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Abstract. The use of plane frames is very common within Structural Engineering. Standard loads
derive in bending, shear and axial internal forces being the compression ones of special interest. Thus, a
buckling study is mandatory in this structural type. A previous work of the research group addressed the
frames buckling loads determination by means of a power series technique (in practice, polynomials are
used in the applications). Separately, the natural vibration of frames was also solved. Now, an extension
to the natural vibration problem of plane frames with members under compression is presented. The
frames are open and no branches are considered. The governing linear differential equations are first
stated together with the boundary and continuity conditions at each node linking consecutive members
with arbitrary slope. The equations take into account the second order effect of the axial load. The power
series algorithm is then introduced and a systematization is proposed. Various frame configurations are
studied and the natural frequencies are found. The frequency decreasing effect due to the variation of
the external load as it approaches to the buckling limit, is shown. Also, the convergence of the solution
is assessed for increasing number of terms in the polynomials. This technique is useful as an alternative
to other popular methods, such as finite elements. Here, each member of the frame is not divided into
elements. Instead, the mode shape of each member is represented by the power series with arbitrary
accuracy. Finally, it should be mentioned that the resulting matrix of the eigenvalue problem is always
of dimension 6 by 6 disregarding the number of members of the open frame, contrary to other methods.
Numerical examples and comparisons illustrate the proposed technique.
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1 INTRODUCTION

A dynamic study of framed structures is almost always necessary in order to help to prevent
damage or excessive deformations during dynamic actions such as wind and earthquakes. Usu-
ally, these structures lead to discrete models with a considerable number of degrees of freedom
and their analysis involves high computational costs. Despite the evolution of the computer sys-
tems to larger capacities, the availability of reduced models is always desirable. In this sense, the
vibration and the buckling studies are commonly carried out by means of the stiffness method in
which approximated functions are employed. With the aid of the finite element method (FEM),
a large number of subdivisions helps achieve acceptable results (e.g. Tsai, 2010; Ma, 2010).
However, and depending on the case, such approach can be computational expensive. On the
other hand, addressing the problem directly with transcendental solutions for each member,
would result cumbersome. A previous work of the research group addresses the buckling loads
determination by means of a power series technique (in practice, polynomials are used in the ap-
plications) (Filipich et al., 2003a). On the other hand, a natural vibration study on plane frames
is also carried out (Filipich et al., 2003b). Now, an extension to the natural vibration problem
of plane frames with members under compression is presented. A very simple methodology is
herein presented to evaluate the natural frequencies of plane, single branched, open frames ofN
members under external loads, taking into account the normal internal forces and their second
effect. The idea is simple and it starts form the statement of the differential governing equations
for each frame member, stating compatibility conditions at each node. After stating the dif-
ferential equations that govern the bending-axial internal forces equilibrium and the respective
exact solutions for each frame member, 6N unknown coefficients arise. The authors suggest a
direct way of solving the problem that results in a 6 x 6 matrix for all plane frames and for an
arbitrary number of members. Thus, the size of the matrix is constant disregarding the number
of members. Actually, when dealing with open frames (with no branches), three conditions are
stated at each end. Then, with exception to elastic boundaries, the boundary conditions (BC) at
one end are stated and solved and then only three unknowns remain that are solved with a 3 x 3
system of equations. Some structural elements and loaded frames are numerically solved. Re-
sults are compared with those found with classical solutions when available and approximated
results found with finite element method (FEM) models.

2 STATEMENT OF THE PROBLEM

In order to study the case of vibrations considering the second order effect due to the normal
internal forces, the problem of a structure composed of beam-columns subjected only to internal
normal force is first stated. Figure 1 shows the plane frame, in which the i-th bar properties are:
length Li, modulus of elasticity Ei, second area moment Ji, cross-sectional area Fi. Each bar
is subjected to an axial load Pi. The elastica of each member will be denoted ũi = ũi(x̃) and
ṽi = ṽi(x̃), with 0 ≤ x̃ ≤ Li.

Let us introduce the strain energy Ui due to the bending, axial and second order effect. The
kinetic energy Ki is also written after assuming normal modes with natural circular frequency
ω of the frame. I should be noted that the energy associated to the position of the load due to
the bar shortening is neglected.

2Ui =

∫ Li

0

EiJiṽ
′′2
i dx̃i +

∫ Li

0

EiFiũ
′2
i dx̃i + Pi

∫ Li

0

ṽ
′2
i dx̃i (1)
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Figure 1: Scheme of the studied assembly.

2Ki = ρiFiω
2

∫ Li

0

(ũ2i + ṽ2i )dx̃i; (2)

ρi is the mass density of each bar and Li =
√

[x̃i − x̃i−1]2 + [ỹi − ỹi−1]2. The principle of
minimum total energy yields,

δ
N∑
i=1

(Ui −Ki) = 0 (3)

The following notation will be used in what follows.

∆α = αi − αi+1

sin(αi) =
ỹi − ỹi−1

Li
; cos(αi) =

x̃i − x̃i−1
Li

s = sin(∆α) = sin(αi − αi+1); c = cos(∆α) = cos(αi − αi+1)

Let us introduce a nondimensionalization with x̃ = xLi and 0 ≤ x ≤ 1. From now on,
all functions of the nondimensionalized variables will be denoted without the tilde. The prime
indicates the derivative w.r.t. the x variable.

The analysis of each rigid node connecting two contiguous bars i and i + 1 implies that
the displacement vector of the node must be compatible for both. Then, the projection of the
components of bar i over the direction of bar i + 1 yields the continuity conditions (see Figure
2).

vi+1(0) = vi(1)c− ui(1)s (4a)

ui+1(0) = vi(1)s+ ui(1)c (4b)

v
′

i(1)Li+1 = v
′

i+1(0)Li (4c)
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Figure 2: Continuity conditions at a node.

After the condition 3, the governing differential equations are derived as follows(
EJ

L3

)
i

[
v
(IV )
i −

(
PL2

EJ

)
i

v
′′

i

]
− (ρFL)i ω

2vi = 0 (5a)

−
(
EF

L2

)
i

u
′′

i Li − (ρFL)i ω
2ui = 0 (5b)

They can be rewritten in a more compact version as

vIVi − k2i v
′′

i − Ω2
i vi = 0 (6a)

u
′′

i + Ω2
i

(
J

FL2

)
i

ui = 0 (6b)

in which the nondimensionalized parameters are defined as

Ω2
i =

(
ρFL4

EJ

)
i

ω2; k2i =

(
PL2

EJ

)
i

The differential system also contains the boundary conditions at the extreme ends and they
are found from the calculus of variation and the extreme condition on the energy functional,
together with the differential equations. The boundary conditions are:

(EJ)i

[
v

′′

L2
i

δv
′

Li

∣∣∣1
0
− v

′′′

L3
i

δv
∣∣∣1
0

]
= 0 (7a)

(EF )i

[
u

′

Li
δu
∣∣∣1
0

]
+

[
Pi
v

′

Li
δv
∣∣∣1
0

]
= 0 (7b)

Additionally, the continuity conditions at each node lead to the next relationships (Equations 8
to 10) (

EJ

L3

)
i

v
′′′

i1c−
(
EF

L

)
i

u
′

i1s+
Pi
Li
v

′

i1c+

(
EJ

L3

)
(i+1)

v
′′′

(i+1)0 −
P(i+1)

L(i+1)

v
′

(i+1)0 = 0 (8)
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(
EJ

L3

)
i

v
′′′

i1s+

(
EF

L

)
i

u
′

i1c+
Pi
Li
v

′

i1s−
(
EF

L

)
(i+1)

u
′

(i+1)0 = 0 (9)

(
EJ

L2

)
(i+1)

v′′(i+1)0 =

(
EJ

L2

)
i

v′′i1 (10)

where (·)i0 ≡ (·)i(0) and (·)i1 ≡ (·)i(1).

3 SOLUTION OF THE PROBLEM VIA POWER SERIES

In order to state an efficent numerical means to solve the differential system, a solution based
on power series is proposed. The response of each i-th bar is stated as follows

ui =
∞∑
j=0

Bijx
j (11)

vi =
∞∑
j=0

Aijx
j (12)

with i ∈ Z, i denotes the bar under study and j is the summation and power index. Since the
variable has been nondimensionalized (0 ≤ x ≤ 1), the variable x is employed for all bars. The
exact solution would be given by the infinite series (11) and (12). However, in practice finite
series will be used, giving an approximate solution. The convergence of the solution to attain a
desirable number of exact digits will be done by increasing the number N of terms in the series.
In order to obtain the unknowns Aij , Bij , the proposed solution and its derivatives should be

introduced in the differential system. Let us write generically, the series α =
N∑
j=0

Cjx
j , and

define a coefficient φ(m)j = (j+m)!
j!

. The expression of the m-th derivative of a series "α" can be
written as

α(m) =
N−m∑
j=0

φ(m)jC(j+m)x
j , con φ(m)j =

(j +m)!

j!
(13)

Explicitly, the functions and derivatives are detailed below,

vi =
N∑
j=0

Aijx
j ui =

N∑
j=0

Bijx
j

v
′

i =
N−1∑
j=0

Ai(j+1)φ1jx
j u

′

i =
N−1∑
j=0

Bi(j+1)φ1jx
j

v
′′

i =
N−2∑
j=0

Ai(j+2)φ2jx
j u

′′

i =
N−2∑
j=0

Bi(j+2)φ2jx
j

v
′′′

i =
N−3∑
j=0

Ai(j+3)φ3jx
j

v
(IV )
i =

N−4∑
j=0

Ai(j+4)φ4jx
j
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The differential equations that govern the problem (6a) and (6b) after substituting the power
series, read (

EJ

L3

)
i

v
(IV )
i − Pi

Li
v

′′

i − (ρFL)i ω
2vi = 0

⇒
N−4∑
j=0

Ai(j+4)φ4jx
j − k2i

[
N−2∑
j=0

Ai(j+2)φ2jx
j

]
− Ω2

i

N∑
j=0

Aijx
j = 0 (14)

(
EF

L

)
i

u
′′

i + (ρFL)i ω
2ui = 0

⇒
N−1∑
j=0

Bi(j+2)φ2jx
j + Ω2

i

(
J

FL2

)
i

N∑
j=0

Bijx
j = 0 (15)

From these equations, it is possible to establish relationships among the coefficients for each j.
Thus the following recurrences are obtained

Ai(j+4) = k2iAi(j+2)
φ2j

φ4j

+
Ω2
iAij
φ4j

(16)

Bi(j+2) = −Ω2
i

(
Ji
FiL2

i

)
Bij

φ2j

(17)

In turn, the geometrical conditions derive in the next expressions

A(i+1)0 = c

[
N∑
j=0

Aij

]
− s

[
N∑
j=0

Bij

]
(18)

B(i+1)0 = s

[
N∑
j=0

Aij

]
+ c

[
N∑
j=0

Bij

]
(19)

A(i+1)1 =

[
N−1∑
j=0

Ai(j+1)φ1j

]
L(i+1)

Li
(20)

Finally, the continuity conditions (8) to (10) at the intermediate nodes yield(
EJ

L2

)
(i+1)

v
′′

(i+1)0 =

(
EJ

L2

)
i

vi1
′′ (21)

A(i+1)2 =

(
EJ
L2

)
i

φ20

(
EJ
L2

)
(i+1)

N−2∑
j=0

Ai(j+2)φ2j (22)

(
EF

L

)
(i+1)

u
′

(i+1)0 = −
(
EJ

L3

)
i

s
[
v

′′′

i1 − k2i v
′

i1

]
+ c

(
EF

L

)
i

u
′

i1 (23)

B(i+1)1 =

−

(
EJ
L3

)
i
s

[
N−3∑
j=0

Ai(j+3)φ3j − k2i
N−1∑
j=0

Ai(j+1)φ1j

]
+ c
(
EF
L

)
i

[
N−1∑
j=0

Bi(j+1)φ1j

]
(
EF
L

)
(i+1)

(24)
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(
EJ

L3

)
(i+1)

{
v

′′′

(i+1)0 − k2(i+1)v
′

(i+1)0

}
= c

(
EJ

L3

)
i

[
v

′′′

i1 − k2i v
′

i1

]
+

(
EF

L

)
i

u
′

i1s (25)

A(i+1)3 =
1

φ30

(
EJ
L3

)
(i+1)

{
c

(
EJ

L3

)
i

[
N−3∑
j=0

Ai(j+3)φ3j − k2i
N−1∑
j=0

Ai(j+1)φ1j

]
+

s

(
EF

L

)
i

[
N−1∑
j=0

Bi(j+1)φ1j

]
+ k2(i+1)A(i+1)1φ1j

(
EJ

L3

)
(i+1)

}
(26)

From the above equations, it is observed that the recurrences start from Ai4 and Bi2. Then,
and in order to solve the problem, the coefficients Ai0, Ai1, Ai2, Ai3, Bi0 and Bi1 should be
known. Three of them are determined by stating the boudary conditions at one of the end nodes
(eg. left, corresponding to the first bar of the frame at x = 0. The other three will be found
from the boundary conditions at the other end node, corresponding to the last bar, at x = 1.
Thus, instead of solving a 6x6 system of equations, one 3x3 system is solved in terms of three
remaining unknowns and finally a 3x3 homogeneous system is stated for the eigenproblem.
Its solution yield the sought eigenvalue (i.e. proportional to the critical load or the natural
frequency). Another shortcut to solve this problem is mentioned in what follows. Since the
problem is linear, the superposition principle is applicable. Thus, if, for instance, the frame is
hinged at its left end, the procedure is as follows. The boundary conditions are v = 0, v′′ = 0
and u = 0 which yield to A10 = 0, A12 = 0 and B10 = 0. Then, for these BC, the recurrence
equations 16 and 17 are in terms of A11, A13 and B11 that are chosen as unknowns. The 3x3
system can be written in the following way. Always, for the given BC at x = 0 of the bar 1
(i=1), the next procedure is followed. First, the unknowns are set as

A11 = 1, A13 = 0, B11 = 0

A11 = 0, A13 = 1, B11 = 0

A11 = 0, A13 = 0, B11 = 1

(27)

Each column of the matrix is found correspondingly after stating, for each alternative, the three
BC of the last bar (i=N) at x = 1. Then, the null condition set on its determinant yields the
sought eigenvalues.

4 EXAMPLES

In this section, various examples are presented. First, some simple structural elements and
frames are studied to find their critical loads. Also various frames are analyzed with loads
under the critical one to find the natural frequency. Comparisons with other known results,
when available, are also presented. Alternatively, the comparison is made with a finite element
solution.

To apply the proposed method, it is required a previous analysis with any structural technique
(usually a structural analysis software) to find the internal forces for a reference load that will be
affected by a β coefficient. With the knowledge of the axial internal force for each member, the
algorithm is stated to find the value of β as the eigenvalue of the problem. Afterwards, the value
of the critical load is found. The desired accuracy is attained by fixing a number of digits and
performing a convergence study. Thus, the number of terms N is increased until these digits
are repeated.
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Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Table 1: Critical loads of three Euler columns (Clamped: C, Hinged: H, Free: F) found with the power series
solution using N = 40.

Case Scheme β Euler formula Power series solution
kg kg

C-F

P

5m

2.00 4145,23 4145,23

C-H

P

5m

0.70 33838,6 33920.4

H-H

P

5m

1.00 16580,9 16580.9

4.1 Example 1. Columns

The well-known Euler expression for the critical load is π2EImin/(βL)2, where β depends
of the boundary conditions of the column (see, for instance, Timoshenko and Gere, 1961).
Three cases were analyzed with the present algorithm to evaluate the accuracy. The modulus
of elasticity is E = 2.1x106kg/cm2 and area second moment Imin = 200cm4. The values of
the critical loads were found with N = 40 (Table 1). On the other hand, the natural frequencies
for the same structural elements are depicted in Table 2. Results found with the power series
algorithm using N = 15 are compared with exact values reported in the open literature (e.g.
Paz, 1992).

4.2 Example 2: Frame I

A frame composed of two members (Figure 3) is considered. Both ends are supported by
hinges. The two member have the same geometric and material characteristics: modulus of
elasticity E = 2.1 x 106kg/cm2, cross-section area F = 18.2 cm2, length of each member 4
m and area second moment I = 573cm4, corresponding to a normal steel section (European
classification) I14.

Using analytical procedures, Filipich (1981) found the exact value of the critical load as
Pcr = 12.25EJ/h2, with h = 4 m. Table 3 depicts the value of this critical load and the one

H.E. GOICOECHEA, C.P. FILIPICH, M.B. ROSALES3440
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Table 2: Natural frequencies of three columns (Clamped: C, Hinged: H, Free: F) found with the power series
solution using N = 15.

Case Scheme Exact solution Power series solution
Hz Hz

C-F

5m

3.837806834 3.837823552

C-H

5m

16.82238663 16.83007591

H-H

5m

10.77293380 10.77300365

-500kg

-1000kg

Internal Axial
Forces

Geometrical
Con�guration

Figure 3: Example 2. Frame I geometrical configuration and internal axial forces
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Table 3: Critical load (kg) of Frame I (Fig. 3) found with the power series method using N = 40.

Analytical Power series solution
92127.66 92284.26

Table 4: First natural frequencies of Frame I (Fig. 2) under loads below the critical value, found with the power
series method using N = 15.

P Power series solution
kg Hz
0 28.43608492

10000 26.95676493
20000 25.36536934
30000 23.63855007
40000 21.74341298
50000 19.63070833
60000 17.2200968
70000 14.36204609
80000 10.70384325
90000 4.631056092
92000 1.628081434

found with the power series algorithm with N = 40. Afterwards, after knowing the critical
load, the frame was subjected to loads under the critical value and the natural frequencies were
found. The Results are reported in Table 4.

4.3 Ejemplo 3: Frame II

Now, a three member frame (Figure 4) with columns of height h and girder of length L and
L = h, having all the members the same cross-section and material, with the same values of
Frame I, is analyzed. As reported by Filipich (1981), the critical load of this frame found with
analytical procedures is Pcr = 1, 823EJ/h2. Table 5 shows the resulting critical load and Table
6, the variation of the first natural frequencies with the increase of the load.

4m

4m
P     P     

Internal Axial
Forces

Geometrical 
Con�guration

Figure 4: Example 3. Frame II geometrical configuration and internal axial forces
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Table 5: Critical load (kg) of Frame II (Fig. 4) found with the power series method using N = 40.

Analytical Power series solution
13710.10 13679.56

Table 6: First natural frequencies of Frame II (Fig. 4) under loads below the critical value, found with the power
series method using N = 15.

P Power series solution
kg Hz
0 4.220246881

15000 3.982394329
30000 3.729343256
45000 3.457756411
60000 3.1628603
75000 2.837393786
90000 2.46929511

105000 2.035562135
120000 2.035562135
135000 0.4838114928

4.4 Example 4: Frame III

In this example, the frame is similar to Example 3 but the girder has twice the length. The
modulus of elasticity is E = 2.1 x 106kg/cm2, cross-section area is F = 18.2 cm2, h = 4
m, L = 8 m, the area second moments of the columns and the girder are I = 573 cm 4 and
I = 1146 cm4, respectively.

4m

8m
P    P    

Internal Axial ForcesGeometrical
Con�guration

Figure 5: Example 4. Frame III geometrical configuration and internal axial forces

Filipich (1981) reports the analytical solution for this case Pcr = 1, 823EJ/h2. Tables 7 and
8 depict the critical load and the natural frequencies under compresive load, respectively.

4.5 Example 5: Frame IV

The frame in this example (Figure 6) is similar to Frame II, with a different internal axial
force pattern. For this case, Filipich (1981) found that the value of the critical load is Pcr =
3, 591EJ/h2

Mecánica Computacional Vol XXXII, págs. 3433-3448 (2013) 3443

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Table 7: Critical load (kg) of Frame III (Fig. 5) found with the power series method using N = 40.

Analytical Power series solution
13710.10 13692.83

Table 8: First natural frequencies of Frame III (Fig. 5) under loads below the critical value, found with the power
series method using N = 15.

P Power series solution
kg Hz
0 2.615132716

15000 2.468431862
30000 2.312275616
45000 2.144593539
60000 1.962426382
75000 1.761277293
90000 1.533686001

105000 1.265452961
120000 0.9217373965
135000 0.311198037

4m

4m
P    

Internal Axial ForcesGeometrical Con�guration

Figure 6: Example 5. Frame IV geometrical configuration and internal axial forces

Table 9: Critical load (kg) of Frame IV (Fig. 6) found with the power series method using N = 40.

Analytical Power series solution
27006.56 26984.58
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Table 10: First natural frequencies of Frame IV (Fig. 6) under loads below the critical value, found with the power
series method using N = 15.

P Power series solution
kg Hz

Pcr [N] Series de Potencia [Hz]
0 3.407365193

30000 3.215605727
60000 3.010940553
90000 2.790477237

120000 2.55005558
150000 2.283297249
180000 1.979477005
210000 1.61770091
240000 1.144023686
260000 0.6577296669

Figure 7: Example 6. Gable roof building.
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-15,9 -15,6 -15,4 -15,1 -14,9 -14,6 -14,3 -14,1 -13,8 -13,6 -13,3 -13,1 -12,8 -12,5
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Figure 8: Example 6. Frame V geometrical configuration and internal axial forces
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Figure 9: Example 6. Frecuency vs. Axial load curve.

4.6 Example 6: Frame V

Finally, a frame corresponding to a building with a gable roof is analyzed (Figures 7 and
8). The girder is discretized in elements such that the horizontal proyection is 1 m (i.e. 32
elements and 33 nodes). A comparison load of 1 N is applied at each node in order to attain
a constant axial internal force. First, the internal forces are calculated as usual. Then, the
power series algorithm is applied and the critical load is found. The data of the frame for both
the columns and the girder are: modulus of elasticity E = 2.1 x1011 N/m2, cross-sectional
area F = 0.0027868 m2 and area second moment I = 27, 868 x10−6 m4. The critical load
found with the power series solution with N = 40 is Pcr = 9221.22. The study of the natural
frequency problem was performed using the metholodology of the present work and, for the
sake of comparison, with the finite elements software (ALGOR, 2009). This software contains
a modulus named "Natural Frequencies with Load Stiffening" that permits to handle a situation
when a part is under compression or tension at the same time that vibration is induced. In this
case, it is a softening effect due to the compression load rather than a stiffening one. In both
methods, the first natural frequency of the frame was found under loads smaller that the critical
value. Table 11 contains the values of the frequencies obtained with Algor and with the power
series solution. Figure 9 shows the curve that represents the decrease of the value of the first
natural frequency as the load approaches its critical value.

5 FINAL COMMENTS

A simple analytical methodology was herein proposed to solve the natural frequency problem
of open frames under compressive internal forces. The methodology is based on a power series
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Table 11: First natural frequencies of Frame V (Fig. 8) under loads below the critical value, found with the power
series method using N = 15 and compared with results from ALGOR (2009).

P Finite Element solution Power series solution
ALGOR (2009)

kg Hz Hz
0 1.6548 1.6544

1000 1.5638 1.5634
2000 1.4668 1.4665
3000 1.3626 1.3623
4000 1.2494 1.2491
5000 1.1245 1.1242
6000 0.9832 0.9830
7000 0.8172 0.8170
8000 0.6066 0.6064
9000 0.2586 0.2584
9200 0.0808 0.0800

solution of the differencial system that governs the problem. Despite the availability of well-
known techniques to solve linear frames, this technique is attractive due to its simplicity and
very low computational cost. Disregarding the number of members of the frame, the solution
is always found from the eigenproblem of a 6 x6 system. Furthermore, if elastic supports are
excluded, the solution may be found solving a 3 x3 system. The results were compared with
previous exact solutions for the critical loads and with a finite element software using a load
stiffening modulus. It is shown that, as expected, the frequency values decrease with increased
axial internal loads and the curve has an infinite asymtote as the load approaches to its critical
value.
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