous resolution of a compressible fluid including heat transfer.
OpenFOAM R©is a C++ object-oriented library for the resolution of problems in continuum me-
chanics (Weller et al., 1998). The structure of OpenFOAM R©programming allows to solve prob-
lems of complex physics in moving domains by the advantage that the mesh dynamic imple-
mentation is independent of the mathematical model applied for the physics.
Mesh dynamic technology is necessary when the domain varies its shape in time and therefore
the properties of interest are consequently affected. The domain can change due to a prescribed
movement that is known by the case kinematics or applying a dynamic model which is influ-
enced by the properties that are part of the solution, usually known as fluid-structure interaction.
The mesh adaptation due to the domain change is done by a boundary adaptation that forces the
internal mesh to relocate. The internal mesh action can be done principally in two different
ways, one alternative is simply modifying the mesh points coordinates and the other one is
changing the mesh topology which involves the change of the number of points, faces or cells
or either their connectivity.
The OpenFOAM R©official version offers to the user many capabilities in mesh dynamics. Princi-
pally, the OpenFOAM R©mesh dynamics capabilities can be divided in two groups, mesh move-
ment and the mesh topological change. For example, the mesh movement can be achieved
solving a Laplacian equation with a constant or variable diffusivity that uses as boundary con-
dition the domain boundary movement. In this method there is not any topological changes.
Only the coordinates of the points are changed. Otherwise, an example of a mesh topological
changer is the mesh refinement or unrefinement technique, where changes are performed in the
topology of the mesh introducing or extracting from the mesh points, faces and cells.
In the next section, the implementation of a new technique of mesh dynamics in the official
version of OpenFOAM R©is presented. The new technique, called layering, performs topological
modifications in the mesh and its use is appropriate for the treatment of ICE problems where
the domain varies, for example, due to the movement of the piston and valves.
In the third section the solver rhoPimpleDYMFoamMC is introduced explaining the governing
equations, the finite volume discretization and the strategy that is adopted to solve the coupled
unknowns. The fourth section describes the cases that are used to test the new solver with the
layering functionality and the results of the comparison with analytical evolutions are presented.
The influence of the parameters of the coupling strategy in the solution accuracy is also evalu-
ated.
Finally a summary of the work is exposed including final conclusions and a perspective of future
works.

2 IMPLEMENTATION OF THE LAYERING TECHNIQUE

The layering technique is a mesh dynamics strategy where topological modifications are
made on the mesh. The layering is part of what is consider in mesh dynamics technology as a
mesh modifier. A mesh modifier consists of a specific combination of primitives mesh actions
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that performs the proposed mesh modification. The primitives mesh actions can be defined as
the fact of executing a minimal modification on the mesh topology, for example, to add a point,
remove a cell or simply change any connectivity between the mesh entities.

2.1 Description of the layering technique

In the layering strategy, the boundary motion is followed through the internal mesh only by
the adaptation of the adjacent boundary cells. The adjacent boundary cells change their size
due to the movement of the boundary faces. The movement of the boundary faces is prescribed
in the set up of the case and depending of the direction of the boundary face movement, two
different actions are performed on the mesh.
If the boundary faces move in the direction of their inner normal, the adjacent boundary cells
are compressed. When the adjacent boundary cells reach a minimum layers thickness tolerance,
the adjacent boundary layer is removed and then the topology of the mesh changes, see Figure
1.

Adyacent 
boundary cells

Minimum 
layer thickness 
tolerance

Layers

Removed layer

Figure 1: Removing a layer.

If the boundary faces move in the direction of their outer normal, the adjacent boundary cells
are expanded. When the adjacent boundary cells reach a maximum layers thickness tolerance,
a new adjacent boundary layer is added changing the topology of the mesh, see Figure 2.
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Figure 2: Adding a new layer.

2.2 Implementation of Layering in the official OpenFOAM R©distribution

The implementation of the layering technique in the official version of OpenFOAM R©is per-
formed by creating user libraries without modifying the original library core. This strategy of
implementation of new functionalities allows to keep the OpenFOAM R©core unmodified and in
this way unexpected errors are avoided.
The official version of OpenFOAM R©implements the topological mesh modifiers on the library
libTopoChangerFvMesh. The mesh modifiers methods make use of the several primi-
tive mesh actions that are compiled on the library libDynamicMesh. In order to maintain
the OpenFOAM R©core unmodified a general mesh dynamics user library is created. The new
library is named libDynamicFvMeshFull. In this library the implementation of the layer-
ing technique is defined on the file layeringFvMesh.C.
The method defined in layeringFvMesh.C uses the primitive mesh actions of removing or
adding a cell. Both actions are implemented on the files addCelllayer.C and
removeCelllayer.C respectly that are compiled on the original core library
libDynamicMesh. The primitives mesh actions of the official version do not work prop-
erly for the desired layering technique, therefore they should be redefined. For this, a user
version of the libdynamicmesh library that redefines some methods found on the files
addCelllayer.C and removeCellLayer.C is created. The new library is named
libdynamicmeshMC1.
The user solvers must be compiled linking the new user libraries in order to adopt the lay-
ering functionality. The Figure 3 shows a scheme that explains the layer implementation for
the solver rhoPimpleDyMFoamMC, indicating the libraries hierarchies and the two different
frameworks, OpenFOAM R©original core and the user programming.

1It should be noted that the postfix MC indicates that the compiled code uses Modified methods from the
original Core.
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Figure 3: Layering implementation.

3 COMPRESSIBLE FLUID SOLVER

A new user application of OpenFOAM R©that solves compressible fluid problems in a context
of moving domains is created. The solver, called rhoPimpleDyMFoamMC derives from the
solver rhoPimpleDyMFoam, that is present in the developing version of OpenFOAM R©(2.2-
x), and incorporates the functionality of the layering technique described in the previous section.

3.1 Mathematical model

The governing equations of the solver derive of the equation of state and the balances of
mass, momentum and total energy. This equations establish a closed system for the variables,
density (ρ), velocity(u), pressure (p) and internal energy (Û ) or enthalpy (ĥ),

• Mass balance,

∂ρ

∂t
+ ∇ · (ρu) (1)

• Momentum balance,

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p+ ∇ · τ + ρg (2)

• Total energy balance,
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– Internal energy approach, Û ,

∂
(
ρÛ
)

∂t
+ ∇ ·

(
ρÛu

)
+
∂ (ρK)

∂t
+ ∇ · (ρKu)

=

−∇ · q−∇ · (pu)−∇ · (τ · u)

(3)

– Enthalpy approach, ĥ,

∂
(
ρĥ
)

∂t
+ ∇ ·

(
ρĥu

)
+
∂ (ρK)

∂t
+ ∇ · (ρKu)− dp

dt
=

−∇ · q−∇ · (τ · u)

(4)

• Equation of state,

ρ =
p

RT
(5)

• Constitutive relations,

τ = µ
[
∇u +

(
∇uT

)]
+

2

3
µ (∇ · u) I (6)

q = λ∇T (7)

where τ is the stress tensor, g is the gravity acceleration, K is the kinematic energy, q is
the energy flux vector, R is the ideal gas constant, µ is the dynamic viscosity, I is the identity
tensor, and λ is the thermal conductivity.

3.2 Finite volume discretization

The following integral balance of the tensorial quantity ψ on the variable domain Ω(t) with
volume V(t) is proposed (Jasak and Tuković, 2007),

d

dt

∫
Ω(t)

(ρψ)dV +

∫
∂Ω(t)

ρψ(u− ub) · ndA = −
∫
∂Ω(t)

ρQψ · ndA+

∫
Ω(t)

SψdV (8)

where ub is the moving boundary velocity, ∂Ω(t) is the domain boundary, Qψ is the surface
source and Sψ is the volume source .

The governing equations given by Eqn. (8) are discretized making the balance for each cell
as is shown in Eqn. (9),

ρnψnV n
P − ρoψ

oV o
P

∆t
+
∑
f

(
φfrelψf

)
· Sf =

∑
f

ρ
(
Qψ · Sf

)
+ SψVP (9)
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where the subscript P represents the cell values, φfrel is the relative to mesh flux and superscripts
n and o indicate the new and old time level values respectively.

The transformation between the absolute flux φfabs and relative to mesh flux φfrel is done by
the following expression,

φfrel = φfabs − φfmesh (10)

The mesh flux φfmesh is calculated as the spatial flux due to the faces movement. The total
flux of the faces of a cell must be balanced with the cell volume change rate (Demirdžić and
Perić, 1988),

φfmesh = ub · Sf
V n
P − V 0

P

∆t
=
∑
f

φfmesh

(11)

3.3 Velocity-Pressure-Energy coupling

The algorithm used for the resolution of the governing equations is based on the PIMPLE
method which results of combining the algorithms SIMPLE and PISO.
The SIMPLE algorithm (Patankar, 1980; Versteeg and Malalasekera, 2007) is used to solve
steady-state problems where the treatment of the non-linear effects of the velocity during the
resolution is more important than the precise determination of the pressure field. As each itera-
tion is equivalent to a pseudo time step, the properties are under relaxed in order to stabilize the
method and improve convergence. On the other hand, the PISO algorithm (Márquez Damián,
2013; Issa, 1986), is suitable for transient simulations where it is necessary to fully solve the
velocity-pressure coupling for each time step. The non-linear effects of the velocity are reduced
setting small time steps characterized by Courant numbers below one.
In transient compressible cases the error due to the non-linear effects of the velocity are more
important because of the compressibility. Then the momentum equation is located in an outer
loop named PIMPLE and the momentum balance can be recalculated many times as number of
PIMPLE iterations.
The energy equation can be located in the PIMPLE loop or either in the PISO loop. When
a thermodynamic property (temperature, density or pressure) vary rapidly in time, the energy
equation should be located inside the PISO loop in order to improve the pressure temperature
coupling.
The scheme represented in Figure 4 shows the PIMPLE algorithm. The total energy equation
block in dotted lines indicates where this balance should be located when it is included inside
the PISO loop.
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Figure 4: PIMPLE algorithm.
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4 TEST CASES

In this section a validation of the solver rhoPimpleDyMFoamMC solving simple cases is
done. The results of the numerical simulation are compared with analytical expressions.
Subsequently the velocity-pressure-energy coupling is evaluated analysing the solution accu-
racy for different configurations of the PIMPLE algorithm.

4.1 Cases description

The case consists of a piston-cylinder closed system. A quasi-static air compression is car-
ried out by moving the piston with a constant velocity up of 1 m/s. The geometry of the model
is a cylinder with an initial axial longitude L of 5 m and a cylinder diameter d of 2 m. From an
initial state, t = 0s, the compression reaches the final state at time t = 4 s.
The problem consists in determining the temporal evolution of the air temperature.

d

L

Piston
x

y

z

air mass with 
initial conditions

Initial state Final state

air mass with 
final conditions

Figure 5: piston-cylinder model.

4.1.1 Boundary conditions

Two different boundary conditions for the temperature are considered. In the first case an
adiabatic compression is simulated. The second case considers a Robin condition at the bound-
ary simulating a real operating condition of ICE.
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Adiabatic boundary condition The adiabatic boundary condition considers that the cylinder
is isolated and therefore there is no heat flow between the ambient and the cylinder,

∂T

∂n
= 0 at the boundary (12)

Robin boundary condition The Robin boundary condition represents that the heat flow is
determined by the Newton’s law of cooling,

∂T

∂n
= −h(T − Te)Ac at the boundary (13)

Ac is the total external area of the cylinder, Te is the external ambient temperature and h is
the pelicular coefficient.

4.1.2 Parameters

The initial conditions of the flow are those of atmospheric air at 293 K degrees2.The param-
eters for the Robin boundary condition are,

h = 1005
W

m2K
Te = 273 K

(14)

4.2 Deduction of the analytical expressions

In order to determine the analytical expressions, the following assumptions on the physical
model are established.

• There is no dependence of the thermodynamical properties respect to the space coordi-
nates,

ρ ∼= ρ(t) (15)
p ∼= p(t) (16)
T ∼= T (t) (17)

• The air velocity is zero on the whole domain,

u = 0 (18)

The governing equations are determined by solving the integral balance of mass, energy and
space on the closed system and adding the ideal gas equation of state,

2the air thermal conductivity is redefined for the numerical simulation when the Robin case is considered.
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ρ(t) =
M

V(t)

continuity balance. (19)

V(t) =

(
L0 −

∫ t

0

up(t)dt

)
Ap spatial balance. (20)

p(t) = ρ(t)RT(t) equation of state. (21)

Cv
d
(
ρ(t)V(t)T(t)

)
dt

= −h
(
T(t) − Te

)
Ac(t) + p(t)up(t)Ap energy balance. (22)

T(0) = T0 temperature inital condition. (23)

h is equal to zero for the adiabatic case.

where ρ(t) is the air density, M is the air mass; L0 is the initial longitude of the cylinder, V (t)
is the volume of the cylinder, up(t) is the piston velocity, T (t) is the air temperature, p(t) is the
air pressure, R is the air ideal gas constant, Cv is the constant volume specific heat capacity, Ap
is the piston area, Ac is the total external area of the cylinder, T0 is the air initial temperature, h
is the pelicular coefficient and Te is the ambient temperature.

The cylinder area Ac(t) is time dependent because the cylinder axial longitude varies,

Ap = πr2
p

Ac(t) = 2Ap + 2πrpL(t)

(24)

rp is the cylinder radius and L(t) is the cylinder axial longitude.

The system of algebraic differential equations is solved in order to obtain the thermodynam-
ical properties {ρ(t), p(t), T (t)}.

4.3 Numerical simulation set-up

The air thermal conductivity λ should be redefined for the simulation of the Robin case. The
zero dimensional model applied for the prediction of the air temperature in a closed piston-
cylinder system considers that the boundary temperature is equal to the inner cylinder temper-
ature of the air. This assumption implies to neglect the temperature gradient ∇T inside the
cylinder.
In order to compare the simulation results with the zero dimensional model, a virtual high ther-
mal conductivity is set up for the air. The high thermal conductivity works as a temperature
homogenizer and then the homogeneous domain temperature assumption given in Eqn. (17) is
valid,

lim
λ→∞

∇T (Ω) = 0 (25)

4.3.1 Numerical simulation parameters

The governing equations are discretized using the following schemes:
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• For the convection terms the Upwind scheme is adopted.

• The diffusion terms are solved with linear schemes.

• The temporal derivatives are interpolated by the Euler implicit scheme.

See Ferziger and Perić (2002) as reference.

The cases are solved setting a time step length of ∆t = 0.001s and using 1 iteration for the
PIMPLE loop and 25 iterations for the PISO loop.

4.4 Results

4.4.1 Application of the layering technique

The layering technique works successfully for the reproduction of the compression in a
piston-cylinder system. In the Figure 6 the transition of the mesh from the initial state into
the final state is shown.

Figure 6: Layering application on a piston-cylinder system.

4.4.2 Results for the temperature temporal evolution

The results of the numerical simulations are presented as the temporal evolution of the mass
weighted average of the temperature. The temperature evolution for each case is compared with
the respective analytical curve.
The mass weighted average of the temperature is computed as follows,

T (t) ∼=
∑N

n=1 (ρnTnVn)∑N
n=1 (ρnVn)

(26)

The subscript n represents the value of a property on the nth cell, Vn is the cell volume and N
is the total number of cells of the discretized domain.

Figures 7 and 8 show the result comparisons for the adiabatic and Robin cases respectively.
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Figure 7: Temperature evolution for the adiabatic case.
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Figure 8: Temperature evolution for the Robin case.

In both cases the numerical simulation solution for the weighted mass average of the tem-
perature fits accurately the analytical result.

4.5 PIMPLE method configuration

The accuracy of the PIMPLE method is evaluated solving the adiabatic case. The influence
of the following parameters is studied,

• time step length
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• numbers of iterations of the PIMPLE loop

• numbers of iterations of the PISO loop

• relaxation factors

• location of the total energy equation in the algorithm structure

The accuracy of the simulation results is determined calculating the root mean square error
(RMSE) performing a comparison with the analytical solution,

RMSE =

√∑N
n=0

[
Ts(n) − Ta(n∆t)

]2
N

(27)

Ts(n) is the simulation result at time step number n, ∆t is the time step length, Ta(n∆t) is
the analytical results evaluated at time (n∆t) and N is the total number of time steps of the
simulation.

4.5.1 Location of the total energy balance

The influence of the location of the total energy balance on the simulation results is evalu-
ated. The time step length is fixed in ∆t = 0.001s

Total energy equation located in the PISO loop,

PIMPLE iterations PISO iterations RMSE Simulation time
1 3 9.46514 47s
1 10 0.51041 108s
1 25 0.50913 260s

Table 1: Total energy equation located in the PISO loop

Total energy equation located in the PIMPLE loop,

PIMPLE iterations PISO iterations RMSE Simulation time
1 3 1.31571 42s
1 10 1.31570 79s
1 25 1.31570 184s

Table 2: Total energy equation located in the PIMPLE loop

The location of the total energy balance in the structure of solver algorithm affects the accu-
racy of the solution. When the energy equation is in the PIMPLE loop, the solution converges
with a few PISO iterations. However the accuracy of the solver with the energy equation in the
PISO loop is better.
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4.5.2 Relaxation factors and PIMPLE iterations

The case is solved with additional PIMPLE iterations. The effect of the relaxation factors
is interpreted. For these comparisons the energy equation is solved inside the PISO loop. The
time step length is fixed as before in ∆t = 0.001s

Results obtained without using relaxation factors,

PIMPLE iterations PISO iterations RMSE Simulation time
2 3 0.70044 77s
10 3 0.50911 393s
30 3 0.50911 1124s

Table 3: Influence of the number of PIMPLE iterations without relaxing.

Results obtained using relaxation factors, which are 0.7 for the velocity and 0.3 for the
energy, density and pressure,

PIMPLE iterations PISO iterations RMSE Simulation time
2 3 5.39974 80s
10 3 9.03520 363s
30 3 0.29549 1171s
50 3 0.54461 2019s
70 3 0.50939 3316s

Table 4: Influence of the number of PIMPLE iterations with relaxing.

The relaxation factors for the adiabatic case do not improve the accuracy of the solution
and the convergence of the method demands many more PIMPLE iterations. The case solved
without relaxation factors converges and therefore there is no need to relax the variables.

4.5.3 Time step length

The accuracy of the solution is evaluated varying the time step length. The cases are solved
with different configurations for the inner and outer numbers of iterations. Both configurations
have a similar number of total PISO iterations. In all cases the energy balance is done inside
the PISO loop.
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∆t PIMPLE iterations PISO iterations RMSE Simulation time
0.001 1 10 0.51041 108s
0.001 3 3 0.51360 110s
0.001 1 25 0.50913 184s
0.001 5 5 0.50911 223s
0.01 1 10 0.86311 18s
0.01 3 3 0.86631 18s
0.01 1 25 0.86177 37s
0.01 5 5 0.86170 38s
0.1 1 10 4.70572 2s
0.1 3 3 4.70986 2s
0.1 1 25 4.70398 5s
0.1 5 5 4.70404 4s

Table 5: Influence of the time step length

The accuracy of the solutions decreases when the time step length is larger. This fact can not
be improved considerably by increasing the total numbers of PISO iterations.

5 CONCLUSIONS

This work presented the implementation of a new mesh dynamics functionality for a com-
pressible fluid solver that is part of the suite OpenFOAM R©. The layering technique was intro-
duced and a description of the implementation of the new functionality in OpenFOAM R©was
exposed. The compressible fluid solver rhoPimpleDyMFoamMC was studied making a brief
description of the finite volume discretization and the velocity-energy-pressure coupling which
is achieved by the PIMPLE algorithm.
The solver with the layering technique was tested working with a piston-cylinder closed system.
A quasi static compression was solved using adiabatic and Robin boundary conditions for the
temperature. The results of the simulations were compared with analytical predictions and the
influence of the PIMPLE algorithm parameters in the accuracy of the solution was examined.
After solving the test cases it can be concluded that the mesh adaptation procedure for the repro-
duction of a piston-cylinder compression works successfully with the layering technique mesh
dynamics technology. The numerical simulation executed by the solver
rhoPimpleDyMFoamMC provides accurate results for the adopted test cases.
In reference to the PIMPLE method, it was determined for the test cases that a better accuracy is
obtained when the total energy balance is located inside the PISO loop, in the algorithm struc-
ture. The use of relaxation factors for the variables is not necessary in this cases and its use
slow down considerably the convergence of the method. The accuracy of the results depends
of the time step length and it can not be improved increasing the numbers of PISO or PIMPLE
iterations. The convergence of the velocity-energy coupling depends principally of the total
number of PISO iterations that results of multiplying the number of iterations PIMPLE by the
number of PISO iterations per PIMPLE loop.
As a future work, the layering technique implemented in this work must be improved in order
to accomplish more complex problems. It is necessary an adaptive layering thickness tolerance
for the treatment of small gaps and multiple moving zones with different velocities must be
resolved in order to simulate problems that include valves or more than one piston.
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