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Abstract. In this work, the stability of a strongly non-parallel symmetrical counterflow mixed con-

vection problem is studied, using numerically generated eigenfunctions. The base flow is numerically

obtained for each value of the buoyancy parameter (Richardson number), and the stability of this flow

is analyzed by increasing its value while all the others remained fixed. The perturbed linear functions

are numerically generated by introducing a transient modulated asymmetrical buoyancy, relaxing at later

times to ‘numerical eigenfunctions’. The time evolution of the amplitude of these perturbations is used to

obtain the stability characteristics. Symmetry breaking instability occurs, for fixed geometry, Reynolds

and Prandtl numbers, for values of the buoyancy parameter larger than a critical one. However, there is

also a window for the buoyancy parameter below this critical value, where the system shows instability,

producing a slightly asymmetric thermal and flow response.
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1 INTRODUCTION

Mixed convection is defined as heat transfer situations where both natural and forced con-

vection mechanisms interact. In particular, the oscillatory behavior in mixed convection flows

is of great interest because of its rich dynamical features and useful results to applied problems.

Chang and Lin (1993) studied the steady laminar and transient oscillatory mixed convection in

a symmetrically heated vertical plane channel, subjected to an opposing buoyancy assuming

a fully developed velocity profile at the inlet and discrete heat sources that are maintained at

uniform and equal heat fluxes. The authors pointed out that an oscillatory flow with a single

fundamental frequency is found when the buoyancy parameter, or Richardson number, exceeds

a critical value. Lin et al. (1993) investigated numerically the detailed flow and thermal char-

acteristics in transient laminar opposing mixed convection in a vertical plane channel subjected

to a symmetrical heat input. Their results show that at high opposing buoyancy, sudden flow

asymmetry and oscillation occur simultaneously in an early steady flow after the initial tran-

sient. Evans and Greif (1997) showed the strong effects of buoyancy, even for small tempera-

ture differences, on the downward flow of nitrogen in a partially heated tall vertical channel and

reported time-dependent oscillations, including periodic flow reversals along the channel walls.

Martínez-Suástegui and Treviño (2007); Martínez-Suástegui et al. (2011) investigated the tran-

sient laminar mixed convection in an asymmetrically and differentially heated vertical channel

of finite length subjected to an opposing buoyancy. Their results show that a final steady or

oscillatory flow response is obtained depending on the value of the Reynolds and Richardson

numbers, and that the critical value of the buoyancy strength between the two regimes strongly

depends on the value of the Reynolds number.

Stability analyses in natural and mixed convection flows have been developed through the

years, since they provide further insight of the instability mechanisms present in such situ-

ations and give quantitative information about the defining and critical parameters involved.

Ever since the pioneering work of Lorenz (1963), who studied the instability of finite systems

of deterministic ordinary nonlinear differential equations representing forced dissipative hy-

drodynamic flows, stability analyses of fluid flow phenomena experienced a rapid growth and

became the starting point of the chaos theory. Carey and Gebhart (1983) studied theoretically

and experimentally the stability and disturbance amplification produced by the combination of

a natural convection flow induced by a vertical uniform heat flux surface and a forced con-

vection flow given by a uniform free stream by assuming a weak forced convection flow with

strong buoyancy effects. The authors presented stability planes and constant amplification con-

tours, and found very good agreement between the two approaches. Daniels (1989) studied

the stationary instability of the convective flow between differentially heated vertical planes

and determined the subsequent structure of the neutral curve for stationary disturbances. Later,

Chait and Korpela (1989) studied numerically the multicellular flow between two vertical par-

allel plates using a time-splitting pseudo spectral method for a steady flow of air and a time-

periodic flow of oil. In the case of air, the authors analyzed parametrically the three-dimensional

linear stability of the flow and found that the domain of stable two-dimensional cellular motion

is constrained by the Eckhaus instability and by two types of monotone instabilities. Their

results show that the two-dimensional multicellular flow is unstable above a Grashof number

of about 8550. Hence, the authors conclude that the flow of air in a sufficiently tall enclo-

sure should be considered three-dimensional for most practical applications. Two decades ago,

Rogers et al. (1993) studied the finite amplitude instability of mixed convection of air in a ver-

tical concentric annulus with each cylinder maintained at a different temperature by use of
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weakly non-linear instability theory and direct numerical simulation. They found three differ-

ent instabilities in the parameter space of Grashof and Reynolds numbers: one due to shear and

the two others induced by thermal effects. Suslov and Paolucci (1995) studied the stability of

mixed convection flow in a tall vertical channel under non-Boussinesq conditions and showed

that the stability characteristics, such as the critical Grashof number and the disturbance wave

speed, depend strongly on the temperature difference when fluid properties are allowed to vary.

Chen and Chung (1996, 1998) studied the stability of a differentially heated vertical channel

for various Prandtl numbers and showed that both the Prandtl and Reynolds numbers hold very

important effects on the instability mechanism for high Prandtl number fluids. More recently,

van Putten et al. (2001) presented experimental results of heat transfer processes in mixed con-

vection from a ducted vertical hot-plate thermal flow sensor for aiding and opposing flows for

three different values of the Grashof numbers, Gr = 289,411 and 456 for a range or Reynolds

number from 0 to 120. The authors found, in the transition from free to mixed and to essen-

tially forced convection, distinct sequences of instabilities in the flow that lead to several local

minima and maxima in the heat transfer from the plate. Cushman-Roisin (2005) proposed a

non-usual approach to the Kelvin-Helmholtz instability by considering the latter as a boundary-

value problem instead of using the traditional approach of an initial-value problem where wave

perturbations of a two-layer shear flow grow over time into billows and eventually generate

vertical mixing. His results show that although the wavelength and period of the critical wave

differ from the classical problem, the outcome of the boundary-value problem is the same as

for the initial-value configuration. In the last years, Guillet et al. (2007) considered the case

of laminar mixed convection flow between vertical parallel plates heated uniformly by using

a method based on the center manifold theorem to reduce the Navier-Stokes equations to or-

dinary differential equations in the vicinity of a trivial stationary solution and pointed out that

when the forcing parameter or Rayleigh number increases beyond a critical value, the station-

ary solution is a pitchfork bifurcation point of the system. In the same year, Bera and Khalili

(2007) used the linear theory of stability analysis to study numerically the impact of permeabil-

ity on the stability of a buoyancy-opposed mixed convection in a vertical channel. They found

that two main instability modes (Rayleigh-Taylor and buoyant instability) appear, and that for

Darcy numbers ≤ 10−9, the Rayleigh-Taylor instability dominates within the entire Reynolds

number range considered. In addition, they also found that for the same Re, the fully developed

base flow is highly unstable (stable) for porous media with high (low) permeability, whilst the

introduction of a one order of reduction in the permeability in the main flow direction made the

system approximately 20 times more stable.

Although the oscillatory behavior of Navier-Stokes type systems in mixed convection has

received relatively little attention, it is known that these flows can exhibit interesting dynamical

phenomena. In many cases, the transition to turbulence is a chain of oscillatory states separated

by bifurcations of different types. Examples where the bifurcation structure of such systems

has been studied follow. Meron and Procaccia (1987) showed that in dynamical systems de-

scribed by critical flows, the onset of chaos is via gluing bifurcations, and that these systems

can be analyzed using discontinuous maps of the interval. The gluing bifurcation is a class of

global bifurcations where, as an external control parameter is varied, two symmetrically related

time-periodic states simultaneously become homoclinic to an unstable saddle state and result

in a single symmetric time-periodic state Epstein and Pojman (1998); Ambruster et al. (1996);

Abshagen et al. (2001). Arneodo et al. (1981) performed a study for one route to chaos via

a cascade of bifurcations involving homoclinic orbits. Rucklidge (1993) described the tran-

sition to chaos through gluing processes in a three-dimensional magnetoconvection model.

Mecánica Computacional Vol XXXII, págs. 3121-3132 (2013) 3123

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Marques et al. (2001) studied numerically a one-dimensional route in parameter space of a pe-

riodically forced flow with symmetry and provided a comprehensive analysis of the route to

chaos, which involves a new and convoluted symmetry breaking that includes heteroclinic, ho-

moclinic and gluing bifurcations. Lopez and Marques (2000) obtained three-tori solutions of

the Navier-Stokes equations and their dynamics by use of a global Poincaré map. Their results

show that these solutions undergo global bifurcations that include a new gluing bifurcation as-

sociated with homoclinic and heteroclinic connections to unstable solutions (two-tori) that act

as organizing centers for the three-tori dynamics.

The foregoing survey of literature reveals that there are relatively few studies that address the

thermal and flow stability in internal mixed convection for opposing flow in situations where

flow reversal occurs. In the present study, a detailed numerical investigation is done of the

symmetry breaking instability for laminar opposing mixed convection flow in a vertical channel

of finite length subjected to isothermal and discrete heat inputs. For fixed Reynolds, Prandtl and

geometry, the stability characteristics is to be obtained for increasing values of the buoyancy

parameter.

2 PROBLEM DESCRIPTION

Figure 1: Schematic representation of the channel.

The loss of stability is studied for a symmetrical counter-current mixed convection problem

inside a vertical channel of finite length with a flat velocity distribution at the channel entrance,

with the channel walls heated discretely and symmetrically. The schematic view of the geometry

considered is shown in Fig. 1. The forced flow is driven by gravitational force acting vertically

downward, entering the duct with a uniform velocity u0 and ambient temperature T0. Axial

distances from the entrance section are measured by the x coordinate (positive downward),

while transverse distances are measured by y (y = 0 at the left wall). Both walls, separated

by a distance h have discrete heat sources of length l2 located at x = l1, with uniform wall

temperature Tw, where Tw > T0. All other surfaces of the channel walls are assumed adiabatic
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insulators. Flow rectifiers are placed at the channel entrance and exit, thus producing a parallel

flow at x = 0 and x = l1 + l2 + l3. The viscous dissipation in the energy equation is neglected

and the thermo-physical properties of the fluid are assumed to be constant except for the density

in the buoyancy term, which is treated according to the Boussinesq approximation. By the

use of the vorticity (Ω = ∂V/∂X − ∂U/∂Y ) and stream function formulation (U = ∂ψ/∂Y ,

V =−∂ψ/∂X), the flow is described by the non-dimensional equations

∂ 2ψ

∂X2
+

∂ 2ψ

∂Y 2
=−Ω, (1)

∂Ω

∂τ
+

∂ψ

∂Y

∂Ω

∂X
−

∂ψ

∂X

∂Ω

∂Y
=

1

Re

(

∂ 2Ω

∂X2
+

∂ 2Ω

∂Y 2

)

−Ri
∂θ

∂Y
, (2)

∂θ

∂τ
+

∂ψ

∂Y

∂θ

∂X
−

∂ψ

∂X

∂θ

∂Y
=

1

RePr

(

∂ 2θ

∂X2
+

∂ 2θ

∂Y 2

)

. (3)

where ~V = (U,V ) is the dimensionless velocity vector and θ is the dimensionless temperature.

In the above equations, all velocity components (U in the X-direction and V in the Y -direction)

are scaled with the inflow velocity, u0, U = u/u0 and V = v/u0; the longitudinal coordinates

are scaled with the channel width h, X = x/h and Y = y/h; the time is scaled with the residence

time h/u0, τ = tu0/h; the temperature is normalized as θ = (T − T0)/(Tw − T0). The non-

dimensional parameters appearing in the above equations are the Reynolds number, Re= u0h/ν
(inertial to viscous forces), the Prandtl number, Pr = ν/α (viscous to thermal diffusivities) and

the Richardson number, Ri = gβ (Tw −T0)h/u0
2 (buoyancy induced potential to forced kinetic

energy). Here, g is the gravity acceleration and β is the thermal expansion coefficient. Another

buoyancy parameter employed frequently is the Grashof number, Gr = RiRe2, which relates

buoyancy to viscous forces. Additional non-dimensional geometrical parameters arise through

the boundary conditions, Li = li/h, with i = 1,3. Eqs. (1) to (3) have to be solved with the

following boundary conditions:

Uniform flow at the channel entrance:

ψ(0,Y )−Y = Ω(0,Y ) = 0,

no slip at the walls,

ψ(X ,0) = Ω(X ,0)−2(ψ(X ,0)−ψ(X ,∆Y ))/∆Y 2 = 0,

ψ(X ,1)−1 = Ω(X ,1)−2(ψ(X ,1)−ψ(X ,1−∆Y ))/∆Y 2 = 0,

and relaxed parallel flow conditions at the chancel exit:

∂ψ/∂X |X=L = ∂ 2ψ/∂X∂Y
∣

∣

X=L
= 0,

where L is the total length of the channel, L = L1 +L2 +L3. The boundary conditions for tem-

perature are the following:

Fixed temperature at the heated sections

θ = 1 at Y = Yw with L1 ≤ X ≤ L1 +L2.
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Adiabatic channel walls are considered,

∂θ/∂Y = 0 at Y = Yw except in L1 ≤ X ≤ L1 +L2.

The dynamical properties of the system are described using the average non-dimensional heat

fluxes or Nusselt numbers at both heated plates, NuL,R =
∣

∣qL,R

∣

∣h/(k(Tw − T0)) and the non-

dimensional first moment of the longitudinal velocity, Yp = (1/h2u0)
∫ h

0 yudy. Here k is the

thermal conductivity of the fluid. NuL,R depend only on time and Yp is a function of the

longitudinal position and time. Due to baroclinity -last term of Eq. (2)-, vorticity is pro-

duced and vortices (large recirculation bubbles) are generated. The position of the recircula-

tion zones are represented by a stagnation point at X = Xs(τ), defined by the maximum value

of X , where the longitudinal velocity component is non-negative in the vortex region. Eqs.

(1) to (3) are numerically solved using a strongly non-uniform staggered grid system with

a denser clustering near the heated plate. The technique employed has been described else-

where Martínez-Suástegui et al. (2011). In this work the Reynolds number is Re = 100, with

l = 12h. The length of the heated slabs is l2 = h, and they are located at x = l1 = 5.5h, that

is l1 = l3 = 5.5h. The non-dimensional time step ∆τ = u0∆t/h has been set to 5× 10−4, and

computation is terminated when the time evolution of the system state reaches steady-state or a

final self-sustained oscillatory state.

3 NUMERICAL SOLUTION

Figure 2: Final states for a steady and symmetrical dynamical response of the system.

After switching buoyancy on and for relatively small values of the Richardson number, the

flow reverses close to the heated slabs and a pair of symmetric vortices develop due to baro-

clinity. Both vortices reach a maximum position represented by the stagnation point, which

decreases (higher positions) as the buoyancy parameter increases. There is an equilibrium be-

tween buoyancy in the hot recirculation bubble and the dynamical pressure and drag from the
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cold downward fluid. For a range of values of the Richardson number of Ri < 5.2, the tran-

sient response leads to a symmetrical steady state solution. For these relatively low Richardson

numbers there is only a weak interaction in the dynamics of both recirculation bubbles. Figure

2 shows the velocity and temperature profiles after the dynamical system has reached a sym-

metrical steady state. For this range of the buoyancy parameter, the final states of the system

correspond to steady symmetric flow. As the Richardson number increases, small amplitude

flow oscillations appear in the downstream region of the channel and their amplitude increase

for increasing values of the buoyancy parameter. These flow oscillations are a manifestation

of the Kelvin-Helmholtz instability due to the strong shear between the ascending hot fluid

and the descending cold fluid located in the middle of the channel. This triggers a symmetry-

breaking bifurcation and one of the two vortices (assumed to be close to the left heated surface,

for simplicity) climbs while the other is pushed down by the downward flow with increased

longitudinal momentum. If one vortex climbs, the cold fluid deflects to the other side of the

channel increasing the longitudinal velocity and thus the momentum, pushing down the other

vortex. As the fluid reaches the top of the lower vortex, the cold downward fluid switches sides

again, thus supporting the upper recirculation bubble. Crude numerical simulations show that

the symmetry breaking bifurcation occurs for a Richardson number of Ri = 5.2. As a result,

a stable non-symmetric pattern develops after a relatively short transient. Fig. 3 shows the re-

sulting evolution of the overall Nusselt number for the specific case of a Reynolds number of

100 and a Prandtl number of 7. As the Richardson number increases, the Nusselt number first

decreases and later increases. This behavior is due to the change of the flow direction close to

the wall. For a Richardson number close to 5.2 symmetry breaks and one of the recirculation

bubble climbs while the other is pushed down, producing two solution branches for both hot

surfaces. If now, the Richardson number decreases, the response continues to be asymmetric

for values down to 4.1, where suddenly the symmetric behavior is recovered. This hysteresis

loop is a clear indication of a subcritical bifurcation process to be analyzed below.

4 LINEAR STABILITY ANALYSIS

For a given fixed Reynolds number and small values of the Richardson number, a sym-

metrical flow response is obtained. In order to study the stability of the symmetrical flow, a

symmetrical strongly non-parallel base flow with variables denoted by ψ0, Ω0 and θ0 as func-

tions of the Richardson number, is numerically generated, given by Eqs. (1) to (3), but with the

following symmetrical boundary conditions:

Uniform flow at the channel entrance:

ψ0(0,Y )−Y = Ω0(0,Y ) = θ0(0,Y ) = 0,

no slip at the wall,

ψ0(X ,0) = Ω0(X ,0)−2(ψ0(X ,0)−ψ0(X ,∆Y ))/∆Y 2 = 0,

symmetry conditions at the symmetry plane (Y = 0.5),

ψ0(X ,0.5)−0.5 = Ω0(X ,0.5) = ∂θ0/∂Y = 0

and relaxed parallel flow conditions at the channel exit,

∂ψ0/∂X |X=L = ∂ 2ψ0/∂X∂Y
∣

∣

X=L
= 0.
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Figure 3: Hysteresis behavior for Re = 100 and Pr = 7.

A solution of the form Ω = ∑∞
i=0 δ nΩn, ψ = ∑∞

i=0 δ nψn and θ = ∑∞
i=0 δ nθn, is assumed, with

δ → 0. The linearized first order equations are

∂Ω1

∂τ
+

∂ψ0

∂Y

∂Ω1

∂X
−

∂ψ0

∂X

∂Ω1

∂Y
−

1

Re
∇2Ω1 =

−
∂ψ1

∂Y

∂Ω0

∂X
+

∂ψ1

∂X

∂Ω0

∂Y
−Ri

∂θ1

∂Y
, (4)

∇2ψ1 =−Ω1, (5)

∂θ1

∂τ
+

∂ψ0

∂Y

∂θ1

∂X
−

∂ψ0

∂X

∂θ1

∂Y
−

1

RePr
∇2θ1 =−

∂ψ1

∂Y

∂θ0

∂X
+

∂ψ1

∂X

∂θ0

∂Y
, (6)

with the required homogeneous boundary conditions in the whole channel. A non trivial solu-

tion can be obtained from numerically generated eigenfunctions, using the perturbed Richard-

son number

Riε = Ri(1+ εe−τ/τ0 f (y)),

with two different modes: f (y) = sin(2π y) or f (y) = cos(π y). In the above relation τo is

set of order unity and ε is a parameter with a value very small compared with unity. The

non-symmetric forcing relaxes the solution in a short time to a numerical eigenfunction, which

evolves with time, giving the stability conditions by detecting the amplitude evolution of the

overall Nusselt perturbation and its oscillation frequency, Nu1 =
∫ L1+1

L1
∂θ1/∂Y |Y=0 dX ∼ exp(σ +

iS)τ , where i = (−1)1/2. Positive values of σ means instability. S is then the non-dimensional
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Figure 4: Time evolution of the perturbed Nusselt number for Pr = 7 and different values of the Richardson
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Figure 5: Time evolution of the perturbed Nusselt number for Pr = 7 and different values of the Richardson

numbers from 5.0 to 5.2.

oscillation frequency (Strouhal number). Fig. 4 shows the time evolution of the perturbed Nus-

selt number Nu1 for a Prandtl number of Pr = 7 at both heated surfaces, for different values of

the Richardson numbers up to Ri = 5.0. For Richardson numbers up to 4.6 the perturbed solu-
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Figure 7: Oscillation frequency of the linear perturbation as a function of the Richardson number for Pr = 7.

tion decays without oscillating. On the other hand for values between 4.9 and 5.0 the response

solution decays oscillating with different frequencies and decay rates. However, surprisingly,

for a Richardson number of 4.7, the amplitude perturbed solution increases monotonically with

time, which is indication that for this particular case, the symmetrical flow is unstable. Using the
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non-linear equations it can be shown that a slightly non-symmetric steady state flow response

is obtained for this Richardson number. For Richardson numbers above 5.0, Fig. 5 shows the

time evolution of the perturbed Nusselt number. Here again, for Ri = 5.0 the stable decaying

oscillating response is depicted. As the Richardson number increases, the oscillating frequency

also increases. For Richardson numbers Ri ≧ 5.1 the system is now unstable. Figs. 6 and 7

show the the real (σ ) and the imaginary (S) parts, respectively, of the exponential growth, for

a Prandtl number of Pr = 7. The system is linearly unstable in the ranges 4.606 < Ri < 4.72

and Ri > 5.06. Instability leads in both cases to steady nonsymmetric thermal and flow con-

figurations with two vortex structures at different heights. Although the symmetrical flow con-

figuration is unstable for values of 4.606 < Ri < 4.72, soon non-linearities limit the growth of

perturbations producing a slight modified asymmetrical steady thermal and flow pattern, where

the recirculation bubbles only move apart slightly in the vertical position. However, for values

of Ri > 5.06, the difference of the maximum height of both vortical structures at the final steady

state is of the order of the channel width, that is of order unity in non-dimensional units. Fig.

7 shows that the time evolution of the perturbation is monotonic for Ri < 4.85 and oscillatory

for larger values of the Richardson number, except for a very thin region around Ri = 4.92,

where the oscillation frequency reduces drastically. This atypical response arises because for

each Richardson number, a different base flow is needed.

5 CONCLUSION

In this work, the linear stability of a two dimensional symmetrical counter-current mixed

convection system is analyzed using numerically generated eigenfunctions. The problem de-

pends on several non-dimensional parameters like the flow Reynolds number, the Prandtl num-

ber of the fluid, the Richardson number (buoyancy parameter) and geometrical parameters of

the vertical channel. The symmetry breaking instability has been obtained for fixed geometry,

Reynolds (Re = 100) and Prandtl (Pr = 7) numbers, by increasing the buoyancy parameter. For

low Richardson numbers (Ri < 4.606), the resulting flow is steady and symmetric with two vor-

tical flow structures anchored slightly above the heated sources. The system shows an instability

for the range 4.606 < Ri < 4.72, where the two vortical structures separate only slightly in the

vertical position. The steady-state symmetrical response is again obtained for larger Richard-

son numbers up to Ri = 5.06, where again the system looses stability, producing a much larger

separation of the vortices in the vertical coordinate.
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