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Abstract. The objective of this study is to employ the backward-facing step (BFS) flow to verify the 

implementation of an in-house solver of the incompressible Navier-Stokes equations and energy 

equation. Additionally, the accuracy and availability of numerical data found in the literature for this 

problem will be evaluated for fluid flow, heat transfer and conjugate heat transfer cases. For fluid 

flow, a case with Reynolds number equal to 800 is simulated. Excellent agreement is found with 

numerical data reported in the literature. For heat and conjugate heat transfer, numerical data is less 

findable than in the fluid flow case. For heat transfer, present results show differences with available 

data. Therefore, a heavily tested numerical solver is employed: OpenFoam, as other source of data. Its 

results agree well with the in-house solver and this suggests that published results may not be fully 

converged. For conjugate heat transfer a benchmark case is found and is used to be compared with 

actual simulations. OpenFoam show good agreement with the in-house solver but the benchmark data 

cannot be well compared. Therefore, further analysis is recommended to find the origin of this 

disagreement. Data from present simulations for the heat transfer cases is provided in a useful form to 

be employed for verification and validation purposes.   
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INTRODUCTION 

Fluid flow over a backward-facing step (BFS) is a well known problem extensively used in 

CFD code verification and validation, especially due to its simple geometry and the presence 

of interesting phenomena such as flow separation and reattachment. BFS flow characteristics 

have been extensively studied, for instance, for a variety of Reynolds numbers (Re) (Barton, 

1995), step height and expansion ratio (Biswas et al. 2004), and inflow/outflow boundary 

conditions (Gartling, 1990). In a pioneering study, Armaly et al. (1983) reported measured 

velocity distribution for laminar flows. This work was extensively employed to validate and 

verify numerical solutions and to conclude that for Re greater than 400 the flow become three-

dimensional yielding different results than those obtained carrying out 2D numerical 

simulations.  

An interesting case analyzed in the nineties for the 2D numerical solution is the BFS flow 

for Re = 800. Gartling (1990) reported a steady and accurate numerical solution of the 

problem while other studies claim that the laminar solution was not steady for this value of the 

Re. This controversy was solved by Gresho et al. (1993) who analyzed in detail the numerical 

stability of this problem concluding that under adequate boundary conditions and adequate 

spatial and time resolution, the problem is steady. Later, studies like the one carried out by 

Erturk (2008) reported steady 2D solutions up to Re = 3000. 

The inclusion of the heat transfer phenomena in the BFS was a natural extension of the 

fluid flow case. It allows obtaining heat transfer parameters like the Nusselt number (Nu) and 

to validate and verify numerical implementation of the energy equation in fluid flow solvers. 

Since many engineering problems involve confined flows with heat transfer, the flow over a 

BFS with heat transfer and conjugate heat transfer is also a useful benchmark for numerical 

tools that are aimed to be used with practical purposes. The study of Kondoh et al. (1993) may 

be cited as a reference of the BFS problem with heat transfer. This study carried out 2D 

numerical simulations and presents a comprehensive study of the BFS flow for different 

Reynolds numbers (Re) and expansion ratios, imposing a constant uniform temperature on the 

bottom channel wall right after the step.  

Other step that is useful to validate numerical solvers is to count with data to validate the 

conjugate heat transfer case. In this direction, there is not easy to find experimental/numerical 

data for the BFS problem. However, the study of Kanna et al. (2006) intends to present a 

benchmark case with conjugate heat transfer simulating a finite solid in contact with the 

bottom wall of the channel, downstream the step. It reported results for a set of Reynolds and 

Prandtl (Pr) numbers, slab thickness-to-channel thickness ratio and solid-to-fluid thermal 

conductivity ratio.  

The objective of the present study is two fold. First, it is to employ the BFS problem to 

verify the implementation of an in-house solver of the Navier-Stokes equations and energy 

equation. And second, to discuss the accuracy and availability of experimental and numerical 

data of the BFS problem for fluid flow, heat transfer and conjugate heat transfer. These 

objectives are carried out following several steps. First, the N-S solver is validated employing 

benchmark data reported by Gartling (1990) for Re = 800. This case is a challenge for N-S 

solvers as the 2D numerical solution tends to be unstable. Additionally, and because the solver 

is intended to be employed to compute permeabilities, a qualitatively comparison of the N-S 

solver is presented for the case of Reynolds number going to zero with data provided by 

Biswas et al. (2004). Next, the energy equation in the flow is tested comparing results with 

available numerical and analytical data. The analytical solution of an infinite parallel channel 
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flow with a discontinuity in the wall temperature at origin was analytical solved by Haji-

Sheikh et al. (2008), and this solution is employed to test the solver. Moreover, results for heat 

transfer in the BFS geometry reported by Kondoh et al. (1993) are compared with present 

results. As results reported by Kondoh appears to be not fully converged, numerical solutions 

obtained with the open-source tool OpenFoam are included and also compared. Finally, the 

conjugate heat transfer case reported by Kanna et al. (2006) is compared with present 

simulations. In this case, there is not agreement and again the open-source code is employed 

as a third numerical solution to confirm an adequate implementation of the in-house solver. 

For both, the BFS with heat transfer and conjugate heat transfer, detailed results are reported 

to be employed as benchmark data.  

BACKWARD FACING STEP GEOMETRY AND NUMERICAL METHOD 

 The BFS flow has the advantages to be described by a simple geometry and to show 

enough complexity to be considered as a test case. A general representation of the geometry 

and boundary conditions chosen is this study are shown in Figure 1 for the fluid flow, heat 

transfer and conjugate heat transfer problems under consideration. Specific boundary 

conditions, geometrical relationships and parameter definitions will be indicated on each 

section. The BFS flow features a recirculation region right after the step which length depends 

on the Reynolds number (see Figure 1). Additionally, for high enough Re (before transition to 

turbulence) a second recirculation region appears on the top wall. Moreover, Erturk (2008) 

obtained laminar and steady solutions up to ReH =3000 showing several recirculation regions 

right after the step on both, bottom and top, walls. 
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Figure 1: BFS geometry and boundary conditions. 

 

The set of non dimensional equations to be solved in the domain shown in Figure 1 are the 

incompressible N-S equations and the energy equation respectively: 
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where the Peclect number (Pe) is defined as Pe = RePr. 

In the case of conjugate heat transfer, the energy equation for the solid is added: 
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where k = ks / kf corresponds to the solid to fluid thermal conductivity ratio. Note that 

equations have been made non dimensional with the average inlet velocity and the step height. 

To solve the set of equations (1-4), the domain was discretized and the finite volume 

formulation together with the SIMPLER algorithm was employed (Patankar, 1980). To model 

the diffusion and the convective terms, the central difference and the QUICK scheme were 

employed, respectively (Leonard, 1979; Hayase et al. 1992). The energy equation is solved at 

each time step after the velocity and pressure field has been converged. To evolve the initial 

condition to the steady state a backward Euler scheme was used. Simulations were considered 

to reach convergence when normalized residuals were lower than 10
-6

. It has been carefully 

checked that numerical solutions conserve energy in a global sense (domain); additional 

details are available in Teruel (2007) and Teruel and Díaz (2013).  

As a staggered grid representation was chosen to discretize the problem, boundary 

conditions are easily to implement and need to be given on the velocity field only for N-S 

equations. No slip condition was enforced over solid walls and a user-defined velocity profile 

was set at the inlet (generally, the parabolic profile was imposed). At the outlet, fully 

developed boundary conditions were employed (Teruel, 2007). For the temperature field, 

constant wall temperature or constant heat flux was imposed over the volume faces, at 

boundary walls, for Dirichlet or Neumann boundary conditions respectively.  

For the solid-fluid interface (conjugate heat transfer), the continuity in the temperature and 

heat flux need to be imposed. The recommendation given by Patankar (1980) was followed to 

compute the heat flux through the interface, where the solution of the 1D problem without 

sources is assumed, and the harmonic mean is employed to compute an equivalent thermal 

conductivity at the solid-fluid interface.  

The domain was discretized, depending on the case, using a uniform and structured grid of 

squares or a non uniform grid that is refined near walls according the procedure described in 

Teruel(2007).  

   When the open-source code was employed to compare results with the in-house solver, 

the discretization, boundary conditions and parameter definitions were the same, or 

equivalent, to those used in the simulations carried out with the in-house solver.  

FLUID FLOW VERIFICATION 

The locations of the separation point X2, and the reattaching points X1 and X3 as a function 

of the Re is very well studied and is going to be used to verify the code (see Figure 1). 

Additionally, velocity and pressure profiles reported in literature are going to be compared 

with present results. Note that the energy equation is not solved in this section. 

The 2D BFS flow for Re2H = 800 (based on average inlet velocity) has been studied in 

detail. Gartling (1990) carried out a highly resolved numerical simulation of this problem 

reporting profiles of relevant variables at different locations after the step. Further on, in early 
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nineties, discussions aroused regarding the steadiness of the 2D numerical solution of this 

problem. Different authors reported time dependant solutions or solutions that were unstable 

under small perturbations. Gresho et al. (1993) carried out and exhaustive study concluding 

that the solution is steady and stable. In cases presented here, solutions reached a steady-state. 

Results for Re2H = 800 are presented in Table 1 for different uniform grid resolutions. Domain 

was extended from the step (a = 0) to 31H using an uniform grid and continuing with a 

geometric-grid (see Teruel, 2007) up to A = 45H to save computational time. For this case H 

= h and a parabolic velocity profile is imposed right at the step. Note that for this Re the flow 

is three-dimensional and for that reason, 2D numerical data do not agree with experimental 

results. 

 

Control Volumes per step height 

(H) 

X1/H X2/H X3/H 

10 11.0 9.0 19.7 

20 11.9 9.6 20.5 

30 12.1 9.7 20.7 

44 12.2 9.8 20.8 

64 12.2 9.8 20.9 

Gartling (1990) 12.20 9.70 20.96 

Barkley et al. (2002) 11.9 9.5 20.6 

Williams and Baker (1997) 11.4-12.2 - - 

Table 1: Reattachment and separation points of the laminar BFS for Re2H  = 800 and different grid resolutions. 

A more detailed comparison of the numerical results obtained for Re2H = 800 is carried out 

in the following figures. Gartling reported relevant numerical values at two different locations 

measured from the step: 14 and 30 x/H respectively. Figure 2 shows cross sections for the 

streamwise and vertical velocities as well as for pressure and vorticity at these locations. The 

correct profile of the vertical velocity component at x/H = 14 is difficult to capture. Different 

grid solutions are presented for this quantity to show that this flow requires a high resolution 

to be represented correctly. Other quantities plotted in Figure 2 correspond to the solution 

found with the finer grid solution (i.e. uniform grid, 64 control volumes (CVs) per step 

height). The agreement shown between 2D numerical simulations of the BFS and results 

calculated here is excellent regarding the location of reattachment/separation points and also 

with profiles of velocities and pressure across and along the channel.  
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Figure 2a: Streamwise and vertical velocities. Right panel: 30 and 64 indicates the control volumes per step 

height (uniform grid). 

   
Figure 2b: Pressure and vorticity. 

Figure 2: Profile comparison at x/H = 14 and 30 respectively. Laminar BFS for Re2H = 800. Values reported by 

Gartling and present results. 

The order of accuracy of the N-S solver coded in this work can be study considering for 

instance, the reattachment/separation locations as a function of the grid size. This aspect is 

important to test the convergence of the numerical solution and to detect erroneous 

implementations of the solver. The order of accuracy can be estimated considering the error 

respect to a fine grid calculation as a function of the grid spacing. Figure 3 shows the errors in 

X1, X2 and X3 respect to values calculated here with the finer grid (64 CVs step height). Based 

on Figure 3, it is fair to say that the solver converge with approximately a second order 

accuracy in the case of uniform grid spacing as it is expected according to the numerical 

schemes used. 
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Figure 3: Convergence as a function of the grid spacing for the location of X1, X2 and X3. 

The in-house solver is intended to be employed to calculate porous media flow and heat 

transfer. One of the relevant parameters to describe porous media flows is the permeability. 

Although Stokes’s flow type simulations are pertinent to compute this parameter, it can also 

be carried out solving the complete N-S equations for low Re and extrapolating results to the 

limit of zero Re (e.g. Martin et al. (1998); Edwards et al. (1990)). To evaluate the performance 

of the N-S solver implemented here when calculating low Re flows, the BFS geometry was 

considered. The same boundary conditions as those employed for the Re2H = 800 case were 

employed. The domain is set with H = h. In the streamwise direction it is extended from a/H = 

1 to A/H = 3. ReH numbers equal to 10
-4

, 10
-2

 and 1 were simulated (based on average inlet 

velocity). Biswas et al. (2004) reported numerical results for this geometry and low Re 

capturing two Moffatt eddies (Moffatt, 1964) at the lower corner of the step (note that slightly 

different from the geometry simulated here, Biswas et al. (2004) employed a step height of 

0.9423h). According to Biswas, the sizes of the first and second eddies (ReH = 1) are 

approximately 0.4 and 0.02 (over the vertical wall, normalized with the step height). It is of 

interest then to compute a resolved simulation to capture these two eddies when. For this 

purpose, the domain was partitioned with a non uniform grid in the square defined by the 

vertical wall of the step (150 x 150 elements) and the rest of the domain was partitioned using 

64 elements per step height. The resolution in the lower corner of the step was 10
-3

 step units, 

yielding 20 x 20 CVs to resolve the second eddy. Results obtained here are very well 

compared with those reported by Biswas (Figure 4, streamlines).  
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Figure 4a: Streamlines after the step. First Moffatt vortex shown.   

  
Figure 4b: Zoom near the bottom corner. Center of first vortex and second vortex shown.  

Figure 4: Visual comparison of the streamlines of the flow between present results (left) and those reported by 

Biswas (right). First and second Moffatt eddies are captured by the numerical simulation.  

THERMAL FIELD VERIFICATION 

The implementation of the transport equation for a passive scalar (i.e. temperature in this 

case), is first verified by comparison with analytical results. Haji-Sheikh et al. (2008) recently 

reported a power series analytical solution for and infinite parallel channel flow with a 

parabolic velocity profile, that presents a step change in the wall temperature at the center of 

the channel (x = 0). This problem is adequate for the present verification as the solution is 

strongly dependent on the Pe and allows testing the energy equation isolated from the 

momentum equation. Although the analytical solution was obtained in an infinite domain, the 

domain shown in Figure 5 has been tested to be sufficient for the Pe number simulated. Note 

that zero heat flux is imposed on the inlet-outlet boundaries of the domain.  
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Figure 5: Domain employed in the numerical simulation of the Haji-Sheikh’ problem.  

Figure 6 (left panel) shows the non dimensional bulk temperature (b= (Tb- Twall)/( Tin – 

Twall)) for x > 0 for different Pe in the 1-10 range. The comparison between the code and the 

analytical solution is excellent. A similar trend is shown for the fully developed Nu faraway 

from the origin and considering a larger range for the Pe than in the left panel. This case, 

although useful to verify several aspects in the implementation of the energy equation, fail to 

test the transport of the scalar in the vertical direction by convection as the velocity is only one 

dimensional. Therefore the BFS problem is recalled. 

 

    
Figure 6: Temperature (left) and Nusselt number (right) for different Pe numbers.  

Unfortunately, the Authors do not have knowledge of benchmark numerical results for the 

heat transfer problem in the BFS. Nevertheless, in an often cited study, Kondoh et al. (1993) 

reported results for this geometry and with a wall temperature in the lower wall downstream 

the step different from that at the inlet (see Figure 1). Different Re, Pe and expansion ratios 

are numerically simulated and presented in plot forms. Two cases are considered here for 

verification purposes. In both, the geometry is defined as h = 2H, a/H = 5, A/H = 40 and a 

parabolic profile is imposed at the inlet. In the first case the following values are simulated: 

ReH = 100 and Pe = 71. The parameter of interest is the local Nu calculated at the bottom wall 

downstream the step. As results reported by Kondoh do not accurately match present results, a 

third set of results obtained with OpenFoam are presented (see Figure 7, left). Present 

simulations agree very well. This difference may be originated in the nowadays poor 

resolution employed in Kondoh’ study (120 x 60 againt 1800 x 60, streamwise x vertical 

directions). To validate this hypothesis, data from Lewis et al. (2004) is compared for this case 

and for different Re (Figure 7, right). The agreement is excellent for all Re simulated. Note 

that the Pr = 0.71 for these simulations.  

 

Mecánica Computacional Vol XXXII, págs. 3265-3278 (2013) 3273

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



   
Figure 7: Nusselt number for the BFS flow. Comparison with Kondoh (left) and Lewis (right).  

This problem becomes more challenging if both the Re and Pe are increased. The case for 

ReH = 500 and Pe = 3500 is presented in Figure 8 for a variety of parameters and with the 

same geometry as that employed for data shown in Figure 7. The in-house code is used with 

uniform grids and non uniform grids with refinement at walls. Kondoh’ results are also 

included for comparison purposes and do not agree well with the more accurate results 

computed here (this study employed a non uniform grid of 120 x 60 CVs). In this case, the 

advection of the passive scalar dominates yielding sharp gradients that require a fine 

discretization to avoid errors in the calculation of the Nu. Note that the Nusselt number peak 

changes in a 7% value when the grid is refined from 36 to 72 CVs per step height. It is 

interesting to point out that for this particular simulation the solution converge from ―below‖ 

and from ―above‖ for non uniform and uniform grids respectively. This allows narrowing the 

maximum Nu between 4.59 and 4.73 for present simulations. It is important to note that a non 

uniform grid allows capturing the converged solutions with considerable less grid points than 

in the uniform case despite the fact that the convergence order is theoretically lower for this 

type of grids than for uniform ones. 

  
Figure 8: Nusselt number for the BFS flow. ReH  = 500 and Pe = 3500. Different grid resolutions for uniform and 

non uniform grids. Also Kondoh’ results for comparison.  

Table 2 shows local values of the local Nusselt number along the bottom wall and cross 

sections of the temperature field at two different locations: x/H = 5 and 7. Note that these 

results were obtained with the maximum grid resolution for uniform grids. These values are 

considered more accurate than those reported in Kondoh et al. (1993) and may be employed 

for verification purposes.  
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x/H Nu y/H   (x/H=0.51)  (x/H=2.51)  (x/H=5.01)  (x/H=8.01) 

0.01 0.30 -0.49 0.98 0.96 0.95 0.91 

2.01 1.61 -0.41 0.84 0.68 0.54 0.32 

4.01 2.27 -0.32 0.72 0.48 0.34 0.21 

6.01 3.09 -0.24 0.63 0.40 0.33 0.18 

8.01 4.49 -0.16 0.58 0.41 0.35 0.11 

9.01 5.19 -0.07 0.60 0.45 0.26 0.03 

10.01 5.42 0.01 0.39 0.22 0.07 0.00 

11.01 5.10 0.09 0.00 0.01 0.00 0.00 

13.01 3.93      

17.01 2.74      

21.01 2.50      

25.01 2.41      

Table 2: Nu and non dimensional temperature for Kondoh’ geometry. ReH = 500, Pe = 3500 and uniform grid (72 

CVs per step height) 

CONJUGATE HEAT TRANSFER VERIFICATION 

To model conjugate heat transfer, the energy equation on the solid phase is added, and the 

continuity of temperature and heat flux is imposed at the solid-fluid interface. Recently, 

Kanna and Das (2006) studied the conjugate BFS with a finite solid in contact with the bottom 

wall of the channel, downstream the step. They reported results for a set of Re and Pe, slab 

thickness and solid-to-fluid thermal conductivity ratio in a benchmark fashion (i.e. numerical 

simulations are well described and numerical results are reported in table form at different 

locations). In this section, the open-source tool and the in-house solver are employed to make 

a revision of this published result. The Authors are not aware of other set of data ready to be 

used for verification purposes. 

Results by Kanna and Das (2006) do not agree well with present simulations. Figure 9 

shows results for the following geometry: h=H, a/H = 0, b/H = 1, A/H = 60, and following 

parameters: ReH = 500, k = 2 and Pe = 50 and 355. While OpenFoam and the in house code 

agree very well on the Nu number (left panel) and temperature at the interface (right panel), 

they strongly differ from benchmark results. Unfortunately, Kanna and Das do not verify their 

code for the case of conjugate heat transfer and the paper has not been cited by studies that 

analyze these results. In one hand, Authors recognize that present results require further 

verification to clarify the reason of the difference reported here (note that experimental results 

may differ from numerical simulations as the flow is three-dimensional for this Re and other 

independent numerical results will be welcomed). On the other hand, as the in-house solver 

reproduces very well the data obtained with OpenFoam, it is speculated that the conjugate 

solver has been correctly implemented. For further verification, results for cases presented in 

Figure 9 are shown in table form (see Table 3).   
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Figure 9: Nusselt number for the BFS conjugate heat transfer. ReH =500 and k = 2.  

 

x/H Nu y/H   (x/H=0.25)  (x/H=1.5) 

0.02 0.60 -2.55 0.91 0.90 

2.02 0.69 -2.05 0.81 0.80 

4.02 0.80 -1.55 0.72 0.69 

6.02 0.90 -1.15 0.66 0.61 

8.02 0.98 -1.05 0.65 0.59 

10.02 1.02 -0.95 0.63 0.56 

12.02 1.01 -0.75 0.58 0.48 

14.02 0.97 -0.55 0.54 0.42 

16.02 0.93 -0.35 0.49 0.36 

20.02 0.89 -0.15 0.40 0.29 

23.02 0.86 0.05 0.09 0.12 

26.02 0.85 0.25 0.00 0.01 

29.02 0.83 0.45 0.00 0.00 

32.02 0.81    

Table 3: Nu and non dimensional temperature for Kanna’ geometry. ReH = 500, Pe = 355 and uniform grid (60 

CVs per step height). 

SUMMARY AND CONCLUSIONS 

In this study, an in-house N-S equations and energy equation solver was tested employing 

numerical results for the BFS flow. The open-source code OpenFoam was also employed as a 

second independent numerical source of data in cases where published data differs from that 

obtained in present simulations. First, the fluid flow solver was verified for the BFS 

configuration simulated by Gartling (1993). Present results showed an excellent comparison 

with published data for this numerically demanding (i.e. dominated by advection effects) 

laminar flow. Additionally, a qualitative comparison was carried out for the BFS in the limit 

of zero Re. In this case, an infinite set of Moffatt vortices appears, and the code was shown to 

be able to capture them when the grid is appropriately defined. Thermal field calculations are 

mode difficult to be accurately compared as results are not as rich as in the flow case. A 
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simple but strong Pe dependant case of a laminar channel flow was the first step to account 

for a correct implementation of the energy equation solver. Later, the thermal field in the BFS 

flow was compared with results published by Kondoh et al. (1993). There is not a complete 

agreement for moderate Pe though the in-house solver agrees very well with OpenFoam. The 

comparison for large Pe with present results as a function of the grid size seems to imply that 

Kondoh et al. results are not fully converged. Finally, the literature provides a benchmark case 

for the conjugate heat transfer problem. Present results, although in good agreement with the 

second source of numerical data, completely disagree with the benchmark. Unfortunately, 

there is a not paper that have agreed or discussed data reported in the benchmark. 

The BFS flow has been found to be an excellent case of study to test and validate 

numerical results. The geometry is easy to implement as well as boundary conditions. 

Accurate numerical data in table form is however needed for heat and conjugate heat transfer 

cases. This study provides a set of numerical data extracted from the simulations that can be 

employed by other Authors for verification purposes. The in-house solver has been proved to 

deliver accurate results that give confidence to simulate flows other than the BFS. 
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