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Abstract. We discuss ongoing work on the addition of a statically condensable bubble enrichment to
capture kinks (surfaces where the function is continuous but its gradient exhibits a jump) in the velocity
field at immersed interfaces not conforming with the element boundaries. Such kinks are frequent in
multi-fluid flows because they arise whenever there are viscosity jumps or thermo-capillary effects. The
enrichment is applied only at those elements of the finite element mesh cut by the interface, which is pa-
rameterized in this case with a level set function. The bubble function used in this work was introduced
elsewhere (see Codina and Coppola-Owen, Int. J. Num. Meth. in Fluids 2005; 49:1287-1304) to capture
discontinuities in the pressure gradient for two-phase flows, which arise because of density discontinu-
ities under gravity. Its applicability as enrichment of the velocity field is not obvious due to a consistency
error it creates in the variational formulation (the enrichment velocity fields are not in H1(Ω), since they
are discontinuous at some inter-element boundaries). In this work we assess the accuracy, robustness
and limitations of this new enrichment in some problems involving interfaces. In its current form, the
non-conformity of the bubbles introduces an unphysical numerical error which is of the same order as
the interpolation error the bubbles are there to alleviate. Notice that these same bubble functions, when
used for the pressure, do not lead to consistency error because they do belong to L2(Ω).

Mecánica Computacional Vol XXXII, págs. 1785-1797 (artículo completo)
Carlos G. García Garino, Aníbal E. Mirasso, Mario A. Storti, Miguel E. Tornello (Eds.)

Mendoza, Argentina, 19-22 Noviembre 2013

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 INTRODUCTION

Consider the elliptic variational problem: Find ϕ ∈ Z such that

B(ϕ, ξ) = L(ξ) ∀ ξ ∈ Z (1)

where B is a strongly coercive, continuous bilinear form on Z and L ∈ Z ′. The classical
theory of finite elements (Ciarlet (1978); Brenner and L.R. (1994); Ern and Guermond (2004))
considers the discrete formulation: Find ϕh ∈ Zh such that

B(ϕh, ξh) = L(ξh) ∀ ξh ∈ Zh (2)

for some Zh contained in Z. It is then easily proved that

‖ϕ− ϕh‖Z ≤ C ‖ϕ− Ihϕ‖Z (3)

where Ihϕ is the Zh-interpolant of the exact solution ϕ, and C is a constant independent of h.
When the exact solution is not regular the interpolation error ‖ϕ− Ihϕ‖Z can be very large.

To reduce it, new finite elements can be designed that are adapted to the specific problem at
hand. When the new finite element space is not contained in Z it is called non-conforming,
and its use cannot be justified by the classical theory. As coined by Gilbert Strang (Strang and
Fix (2008)), the use of a Zh 6⊂ Z constitutes a “variational crime” that has to be justified in
terms of an extended theory, essentially contained in Strang’s first and second lemmata (Ern
and Guermond (2004)).

Some variational crimes are practically unpunished: (i) If the boundary conditions on Zh are
not the same as those on V but interpolants thereof, strictly speaking Zh 6⊂ Z. This is however
of no consequence for the convergence rate of the approximation. (ii) The piecewise linear
triangular element with the degrees of freedom at the midpoints of the edges is certainly not in
Z = H1(Ω). The standard formulation of the Poisson problem (with the integrals performed
over the interiors of the triangles) is however convergent with the same rate as the conforming
P1 triangle. Variational crimes are frequently committed by finite element practitioners, and
in many cases they are inconsequential. The purpose of this contribution is to discuss a vari-
ational crime that, though reasonable at first sight, ends up being harmful for the numerical
approximation.

In the embedded interface treatment of multiphase flows there appear kinks in the velocity
that limit the convergence of standard finite element spaces to O(

√
h). The bubble function in-

troduced by Coppola-Owen and Codina (2005) incorporates a kink in the approximation space
and could thus be useful for obtaining more accurate approximations. It is restricted to each
element and can be statically eliminated, which makes it attractive because the matrix struc-
ture does not depend on the interface location. Coppola-Owen and Codina applied this bubble
function successfully to enrich the pressure space (density discontinuities produce kinks in the
hydrostatic pressure), for which the variational formulation prescribes L2(Ω) as exact space.

In this contribution we discuss the enrichment of the velocity space with this bubble function,
which constitutes a non-conforming approximation since the associated space is not contained
in the exact space for velocities H1(Ω). A formal analysis of the consistency error shows that
it is O(

√
h), which precludes the bubbles from increasing the order of the method. Further, it

is shown that the non-conforming space produces some awkward artifacts in the solution that
make the conforming approximation preferrable.
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2 MATHEMATICAL SETTING

2.1 Governing equations

We consider here the frequent case of two-fluid Newtonian flows. The fluid domain Ω is
decomposed into a “plus” (+) region and a “minus” (−) region, separated by a closed smooth
interface Γ, according to

Ω = Ω+ ∪ Γ ∪ Ω−. (4)

The physical properties (density ρ, viscosity µ) are assumed homogeneous and constant within
each region, namely

(ρ(x), µ(x)) =

{
(ρ+, µ+) if x ∈ Ω+

(ρ−, µ−) if x ∈ Ω−
(5)

where ρ± ≥ 0 and µ± > 0. The Cauchy stress tensor given by

σ = − p I + µ (∇u +∇uT ), (6)

with p the pressure, I the identity tensor and u the velocity, satisfies the dynamical equilibrium
equation inside each region; i.e.,

ρa−∇ · σ = b in Ω+(t) ∪ Ω−(t) (7)

where a is the acceleration and b is a body force (such as gravity).
In addition to (7), the system is governed by the incompressibility condition

∇ · u = 0 in Ω+ ∪ Ω−, (8)

and by the boundary conditions usually imposed to the Navier-Stokes equations, as for example

u(x) = u∂Ω on ∂Ω, (9)

and by the interface conditions at Γ discussed below.

2.2 Interface conditions

The simplest non-trivial interface behavior corresponds to capillary interfaces. Their are
modeled by jump conditions for velocity and tractions at Γ given by

Ju K = 0 (10)
Jσ · ňK = γ κ ň−∇Γγ (11)

in which J·K represents the jump of the quantity, e.g.;

JuK(x)
def
= u+(x)− u−(x)

def
= lim

ε→ 0
u(x + ε ň)− lim

ε→ 0
u(x− ε ň),

whereas γ is the surface tension, κ the mean curvature, ň the normal to Γ (pointing towards Ω+)
and ∇Γ the surface gradient. The reader is referred to Buscaglia and Ausas (2011) for details.

Equation (10) expresses that the fluids adhere to the interface on both sides. It implies in
particular that incompressibility is satisfied (in the sense of distributions) at Γ; i.e., that the
jump of the normal velocity Ju · ňK vanishes. The motion thus preserves volume everywhere.

Mecánica Computacional Vol XXXII, págs. 1785-1797 (2013) 1787

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Equation (11) expresses the dynamical effect of the interface, which corresponds to a surface
force over Γ. The tangential term, ∇Γγ, appears in problems with inhomogeneous surface
tension due to thermal or chemical gradients. It is known as Marangoni force.

Of main concern to us is the expected continuity of the field variables at the interface. As-
suming the solution to be smooth on both sides of Γ, from (10) it is clear that u+|Γ = u−|Γ and
thus the velocity field is continuous at Γ. This in turn implies that all tangential derivatives of
u are also continuous at Γ.

One can also prove that the normal derivative (∂n) of the normal component of the velocity
is continuous at Γ. To see this, decompose the velocity into normal and tangential components,

u = us + un ň (12)

with un = u · n̂. The vector field n̂ is the normal extension of ň to a neighborhood of Γ. The
divergence of u can be written as the sum of a tangential term and a normal term as follows

∇ · u = ∂n un +∇Γ · u ⇒ ∂n un = −∇Γ · u

and since the tangential derivative of u has already been shown to be continuous at Γ, so is
∂nun.

The variables that are expected to be discontinuous at Γ are, thus, the pressure and the normal
derivative of the tangential velocity.

2.3 Level set parameterization

We define the interface Γ as being the zero-level set of some function φ(x) which satisfies

∇φ(x) 6= 0 ∀x ∈ Γ, (13)

so that the normal to Γ,

ň =
∇φ
‖∇φ‖

(14)

is well defined. This explains the plus/minus notation already introduced, since φ|Ω+ > 0 and
φ|Ω− < 0.

2.4 Variational formulation
The variational formulation adopted in this work can be found in Buscaglia and Ausas (2011)

and is only briefly recalled here for completeness. Let V∂ (respectively, V0) be the velocity
space consisting of fields in H1(Ω)d that satisfy the Dirichlet boundary conditions u = u∂Ω

(respectively, u = 0). Let also Q be the pressure space of functions in L2(Ω), eventually
restricted to have zero mean if velocity is imposed in the whole boundary ∂Ω.

The exact problem thus reads: Find (u, p) ∈ V∂ ×Q such that∫
Ω

ρ (u · ∇u) · v dΩ +

∫
Ω

2µDu : Dv dΩ−
∫

Ω

p∇ · v dΩ =

=

∫
Ω

b · v dΩ−
∫

Γ

γ (I− ň⊗ ň) : Dv dΓ (15)∫
Ω

q ∇ · u dΩ = 0 (16)
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∀(v, q) ∈ V0×Q. Notice that for the surface tension a Laplace–Beltrami formulation is adopted
(see e.g. Bänsch (2001); Ganesan et al. (2007); Gross and Reusken (2007); Buscaglia and
Ausas (2011)) and that the symmetric gradient operator (i.e.; Du = 1

2
(∇u+ (∇u)T )) has been

introduced.

3 FINITE ELEMENT APPROXIMATION

3.1 Discrete problem

The finite element formulation is based on the Algebraic Subgrid Scale method (see e.g. Co-
dina (2001) and references therein). Since our formulation involves finite element interpolants
which are discontinuous at Γ and also at some interelement boundaries, let us define an integral
that avoids the discontinuities. More precisely, for a function f defined in Ω, for a given mesh
Th and for a given location Γ of the interface, let us denote∫

�
f dx

def
=
∑
K∈Th

∫
K\Γ

f dx (17)

In fact, it is this integral that is implemented in standard finite element codes, so that this nota-
tion has no practical consequences.

The discrete problem can now be written as: Find uh and ph, belonging to V∂h and Qh,
respectively, such that∫
�
G · vh dx +

∫
�

2µDuh : Dvh dx−
∫
�
ph∇ · vh dx +

∫
Γ

γ (I− ň⊗ ň) : Dvh dΓ+

+

∫
�
τh (G +∇ph) · (uh · ∇vh) dx +

∫
�
ζh∇ · uh∇ · vh dx = 0 (18)∫

�
qh∇ · uh dx +

∫
�

τh
ρ

(G +∇ph) · ∇qh dx = 0 (19)

∀(vh, qh) ∈ V0h ×Qh, where
G = ρ (uh · ∇uh)− b, (20)

and the stabilization parameters are given by

τh =

[
4µ

ρ h2
+

2 ‖uh‖
h

]−1

, δh = 2µ+ ρ ‖uh‖h (21)

with h the local mesh size.

3.2 Velocity and pressure spaces

Let P1(Th) denote the classical, conforming P1 space defined on the mesh Th. Defining the
interface submesh

Ah
def
= {K ∈ Th |K ∩ Γ 6= ∅} (22)

the velocity/pressure combination proposed consists of the P1/P1 equal-order pair, enriched at
each interface element with d− 1 degrees of freedom for velocity:

Vh
def
= (P1(Th))d ⊕

{∑
K∈Ah

d−1∑
j=1

b(K,j)B(K,j)

}
(23)

Qh
def
= P1(Th) (24)
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The second term on the right of (23) is the enrichment subspace (the span of the velocity bub-
bles), which will be denoted by Eh. The unknown coefficients bK,j (j = 1 in 2D, j = 1, 2
in 3D) can be eliminated at the element level because the associated basis functions B(K,j) are
bubbles. In other words, they vanish identically at elements other than the element K.

For the definition of the bubble functions we assume hereafter that the interface Γ is, or has
been approximated by, a planar facet inside each element. Accordingly, the level set function
φ is assumed to be a linear polynomial inside each element. The standard P1 basis functions in
each element will be denoted by N j , j = 1, . . . , d+ 1.

Let ψK be the enrichment function introduced by Codina and Coppola-Owen to approximate
the pressure in free-surface flows, defined by

ψK(x)
def
=

{
−1

2
|φ(x)|+ 1

2

∑d+1
j=1 |φ(Xj)|N j(x) if x ∈ K

0 if x /∈ K
(25)

This function is continuous inside K, linear on each side of Γ, and vanishes at the d + 1
vertices. Its gradient is discontinuous at Γ, which is useful to approximate functions with jumps
in the normal derivative.

Following the discussion of the previous section, we use this function to enrich the tangential
velocity. Taking an arbitrary basis ť1 and ť2 of the tangent space to Γ in K, that is, taking two
(just one in 2D problems) linearly independent unit vectors satisfying

ň · ťj = 0 j = 1, . . . , d− 1

we define
B(K,j)(x)

def
= ψK(x) ťj (26)

3.3 Discussion of the non-conformity variational crime

The formulation (18)-(19) is quite similar to a standard residual-stabilized formulation. How-
ever, because of the enrichment chosen for velocities, the discrete velocity fields are discontin-
uous at Fh, defined as the set of faces (edges in 2D) crossed by Γ. This generates a consistency
error, since the exact solution (u, p) does not satisfy the discrete formulation (18)-(19).

Let us discuss the consistency error in the simplest case of an inertialess flow (ρ = 0),
without surface tension (γ = 0) in the Galerkin formulation (τh = δh = 0). The problem fits
into the abstract setting presented in the introduction, with

Z
def
= (V,Q) = (H1

0 (Ω)d, L2
0(Ω)) (27)

ϕ
def
= (u, p) (28)

ξ
def
= (v, q) (29)

Zh
def
= (Vh, Qh) (30)

B(ϕ, ξ)
def
=

∫
�

(2µDu : Dv − p∇ · v + q∇ · u) dx (31)

L(ξ)
def
=

∫
�
b · v dx (32)

but now Zh 6∈ Z. We assume that the bilinear form is continuous (with norm N ) and uniformly
weakly coercive on Zh, namely that there exists a mesh-independent constant K such that

sup
ζh ∈Zh

B(ξh, ζh)

‖ζh‖�
≥ K ‖ξh‖� ∀ ξh ∈ Zh (33)
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where
‖ξh‖2

� =

∫
�

(
‖∇vh(x)‖2 + q2

h(x)
)
dx

Then we easily prove the Second Strang Lemma:

‖ϕ− ϕh‖� ≤ C ‖ϕ− Ihϕ‖� +
1

K
sup
ζh ∈Zh

B(ϕ, ζh)− L(ζh)

‖ζh‖�
(34)

which splits the approximation error ϕ− ϕh into an interpolation error (first term on the right)
and a consistency error (second term on the right). The consistency error is a consequence of the
non-conformity of the space. It vanishes identically if Zh ⊂ Z. Further, for any ζh ∈ Z ∩ Zh,
it is clear that B(ϕ, ζh)− L(ζh) = 0.

Proof of Strang’s lemma:

‖ϕ− ϕh‖� ≤ ‖ϕ− Ihϕ‖� + ‖Ihϕ− ϕh‖�

≤ ‖ϕ− Ihϕ‖� +
1

K
sup
ζh ∈Zh

B(Ihϕ− ϕh, ζh)
‖ζh‖�

≤ ‖ϕ− Ihϕ‖� +
1

K
sup
ζh ∈Zh

B(Ihϕ− ϕ+ ϕ− ϕh, ζh)
‖ζh‖�

≤
(
N

K
+ 1

)
‖ϕ− Ihϕ‖� +

1

K
sup
ζh ∈Zh

B(ϕ− ϕh, ζh)
‖ζh‖�

=

(
N

K
+ 1

)
‖ϕ− Ihϕ‖� +

1

K
sup
ζh ∈Zh

B(ϕ, ζh)− L(ζh)

‖ζh‖�
�

If the discrete space Zh interpolates the exact solution with order O(hp), the convergence
of the numerical methods only depends on the behavior, as h tends to zero, of the consistency
error

Ch = sup
ζh ∈Zh

B(ϕ, ζh)− L(ζh)

‖ζh‖�
It is an interesting exercise of finite element consistency analysis to try to estimate Ch for our
specific formulation. We begin by noticing that we can always decompose

ζh = (vh, qh) = (vch + vnch , qh) = (vch, qh) + (vnch , 0) = ζch + ζnch

where vch belongs to P1(Th)d (the conforming part of vh) and vnch belongs to Eh (the non-
conforming, bubble part of vh). Because the conforming part of ζh has zero consistency error,
we have

B(ϕ, ζh)− L(ζh) = B((u, p), (vnch , 0))− L((vnch , 0))

=

∫
�

(2µDu : Dvnch − p∇ · vnch − b · vnch )

One now integrates by parts the viscous and pressure terms, which leads to integrals of the jump
of σ · ň over the element boundaries and over Γ, i.e.,

B(ϕ, ζh)− L(ζh) = −
∫
�

(∇ · σ + b) · vnch dx +

∫
Γ

J(σ · ň) · vnch K +
∑

edges eh

∫
eh

J(σ · ň) · vnch K
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The first term is identically zero because ∇ · σ + b = 0. The second term also vanishes
identically because vnch is continuous across Γ, so that

J(σ · ň) · vnch K = J(σ · ň)K · vnch

which is zero because J(σ · ň)K = 0 across any surface contained in Ω. It only remains the third
term, which also vanishes at all edges (i.e., element boundaries) eh where vnch is continuous.
This leaves the set of edges crossed by the interface, Fh, as the only source of consistency error,

B(ϕ, ζh)− L(ζh) =
∑
eh∈Fh

∫
eh

(σ · ň) · Jvnch K

Notice that Fh is a “rough” surface determined by the mesh, and that

meas(Fh) ≤ c meas(Γ)

In principle σ is arbitrary, and the normal ň jumps from one eh to the other, so that little can be
done with the expression above other than

B(ϕ, ζh)− L(ζh) ≤ ‖σ‖∞
∑
eh∈Fh

∫
eh

‖ Jvnch K ‖

The function vnch is a linear combination of piecewise linear bubbles that vanish at the nodes.
We thus have, assuming d = 2,

vnch =
∑
K ∈Ah

b(K) B(K)

and ∑
eh∈Fh

∫
eh

‖ Jvnch K ‖ ≤ 2
∑
K ∈Ah

|b(K)|
∫
∂K

‖B(K)‖ = 2
∑
K ∈Ah

|b(K)|
∫
∂K

‖ψK‖ (35)

It is easy to check that
∫
∂K
‖ψK‖ ≤ h2

K so that

B(ϕ, ζh)− L(ζh) ≤ 2 ‖σ‖∞ h2
∑
K ∈Ah

|b(K)| (36)

Now, let us estimate

‖ζnch ‖2
� =

∑
K ∈Ah

∫
K

‖∇vnch ‖2

noticing that, if the distance from Γ to a vertex is δK , then max |ψK | ' δK and∫
K

‖∇vnch ‖2 = |b(K)|2
∫
K

‖∇ψK‖2 ' c′ |b(K)|2 h2
K (37)

where we have assumed that hK/δK is bounded (possibly perturbing the mesh). As a conse-
quence,

B(ϕ, ζnch )− L(ζnch )

‖ζnch ‖�
≤ c ‖σ‖∞ h2

∑
K ∈Ah

|b(K)|(∑
K ∈Ah

|b(K)|2 h2
K

) 1
2
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which using the discrete Cauchy-Schwartz inequality, assuming hK ' h for all K and noting
that

∑
K ∈Ah

1 ' meas(Γ)/h, leads to

B(ϕ, ζnch )− L(ζnch )

‖ζnch ‖�
≤ c ‖σ‖∞ meas(Γ)

1
2 h

1
2 (38)

and this last expression, though not rigorously, is expected to be a reasonable estimate for the
consistency error Ch.

Ch ∼ c ‖σ‖∞ meas(Γ)
1
2 h

1
2 (39)

This formal calculation thus suggests that the order of the consistency error is O(
√
h), i.e., the

same order of the interpolation error that the bubbles were designed to improve.
Nevertheless, sometimes two approximations converge with the same order but have com-

pletely different accuracies. Also, some errors are more unphysical than others, even if the
orders coincide. This is assessed in the next section by numerical experimentation. Some pecu-
liarities of the numerical behavior can already be deduced from (39).

Arguably, the dominant error of the conforming, piecewise P1 formulation comes from the
velocity interpolation error at the interface elements. In turn, this error arises due to kinks in
the tangential velocity gradient. One expects the error to be the same for two problems which
only differ by a uniform shift in the pressure field. However, for the non-conforming enriched
formulation one obtains in (39) that the whole Cauchy stress tensor intervenes in the error,
not just its viscous part, so that two exact solutions that differ by a constant pressure will be
approximated differently. This already suggests that the error must behave rather unphysically.

4 NUMERICAL EXPERIMENT

The simplest test we can perform to numerically show this consistency error is the Couette
flow between parallel walls. In this example we consider a square channel with a horizontal in-
terface separating the two fluids having different viscosities. The problem setting and boundary
conditions are shown in figure 1. The exact solution for this problem is exactly interpolated by
the enriched space (the interpolation error is zero), so that in the Second Strang Lemma (34)
only the consistency error survives. Were it not for the “crime” committed, the exact solution
would be retrieved. Unfortunately, from the last section we expect a total error of the same order
as that of the unenriched formulation, it only remains to assess numerically the actual value of
the error.

The exact solution reads

u1(x1, x2) =

{
a x2

`
if x2 < `

a + (1− a) x2−`
1−` if x2 ≥ `

(40)

u2(x1, x2) = 0 (41)
p(x1, x2) = p̄ (42)

where p̄ is a constant, ` is the interface position, µ1 and µ2 are the fluid viscosities and a is
defined as

a =
` µ2

(1− `)µ1 + ` µ2

(43)

From (40)-(41) the velocity is continuous at Γ but its gradient is discontinuous. We solve this
problem with ` = 0.4, µ1 = 1, µ2 = 10 and p̄ = 100. A sequence of unstructured meshes is built
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of which the first one consists of 64 elements. To this mesh we assign a mesh size h = 0.145.
The following six meshes in the sequence are built by subdivision. We measure the velocity
error in the H1(Ω)-norm and the pressure error in the L2(Ω)-norm using the enrichment and
without using it. The results are plotted in figure 2 and 3. As shown in these figures the pressure
and the velocity error norms converge with orderO(h

1
2 ) as expected in both cases. For the case

with the enrichment, the magnitude of these errors is much larger.
For illustration purposes figure 4 shows contours of the pressure field and contours of the

vertical component of the velocity field for the fourth mesh in the sequence. Remember that the
exact solution corresponds to a constant pressure p̄ = 100 and a zero vertical velocity u2 = 0.
For both cases, the oscillations near the interface are quite noticeable, and they are much more
pronounced when the enrichment is used. In particular, the error of the enriched formulation
depends on the value of the (uniform!) pressure p̄, and the amplitude of the oscillations roughly
scales with |p̄|. The unenriched formulation has oscillations that are strictly independent of |p̄|.

u1 = 1, u2 = 0

`

u1 = 0, u2 = 0

x2

x1

µ1

µ2

Γ

Figure 1: Problem setting for the Couette flow to numerically assess the consistency error of the formulation with
the enrichment.

5 CONCLUSIONS

We have presented preliminary results on the theoretical and numerical assessment of a vari-
ational crime in incompressible multi-fluid finite element formulations. The proposed crime
consists of adding bubbles that improve the interpolation properties of the velocity space at the
expense of violating the consistency of the formulation (the exact solution no longer satisfies
the discrete formulation).

Many variational crimes from the literature either are harmless, or decrease the convergence
order, or lead to ill-posed discrete formulations altogether. In this case, interestingly, the consis-
tency error ends up being of the same order as the interpolation error of the “legal” formulation.
However, it ends up not being convenient because it introduces some kind of zero-stress condi-
tion (weakly) at the interface, which is completely unphysical.
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Figure 2: L2(Ω) error norm of the pressure field for the Couette problem using the enrichment (circles) and without
the enrichment (triangles).
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Figure 3: H1(Ω) error norm of the velocity field for the Couette problem using the enrichment (circles) and without
the enrichment (triangles).

The method could perhaps be applicable in flows in which one of the fluids is much less vis-
cous and less dense than the other, in which case the interface can be quasi-stress-free (assuming
zero reference pressure).
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Figure 4: Contours of pressure (top) and vertical velocity (bottom) for the Couette problem without using the
enrichment (left) and with the enrichment (right).

Current work aims at developing some variant of the method discussed above which cir-
cumvents its unphysical behavior while preserving its interpolation properties and its simplicity
(with respect to XFEM or GFEM). The main difficulties seem to come from the (natural) bound-
ary condition on the total stress that appears at the non-conformity element faces. Experiments
are being performed on switching to a formulation in which the pressure gradient is not inte-
grated by parts, and will be reported in the near future.
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