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Abstract. A new approach to study transversal vibration of rotating Timoshenko beams is presented. It
is an extension of previous works that consider the simultaneous presence of axially functionally graded
materials, and variation of the cross section. The quadrature algorithms extensions were developed by
the authors. The model in analysis includes a lot of important features like effects of material non-
homogeneity, shear deformation, rotatory inertia, centrifugal stiffening action, gyroscopic effects, and
stepped variation of the cross section. The numerical study is implemented using the differential quadra-
ture method and the results are compared with values obtained from particular cases available in the
literature, when it is possible. Since a lot of characteristics are considered, it is a very versatile model
which is solved with an efficient method. It is hoped that both, the numerical study carried out and the
proposed algorithms provide useful information that will be of scientific and technological interest.
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1 INTRODUCTION

In the present work is extended the develop of a particular methodology that solves the rotat-
ing Timoshenko beam Lin and Hsiao (2001), taking into account a large number of parameters
in the model. Among these features, the relevant characteristic in the present approach, is
the consideration of axially functionally graded materials properties. The axially functionally
graded materials, (AFGM), are becoming as a good alternative to overcome the principal disad-
vantages presented in composite materials, such as residual stress, locally plastic deformation,
debonding between adjacent surfaces of different materials and so on, as have been remarked
by Yaghoobi and Fereidoon (2010). In the case of helicopter blades, wind turbine blades, or
ship propellers between others, the mentioned advantages has generated renewed efforts to in-
vestigate the dynamic properties of structural elements made with AFGM, Rajasekaran (2012).

Due the fact the system under study contains many parameters, a large variety of beam mod-
els are possible. Accordingly, the numerical simulation of these models becomes necessary,
primarily because cover all cases with experimental studies would be too costly. Furthermore,
the desired good precision of the results, requires the use of effective methods to solve the cor-
responding governing differential equations. Among these methods, are frequently applied for
this purpose, the finite element method Przemieniecki (1968); Petyt (1990); Rossi (2007), the
dynamic stiffness formulation Banerjee (2000, 2001); Banerjee et al. (2006) and the differential
quadrature method Bellman and Casti (1971); Bert and Malik (1996); Shu and Chen (1999);
Karami et al. (2003).

In the present approach, are extended the develop of algorithms based on generalized dif-
ferential quadrature method with domain decomposition technique, to be applied at rotating
beams, made with non homogeneous materials Felix et al. (2008, 2009); Bambill et al. (2010).
The work begins describing the principal characteristics and parameters of the beams under
analysis. Then, the governing equations are developed in detail, including the corresponding
non-dimensional expressions. With these expressions, the quadrature analogous differential
equations, necessary to apply the differential quadrature method, are obtained. In the numerical
results section, a set of different beam models with different boundary conditions are analized.
Some of the calculated results are compared with values obtained from the available technique
literature.

2 GEOMETRICAL AND MECHANICAL PROPERTIES

The proposed model is constituted by a set of beam-parts which are refered as k elements.
So, the integer k is simply a beam element identifier. In general, each of the k elements may have
different geometrical and mechanical properties. Moreover, to carry out the present dynamical
study, the system is analyzed with the rotating Timoshenko beam theory, which include shear
deformation, rotatory inertia and the effects of centrifugal forces, Banerjee (2000, 2001). The
geometry of the models under study is shown in Figure 1 for the particular case of the beam
composed by 2 elements.
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Figure 1: Geometry of the beam composed by 2 elements.

In Figure 1, L1 and L2 are the length of each element and L is the total length of the beam. η
represents the angular velocity of the beam, and W is the corresponding transversal deflection
of the beam when it does experiment transversal vibration. Notice that in this particular case
under study the radius hub was adopted equal to zero.

In Figure 2, it is shown a k element with their principal geometric variables.
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Figure 2: Geometry of the k element along the x-axis.

2.1 Spatial coordinates

In Figure 2, Rk is the spatial coordinate at the beginning of each k element and xk is the
spatial coordinate which locate any cross section within the corresponding k element.

For simplicity, in Figure 2, only a k element is shown. The rectangular cross section, adopted
in the present work, is defined by bk(xk) and hk(xk). As it is obvious, at the beginning of each
k element xk = 0 and the variables a and b, represent the integral ends in the expression of
centrifugal forces, that will be defined later. The non-dimensional spatial coordinate is defined
as follow:

x =
xk

Lk
, (1)
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where Lk is the length of each k element. Notice that the non-dimensional coordinate x do not
depend of k. The non-dimensional length of each k element will be:

Lk =
Lk

L
. (2)

2.2 Material properties

Axially functionally graded beams represent a particular application of AFGM, widely used
in mechanical and aeronautical engineering. It is assumed that each k element of the beam
is composed of two materials named materialAk and materialBk. The corresponding Young
modulus will be EAk and EBk and the corresponding mass density will be ρAk and ρBk. The
aspect ratio of the two mentioned materials for Young modulus and for density, are defined as
follow:

χEk =
EBk

EAk

; with EAk > EBk, (3)

similarly for the density it gives:

χρk =
ρBk
ρAk

; with ρAk > ρBk. (4)

Following a power law distribution, the Young modulus is expressed as:

Ek(xk) = EAk

(
(χEk − 1)(

xk

Lk
)nEk + 1

)
. (5)

Introducing the non-dimensional spatial coordinate (1) in equation (5), it yields:

Ek(x) = EAk ((χEk − 1)xnEk + 1) , (6)

where nEk is the exponential parameter that define the variation law of Ek(x) within the k
element. The expression of density is:

ρk(xk) = ρAk

(
(χρk − 1)(

xk

Lk
)nρk + 1

)
, (7)

or:

ρk(x) = ρAk ((χρk − 1)xnρk + 1) , (8)

where nρk is the exponential parameter that define the variation law of ρk(x) within the k ele-
ment.

Next, are defined the non-dimensional expressions of Ek(x) and ρk(x) as follow:

Ek(x) =
Ek(x)

EAk

= (χEk − 1)xnEk + 1, (9)

and

ρk(x) =
ρk(x)

ρAk
= (χρk − 1)xnρk + 1. (10)
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The Figures 3 and 4 are the parametric plots ofEk(x), for both, lineal and quadratic variation
law. The discontinuous of E and ρ, between adjacent k elements, are taking into account with
the following parameters:

αEk =
Ek(0)

E1(0)
=
EAk

EA1

; αρk =
ρk(0)

ρ1(0)
=
ρAk
ρA1

. (11)
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Figure 3: Fundamental frecuency coeficient vs. χE and χρ
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Figure 4: Fundamental frecuency coeficient vs. χE and χρ

The plots of ρk(x) are not shown because these are similarly to Ek(x).

2.3 Geometrical properties of cross section

The following expressions define the aspect ratio between the heights and between the
widths, at both ends of the k element in consideration.

χhk =
hBk

hAk
; χbk =

bBk

bAk
, (12)

where hAk and bAk are the height and the width of the beam at the beginning of each k element,
respectively. Similarly, hBk and bBk are the height and the width of the beam at the end of each
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k element, respectively. Following a power law distribution, it is assumed that the height and
the width of the cross section in each k element, vary according with the following expressions:

hk(xk) = hAk

(
(χhk − 1)(

xk

Lk
)nhk + 1

)
, (13)

or:
hk(x) = hAk ((χhk − 1)xnhk + 1) , (14)

where nhk is the exponential parameter that define the variation law of hk(x) in the k element
and:

bk(xk) = bAk

(
(χbk − 1)(

xk

Lk
)nbk + 1

)
, (15)

or:
bk(x) = bAk ((χbk − 1)xnbk + 1) . (16)

where nbk is the exponential parameter that define the variation law of bk(x) in the k element.
Next, it is defined the non-dimensional expressions of hk(x) and bk(x) as follow:

hk(x) =
hk(x)

hAk
= (χhk − 1)xnhk + 1, (17)

and:

bk(x) =
bk(x)

bAk
= (χbk − 1)xnbk + 1. (18)

For rectangular cross section, it is obtained the expression of the area from expression (19),
using the equations (13) and (15)

Ak(xk) = bk(xk)hk(xk), (19)

or:
Ak(x) = bk(x)hk(x). (20)

Then, the non-dimensional expression of Ak(x) result:

Ak(x) =
Ak(x)

bAkhAk
=
Ak(x)

Ak(0)
= bk(x)hk(x). (21)

Similarly, it is obtained the inertia moment of the cross section within the k element, as
follow:

Ik(xk) =
1

12
bk(xk)hk(xk)

3, (22)

or:
Ik(x) =

1

12
bk(x)hk(x)3, (23)

and the corresponding non-dimensional expression of Ik(x) result:

Ik(x) =
12

bAkh
3

Ak

Ik(x) =
Ik(x)

Ik(0)
= bk(x)hk(x)3. (24)
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For discontinuous variation ofA and I between adjacent k elements are defined the following
parameters:

αAk =
Ak(0)

A1(0)
; αIk =

Ik(0)

I1(0)
. (25)

3 MATHEMATICAL DEVELOPMENT

To obtain the natural frequencies and mode shapes of the rotating Timoshenko beams it is
used the Differential Quadrature Method Bellman and Casti (1971); Bert and Malik (1996);
Felix et al. (2008) with domain decomposition technique.

3.1 Dimensional expressions of governing differential equations

The centrifugal force experimented by a differential element, located in the k element of the
rotating beam, can be expressed in the form:

dNk(xk) = η2(Rk + xk)dmk(xk), (26)

where η2 is the angular velocity of the beam, Rk is the spatial coordinate at the beginning of
the k element, xk, the spatial coordinate of the element and dmk the mass element within the k
element, which is expressed as follow:

dmk(xk) = ρ(xk)A(xk)dxk, (27)

where ρ(xk) is the mass density and A(xk) the cross section area of the beam at position xk.
Then, the elemental contribution to the normal force is:

dNk(xk) = η2(Rk + xk)ρ(xk)A(xk)dxk. (28)

Integrating along the beam it is reached:

Nk(xk) =η2

(
Rk

∫ Lk

xk

ρk(xk)Ak(xk)dxk +

∫ Lk

xk

ρk(xk)Ak(xk)xkdxk

)
+Nk+1, (29)

being Nk+1, the centrifugal force at the end of the k element. Making use of the following
definitions:

V k(xk) =

∫ xk

0

ρk(xk)Ak(xk)dxk, (30)

and:

φk(xk) =

∫ xk

0

ρk(xk)Ak(xk)xkdxk, (31)

the equation (29) becomes more compactly, resulting:

Nk(xk) = η2
(
Rk V k(Lk) + φk(Lk)−Rk V k(xk)− φk(xk)

)
+Nk+1. (32)

In the present approach, it is assumed that the rotating beam is subjected to transverse vibra-
tions harmonically varying in time. Then, the deflection of the beam is given by the expression:

wk(xk, t) = W k(xk)cos(ωt), (33)
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where W k(xk) is the transversal deflection amplitude of the beam and ω are the corresponding
natural frequencies. From application of Hamilton’s principle, and after separating variables, it
is possible to obtain the expressions of the amplitude of internal forces Qk(xk) and Mk(xk) in
each k element of the beam Felix et al. (2008). The expression of Qk(xk) is:

Qk(xk) = Nk(xk)
dW k

dxk
+ κGk(xk)Ak(xk)γk(xk), (34)

where W k and dW k/dxk are the displacement and the slope amplitude, for the transversal
vibration of the beam in the k element respectively. The parameter κ is the shear factor, while
Gk(xk) is the shear modulus and γk(xk) is the distortion at the xk position, all of them within
the k element. The distortion can be expressed in the form:

γk(xk) =
dW k

dxk
−Ψk, (35)

where Ψk(xk) is the rotation of the cross section in the position xk of the k element. The shear
module Gk(xk) can be expressed as follow:

Gk(xk) =
κ

2(1 + ν)
Ek(xk), (36)

where, as it was defined earlier, Ek(xk) is the Young module in the k element. Replacing the
expressions (35) and (36) in equation (34) and rearranging terms it is obtained:

Qk(xk) =

(
Nk(xk) +

κ

2(1 + ν)
Ek(xk))Ak(xk)

)
dW k

dxk
−

κ

2(1 + ν)
Ek(xk))Ak(xk)Ψk.

(37)

The expression of Mk(xk) result:

Mk(xk) = Ek(xk)Ik(xk)
dΨk

dxk
, (38)

where W k and Ψk are the displacement and rotation amplitude respectively, for the transversal
vibration of the beam in the k element, κ is the shear factor. while Ik(xk) represents the inertia
moment of the cross section.

Once known the internal forces, they can be obtained the governing differential equations of
the system from the application of Hamilton principle, Banerjee (2000, 2001). The resulting
expressions are showed in equations (39) and (40):

−dQk(xk)

dxk
= ρ(xk)A(xk)ω

2W k, (39)

and:

−Qk(xk) +Nk(xk)
dW k

dxk
− dMk(xk)

dxk
− ρ(xk)I(xk)η

2Ψk = ρ(xk)I(xk)ω
2Ψk. (40)
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When the beam is made with more than an element, the compatibility equations are required
in the sections that join adjacent elements. The compatibility equations for displacements can
be expressed as follow:

−W k−1|xk−1=Lk−1
+W k|xk=0 = 0, (41)

and:
−Ψk−1|xk−1=Lk−1

+ Ψk|xk=0 = 0. (42)

The compatibility equations for internal forces can be expressed in the form:

−Qk−1|xk−1=Lk−1
+Qk|xk=0 = 0, (43)

and:
−Mk−1|xk−1=Lk−1

+Mk|xk=0 = 0. (44)

The following particular cases of boundary conditions for the rotating beam model are con-
sidered: Clamped-free, clamped-slider and clamped-clamped.

In the case of clamped-free boundary conditions, geometric boundary restrictions at left end
and natural boundary conditions at right end, are imposed:

W 1|x1=0 = 0; Ψ1|x1=0 = 0; Qd|xd=Ld = 0; Md|xd=Ld = 0. (45)

In the case of clamped-slider boundary conditions, geometric boundary restrictions at left
end and both, geometric and natural boundary conditions at right end, are imposed:

W 1|x1=0 = 0; Ψ1|x1=0 = 0; W d|xd=Ld = 0; Md|xd=Ld = 0. (46)

Finally, in the case of clamped-clamped boundary conditions, geometric boundary restric-
tions at both ends are imposed:

W 1|x1=0 = 0; Ψ1|x1=0 = 0; W d|xd=Ld = 0; Ψd|xd=Ld = 0. (47)

3.2 Non-dimensional expressions of governing differential equations

Previously to get the quadrature analogous differential equations, it is needed to obtain the
corresponding non-dimensional expressions. The non-dimensional expressions corresponding
to internal forces are obtained from equations (32), (37) and (38), and are expressed as follow:

Nk(x) = η2
l2k
s21

(Rkvk(1) + φk(1)−Rkvk(x)− φk(x)) +Nk+1, (48)

where:

η =

√
ρ1(0)A1(0)

E1(0)I1(0)
L2η, (49)

is the non-dimensional expression for rotating velocity of the beam and:

s1 =
L

i1
; i1 =

√
I1(0)

A1(0)
; Rk =

Rk

L
, (50)
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are non dimensional parameters for slenderness, turning radius and position, at the beginning
of the k element and:

vk(x) =
Vk(xk)

Lkρk(0)Ak(0)
; φk(x) =

Φk(xk)

L
2

kρk(0)Ak(0)
; Nk+1 =

Nk+1

Ek(0)Ak(0)
, (51)

are non dimensional parameters used to calculate the centrifugal forces. The non-dimensional
expression of Qk(xk) is:

Qk(x) =

(
Nk(x) +

κ

2(1 + ν)
Ek(x)Ak(x)

)
dWk

dx
−

κ

2(1 + ν)
Ek(x)Ak(x)Ψk,

(52)

where:

Wk =
W k

Lk
;

dWk

dx
=
dW k

dxk
; Ψk = Ψk, (53)

define the non-dimensional displacements . The non-dimensional expression of Mk(xk) is:

Mk(x) = Ek(x)Ik(x)
dΨk

dx
, (54)

where:

dΨk

dx
= Lk

dΨk

dxk
. (55)

The following non-dimensional parameters are defined to calculate the non-dimensional in-
ternal forces:

Nk(x) =
Nk(xk)

Ek(0)Ak(0)
; Qk(x) =

Qk(xk)

Ek(0)Ak(0)
; Mk(x) =

Mk(xk)Lx

Ek(0)Ik(0)
. (56)

After algebraic manipulation, the non-dimensional expression of differential equation (39)
results:

ck11
dWk

dx
+ ck12

d2Wk

dx2
+ ck13Ψk + ck14

dΨk

dx
= Ω2ρk(x)Ak(x)Wk, (57)

where:

Ω =

√
ρ1(0)A1(0)

E1(0)I1(0)
L2ω, (58)
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is the frequency coefficient, and the remaining constants in (57) result:

ck11 =− η2ρk(x)Ak(x)(Rk + x)− κ

2(1 + ν)

s21
L2
k

(
Ek(x)

dAk(x)

dx
+
dEk(x)

dx
Ak(x)

)
;

ck12 =− s21
L2
k

Nk(x)− κ

2(1 + ν)

s21
L2
k

Ek(x)Ak(x);

ck13 =− κ

2(1 + ν)

s21
L2
k

(
Ek(x)

dAk(x)

dx
+
dEk(x)

dx
Ak(x)

)
;

ck14 =
κ

2(1 + ν)

s21
L2
k

Ek(x)Ak(x),

(59)

and the non-dimensional expression of the differential equation (40) yields:

ck21
dWk

dx
+ ck22Ψk + ck23

dΨk

dx
+ ck24

d2Ψk

dx2
= Ω2ρk(x)Ik(x)Ψk, (60)

where:

ck21 = − κ

2(1 + ν)
s21s

2
kEk(x)Ak(x);

ck22 =
κ

2(1 + ν)
s21s

2
kEk(x)Ak(x)− η2ρk(x)Ik(x);

ck23 = − s
2
1

L2
k

(
Ek(x)

dIk(x)

dx
+
dEk(x)

dx
Ik(x)

)
;

ck24 = − s
2
1

L2
k

Ek(x)Ik(x).

(61)

The corresponding non-dimensional expressions for compatibility of displacement are ob-
tained from the equations (41) and (42), resulting:

−Lk−1Wk−1(1) + LkWk(0) = 0, (62)

and:
−Ψk−1(1) + Ψk(0) = 0. (63)

The non-dimensional expressions for compatibility of internal forces are obtained from the
equations (43) and (44). For Qk(x) it results:

−αE(k−1)αA(k−1)Qk−1(1) + αEkαAkQk(0) = 0, (64)
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where Qk−1(1) and Qk(0) are obtained from equation (52), resulting:

Qk−1(1) =

(
Nk−1(1) +

κ

2(1 + ν)
E(k−1)(1)A(k−1)(1)

)
dWk−1

dx
|x=1−

κ

2(1 + ν)
E(k−1)(1)A(k−1)(1)Ψk−1|x=1;

Qk(0) =

(
Nk(0) +

κ

2(1 + ν)
Ek(0)Ak(0)

)
dWk

dx
|x=0−

κ

2(1 + ν)
Ek(0)Ak(0)Ψk|x=0.

(65)

For Mk(x) it results:

−
αE(k−1)αI(k−1)

Lk−1

Mk−1(1) +
αEkαIk
Lk

Mk(0) = 0, (66)

where Mk−1(1) and Mk(0) are obtained from equation (54), resulting:

Mk−1(1) =Ek−1(1)Ik−1(1)
dΨk−1

dx
|x=1;

Mk(0) =Ek(0)Ik(0)
dΨk

dx
|x=0.

(67)

The non-dimensional form of boundary conditions results as follow: In the case of clamped-
free boundary conditions, from equations (45) is obtained:

W1|x=0 = 0; Ψ1|x=0 = 0; Qd|x=1 = 0; Md|x=1 = 0. (68)

In the case of clamped-slider boundary conditions, from equations (46) it results:

W1|x=0 = 0; Ψ1|x=0 = 0; Wd|x=1 = 0; Md|x=1 = 0. (69)

Finally, in the case of clamped-clamped boundary conditions, from equations (47) is yield:

W1|x=0 = 0; Ψ1|x=0 = 0; Wd|x=1 = 0; Ψd|x=1 = 0. (70)

3.3 Analogous quadrature differential equations

The analogous equation for N(x) is obtained from equation (48):

Nk,i = η2
l2k
s21

(Rkvk,n + φk,n −Rkvk,i − φk,i) +Nk+1, (71)

and similarly, the analogous equation for Q(x) is obtained from equation (52):

Qk,i =

(
Nk,i +

κ

2(1 + ν)
Ek,iAk,i

) n∑
j=1

A
(1)
i,jWk,j −

κ

2(1 + ν)
Ek,iAk,iΨk,i. (72)
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The analogous equation for M(x) is obtained from equation (54):

Mk,i = Ek,iIk,i

n∑
j=1

A
(1)
i,j Ψk,j. (73)

On the other hand, the analogous equations for the differential equations are obtained from
equations (57) and (60):

ck11,i

n∑
j=1

A
(1)
i,jWk,j + ck12,i

n∑
j=1

A
(2)
i,jWk,j

+ ck13,iΨk,i + ck14,i

n∑
j=1

A
(1)
i,j Ψk,j = Ω2ρk,iAk,iWk,i,

(74)

and:

ck21,i

n∑
j=1

A
(1)
i,jWk,j + ck22,iΨk,i + ck23,i

n∑
j=1

A
(1)
i,j Ψk,j

+ ck24,i

n∑
j=1

A
(2)
i,j Ψk,j = Ω2ρk,iIk,iΨk,i,

(75)

while, the analogous equations for compatibility equations of displacements are obtained from
equations (62) and (63)

−Lk−1W(k−1),n + LkWk,1 = 0, (76)

and:
−Ψ(k−1),n + Ψk,1 = 0. (77)

For compatibility equations of internal forces, the analogous equation are obtained from
equations (64) and (66):

− αE(k−1)αA(k−1)

(
N(k−1),n +

κ

2(1 + ν)
E(k−1),nA(k−1),n

) n∑
j=1

A
(1)
n,jW(k−1),j−

κ

2(1 + ν)
E(k−1),nA(k−1),nΨ(k−1),n+

αEkαAk

(
Nk,1 +

κ

2(1 + ν)
Ek,1Ak,1

) n∑
j=1

A
(1)
1,jWk,j−

κ

2(1 + ν)
Ek,1Ak,1Ψk,1,

(78)

and:

− αEk−1αIk−1

lk−1

E(k−1),nI(k−1),n

n∑
j=1

A
(1)
n,jΨ(k−1),j+

αEkαIk
lk

Ek,1Ik,1

n∑
j=1

A
(1)
1,jΨk,j.

(79)
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Finally, the analogous equation for boundary conditions are obtained from equations (68) to
(70). In the case of clamped-free boundary conditions, from equations (68) it is obtained:

W1,1 = 0; Ψ1,1 = 0;

(
Nd,n +

κ

2(1 + ν)
Ed,nAd,n

) n∑
j=1

A
(1)
n,jWd,j −

κ

2(1 + ν)
Ed,nAd,nΨd,n = 0; (80)

n∑
j=1

A
(1)
n,jΨd,j = 0.

For the case of clamped-slider boundary conditions, from equations (69) it is expressed:

W1,1 = 0; Ψ1,1 = 0; Wd,n = 0;
n∑
j=1

A
(1)
n,jΨd,j = 0, (81)

and for the case of clamped-clamped boundary conditions, from equations (70) results in:

W1,1 = 0; Ψ1,1 = 0; Wd,n = 0; Ψd,n = 0. (82)

4 NUMERICAL RESULTS AND DISCUSSION

4.1 Convergence analysis of DQM

The appropriate number of nodal points to make the DQM mesh, is obtained by means of a
convergence analysis. This analysis is performed by increasing at each step the number of nodal
points n. In the present case, the appropriate number of nodal points is achieved if the first five
natural frequencies, do not change significantly when does increase the value of n. In Table
1, it can be seen that, 23 nodes are enough to accomplish the stability of the first five natural
frequency coefficients. Is important to point out that, for this analysis, an axially functionally
graded beam model has been considered. Once the value of n has been obtained, the DQM
mesh can be defined, which allows building the differential quadrature analogous equations.

n Ω1 Ω2 Ω3 Ω4 Ω5

5 12.6340 25.2920 39.7171 42.6266 57.3018
7 12.6538 25.3338 37.9450 40.7069 54.1725
9 12.6631 25.3035 37.8692 40.6598 54.0723
11 12.6663 25.2950 37.8353 40.6441 54.0214
13 12.6675 25.2922 37.8233 40.6407 54.0012
15 12.6680 25.2912 37.8188 40.6398 53.9935
17 12.6682 25.2909 37.8171 40.6395 53.9907
19 12.6682 25.2907 37.8165 40.6394 53.9896
21 12.6682 25.2907 37.8162 40.6393 53.9892
23 12.6683 25.2907 37.8161 40.6393 53.9890
25 12.6683 25.2907 37.8161 40.6393 53.9890

Table 1: Convergence analysis of DQM, for the first natural frequency coefficients Ωi, in a clamped-free non-
homogeneous rotating Timoshenko beam:, R0 = 0; nE1 = 2; nρ1 = 2; η = 12; r1 = 0.15; ν = 0.3; nh1 = 1;
nb1 = 1; hB/hA = 0.5; bB/bA = 0.5.
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4.2 Characteristics of the models under study

To see the influence, in the dynamic response of the beam, that produce the presence of
AFGM, the first five natural frequencies of the beam were calculated in a variety of cases. First,
the cases of rotating beam models composed by only one element were analyzed. Then, some
cases of rotating beam models composed by two elements, were calculated. These cases have
taken into account geometrical and mechanical discontinuities. In all of the cases of beams with
inhomogeneous mechanical properties, the materials adopted for the present study have been
aluminium and zirconium, which are commonly found in the available technical literature.

4.3 Rotating beam model composed by one element

The particular cases analyed in this section can be grouped in three sets, having each of them,
different boundary conditions. In addition, for each group, it has considered some different ge-
ometries like the cases of uniform or tapered beams. Figures 5 to 7 show the mesh of models
under study. In first place, the clamped-free Timoshenko beams were studied considering dif-
ferent geometries, as it is illustrated in the Figure 5. The main variables that have taken into
account were the rotational speed and the slenderness parameters. The corresponding results
are shown in the Tables 2 to 4. In some cases, the values obtained by other authors, Rajasekaran
(2012), were added at the table to compare results. Is highly remarkable the good agreement
between them.
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Figure 5: DQM-mesh for clamped-free non-homogeneous rotating Timoshenko beams: R0 = 0; nE1 = 2;
nρ1 = 2; nh1 = 1; nb1 = 1: a) hB/hA = bB/bA = 1; b) hB/hA = bB/bA = 0.6; c) hB/hA = bB/bA = 0.2.

η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 4.28123 23.0665 60.8629 115.896 187.169
0 0.08 4.01239 17.0959 36.6134 57.3718 78.3942

0.15 3.52332 11.6452 23.1527 28.6221 37.1340
0.01 6.92170 25.8883 63.7174 118.847 190.202

5 0.08 6.54900 20.1594 40.4697 62.1019 83.4267
0.08 6.5490∗ 20.1594∗ 40.4696∗ 62.1017∗ −
0.15 5.97745 14.9851 27.4302 30.4593 42.2432
0.01 13.4798 36.4162 75.7365 131.896 203.945

12 0.08 12.7461 30.5335 54.1605 77.9304 93.8777
0.15 11.6280 20.4731 33.2544 37.0463 51.4733

Table 2: First natural frequency coefficients Ωi, in a clamped-free non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2;nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 1. Ref*: Rajasekaran
(2012).
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η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 5.17593 20.9855 50.9503 94.8319 152.166
0 0.08 4.86359 16.8105 34.3269 54.3130 75.6457

0.15 4.28301 12.2666 22.9042 33.1773 38.9812
0.01 7.63800 23.6977 53.6659 97.5772 154.942

5 0.08 7.24768 19.6569 37.6655 58.3131 80.3590
0.08 7.2477∗ 19.6569∗ 37.6655∗ 58.3131∗ −
0.15 6.61364 15.5588 27.3402 35.8804 42.1169
0.01 14.0959 33.7087 65.0116 109.659 167.491

12 0.08 13.3514 29.5991 50.3413 73.8215 98.6061
0.15 12.4578 24.8251 36.4446 39.3076 52.3908

Table 3: First natural frequency coefficients Ωi, in a clamped-free non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 0.6. Ref*: Rajasekaran
(2012).

η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 7.15487 19.2249 39.7377 69.4499 108.396
0 0.08 6.71224 16.5976 30.7197 47.8933 67.1292

0.15 5.88211 13.0263 22.1272 32.6034 43.6898
0.01 9.32385 21.8618 42.4294 72.1416 111.082

5 0.08 8.81028 19.2358 33.6036 51.0780 70.6807
0.08 8.8103∗ 19.2635∗ 33.6037∗ 51.0782∗ −
0.15 7.92372 15.9187 25.6954 36.8753 47.0838
0.01 15.5354 31.3520 53.3561 83.7435 123.042

12 0.08 14.6403 28.4234 44.7996 64.0342 85.4261
0.15 13.4879 25.3873 37.5863 46.1765 53.5987

Table 4: First natural frequency coefficients Ωi, in a clamped-free non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 0.2. Ref*: Rajasekaran
(2012).

Similarly to the case shown before, in Figure 6 are shown the models with pinned-free bound-
ary conditions, with the same cases of geometry shapes.
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Figure 6: DQM-mesh for pinned-free non-homogeneous rotating Timoshenko beams: R0 = 0; nE1 = 2; nρ1 = 2;
nh1 = 1; nb1 = 1: a) hB/hA = bB/bA = 1; b) hB/hA = bB/bA = 0.6; hB/hA = bB/bA = 0.2.

In the Tables 5 to 7 are shown the corresponding results.
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η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 − 16.3316 49.7552 100.855 168.664
0 0.08 − 13.8453 34.0090 56.1060 77.5417

0.15 − 10.7628 22.1493 26.5340 33.0997
0.01 4.99819 20.0288 53.1873 104.219 172.017

5 0.08 4.88455 17.5728 38.1474 60.9994 82.3463
0.08 4.8846∗ 17.5728∗ 38.1475∗ 60.9994∗ −
0.15 4.57204 14.4935 24.6886 28.9540 35.5689
0.01 11.9957 32.1565 66.9957 118.815 187.069

12 0.08 11.7124 28.9691 52.4086 77.6140 88.4994
0.15 10.3353 20.4620 25.5845 36.7772 42.4267

Table 5: First natural frequency coefficients Ωi, in a pinned-free non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 1. Ref*: Rajasekaran
(2012).

η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 − 14.4757 41.0136 81.6652 136.028
0 0.08 − 12.8868 31.0503 52.3053 74.5726

0.15 − 10.6105 22.0302 29.4930 33.8205
0.01 4.99824 17.8931 44.1578 84.7004 139.022

5 0.08 4.88817 16.3407 34.6668 56.4371 79.3757
0.08 4.8882∗ 16.3408∗ 34.6669∗ 56.4372∗ −
0.15 4.59645 14.2349 26.2208 29.5343 38.8578
0.01 11.9958 29.0890 56.7495 97.8245 152.438

12 0.08 11.7251 27.2536 47.9566 72.3123 96.9886
0.15 10.6735 23.6563 27.3669 39.1944 43.3993

Table 6: First natural frequency coefficients Ωi, in a pinned-free non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 0.6. Ref*: Rajasekaran
(2012).

η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 − 13.5330 31.8753 59.3879 96.2022
0 0.08 − 12.5123 26.9529 45.0843 65.3359

0.15 − 10.7826 20.9211 31.3525 33.0611
0.01 4.99751 16.5901 34.8543 62.2780 99.0359

5 0.08 4.84231 15.5704 30.1061 48.4285 68.9872
0.08 4.8423∗ 15.5706∗ 30.1060∗ 48.4294∗ −
0.15 4.43942 13.9158 24.5450 31.8737 36.8859
0.01 11.9940 26.6153 46.4316 74.4814 111.515

12 0.08 11.6119 25.3892 41.8885 61.801 84.0335
0.15 10.2388 22.8060 30.9224 37.6352 52.0501

Table 7: First natural frequency coefficients Ωi, in a pinned-free non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 0.2. Ref*: Rajasekaran
(2012).
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Finally, in Figure 7 it is shown the model with clamped-slider boundary conditions.
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Figure 7: DQM-mesh for clamped-slider non-homogeneous rotating Timoshenko beams: R0 = 0; nE1 = 2;
nρ1 = 2; nh1 = 1; nb1 = 1: a) hB/hA = bB/bA = 1; b) hB/hA = bB/bA = 0.6; c) hB/hA = bB/bA = 0.2.

In the Tables 8 to 10 can be seen the corresponding results.

η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 15.2837 47.9606 98.5686 165.798 248.286
0 0.08 12.0899 30.0762 50.9878 72.6812 87.2899

0.15 8.71520 18.9087 27.3656 30.8337 40.9872
0.01 17.0668 50.4722 101.340 168.719 251.315

5 0.08 14.0315 33.4671 55.5305 78.1611 87.4356
0.08 14.0314∗ 33.4670∗ 55.5302∗ 78.1607∗ −
0.15 11.1319 22.8332 27.8573 36.5602 42.2489
0.01 23.5572 60.8253 113.489 181.900 265.195

12 0.08 20.4756 45.5669 72.1642 85.9581 99.8989
0.15 17.9458 23.5133 36.9693 40.4257 56.0777

Table 8: First natural frequency coefficients Ωi, in a clamped-slider non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 1. Ref*: Rajasekaran
(2012).

η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 13.2817 39.3903 79.7559 133.763 200.706
0 0.08 11.1680 27.5455 47.2409 68.4587 90.4368

0.15 8.49757 18.3558 29.8230 36.4945 42.2330
0.01 14.9712 41.7160 82.2891 136.407 203.424

5 0.08 12.9202 30.3725 50.8760 72.9010 95.6753
0.08 12.9202∗ 30.3725∗ 50.8759∗ 72.9007∗ −
0.15 10.5405 22.0869 34.8795 36.6740 47.8731
0.01 21.0350 51.2009 93.3306 148.299 215.861

12 0.08 18.8170 40.8701 64.9878 90.3030 113.416
0.15 16.7538 31.2878 38.0702 44.1624 55.6772

Table 9: First natural frequency coefficients Ωi, in a clamped-slider non-homogeneous rotating Timoshenko beam:
R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 0.6. Ref*: Rajasekaran
(2012).
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η r Ω1 Ω2 Ω3 Ω4 Ω5

0.01 10.8673 29.1238 56.5723 93.2747 139.092
0 0.08 9.73263 23.2542 40.1305 59.1829 79.6873

0.15 7.95456 16.9212 27.4116 38.6669 47.6062
0.01 12.5015 31.3051 58.9495 95.7501 141.626

5 0.08 11.3481 25.5712 42.9053 62.4073 83.3743
0.08 11.3482∗ 25.5713∗ 42.9053∗ 62.4072∗ −
0.15 9.65305 19.7335 31.1127 43.0685 48.0915
0.01 18.1304 39.9196 69.0587 106.692 153.074

12 0.08 16.6843 34.2873 54.0337 75.7018 98.7597
0.15 14.9947 29.2497 42.398 48.4472 59.7818

Table 10: First natural frequency coefficients Ωi, in a clamped-slider non-homogeneous rotating Timoshenko beam
: R0 = 0; nE1 = 2; nρ1 = 2; nh1 = 1; nb1 = 1; ν = 0.3; κ = 5/6; hB/hA = bB/bA = 0.2. Ref*: Rajasekaran
(2012).

4.4 Rotating beam model of two elements

One of the more powerful characteristics of the proposed algorithm is the application in
beams composed by multiple elements. In this approach a beam composed by 2 elements is
adopted. In Figure 8 can be seen the geometry and the corresponding DQM-mesh of the model
under analysis.
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Figure 8: DQM-mesh in a clamped-free non-homogeneous rotating Timoshenko beam, with 2 elements. R0 = 0;
nh1 = 1; nb1 = 1; nh2 = 1; nb2 = 1; L1 = 1/3; L2 = 2/3; hB1/hA1 = 0.8; hB2/hA2 = 0.2; hA2/hB1 = 0.6;
bB1

/bA1
= bB2

/bA2
= bA2

/bB1
= 1.

Furthermore of the discontinuity in his geometry (see Figure 11), the beam does present
discontinuity in the material properties. The first five natural frequency coefficients were cal-
culated. In this particular case were addopted 3 types of materials with uniform, linear and
quadratic variation of their material properties laws, along the x axis. The corresponding results
can be seen in Table 11.
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η r material Ω1 Ω2 Ω3 Ω4 Ω5

constant 4.00988 12.8130 25.9228 45.9407 75.0967
0 0.01 linear 4.80255 13.4634 26.0416 45.1780 72.8405

quadratic 4.69055 13.3175 25.8339 45.1334 73.3634
constant 3.91110 11.6830 22.0409 36.9432 54.6112

0 0.08 linear 4.65766 12.2442 22.1888 36.4628 53.4411
quadratic 4.56243 12.1264 21.9702 36.4634 53.7692
constant 3.68627 9.77039 17.3206 27.4527 37.8391

0 0.15 linear 4.33615 10.2065 17.4871 27.1829 37.2250
quadratic 4.27439 10.1138 17.2860 27.2112 37.2853
constant 7.51681 17.3322 30.9191 51.4222 80.6642

5 0.01 linear 7.99731 17.5402 30.5722 50.1678 77.9350
quadratic 8.08137 17.4026 30.3220 50.0578 78.3412
constant 7.28780 16.0076 27.0297 42.5388 60.3691

5 0.08 linear 7.73386 16.1263 26.6952 41.5184 58.5965
quadratic 7.81588 16.0212 26.4835 41.4921 58.8619
constant 6.84281 14.0834 22.8255 33.8634 43.4960

5 0.15 linear 7.21575 14.0564 22.4188 32.8988 42.4858
quadratic 7.28792 14.0104 22.3023 32.9297 42.4573
constant 14.4864 29.9778 47.8104 71.6254 102.628

12 0.01 linear 14.9642 29.2605 46.1526 68.8345 98.2193
quadratic 14.9575 29.3203 45.9899 68.6025 98.2948
constant 13.8356 27.8329 43.1976 62.0929 81.5385

12 0.08 linear 14.2417 27.0315 41.5786 59.4360 77.8064
quadratic 14.2276 27.2099 41.6002 59.4762 78.0615
constant 13.0613 25.8071 39.3669 45.2962 57.0177

12 0.15 linear 13.3236 24.8330 37.5580 44.8018 54.4574
quadratic 13.3172 25.1738 37.8203 44.7397 54.6284

Table 11: First natural frequency coefficients Ωi, in a clamped-free tapered rotating Timoshenko beam with non-
homogeneous materials, with 2 elements: R0 = 0; ν = 0.3; κ = 5/6; nh1 = 1;nb1 = 1; nh2 = 1; nb2 = 1;
hB1

/hA1
= 0.8; hB2

/hA2
= 0.2; hA2

/hB1
= 0.6; bB1

/bA1
= bB2

/bA2
= bA2

/bB1
= 1.

5 CONCLUSIONS

The algorithms developed for beams with homogeneous material properties along x-axis
have been easily extended for inhomogeneous materials. It can be observed that, the conver-
gence speed for differential quadrature method and the computational effort to obtain the first
natural frequencies, does not increase significantly when a lot of new features in the model have
been considered. The obtained results for natural frequencies of the beam are in a very good
agreement with the reference values obtained from the technical literature. On the other hand,
in this approach, the authors have developed an original algorithm, based on the differential
quadrature method to calculate a rotating beam model defined with AFGM. The algorithm also
takes into account both, discontinuities in the cross section and in material properties. This
algorithm proves to be very suitable for solving differential equations with variable coefficients.
In Table 1, it is shown excellent accuracy of the results, by defining a quadrature mesh contain-
ing a few nodes. The proposed method can be used to solve rotating beams with a wide range
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of complexities. However, this study does not include the posibility to analyze vibrations out
of the plane. Then, a possible future research work, is the torsional vibration analysis and its
coupling with transverse vibrations.
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