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Abstract.

Gravity currents (also called density currents) are flows generated by horizontal pressure gradients,

as a result of gravity over fluids with different density.

The study of these currents has a higher level of complication when the Coriolis force is present, as a

result of earth’s rotation, and the development of the flow is modified.

In this work we have addressed the rotational effects in gravity currents with cylindrical initial condi-

tion, by means of direct numerical simulations (DNS).

We have studied the oscillatory behavior of the front, and report on the frequency of these oscillations,

finding that an increase in the velocity of rotation, produces an increase in these frequency.

We also found that at latest times, a steady-state lens shape characterizes all currents when a “Free

slip” boundary condition is employed for the bottom wall. The maximum radius of this lens decrease as

we increase the velocity of rotation. When we employed a “No slip“ boundary condition at the bottom

wall, the front acquires the same lens shape, but its radius continues to increase with time. This is a

consequence of the imbalance of the Coriolis and buoyant forces, owing to the shear stress at the bottom

wall.

Finally, we found turbulent structures not seen in non-rotating cylindrical gravity currents. A vertical

vortex appears at the center of the current, and an array of quasi-streamwise Kelvin-Helmholtz vortices,

owing to shear stress between the light and heavy fluid at the front.
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1 INTRODUCTION

Gravity currents (also called density currents) are flows generated by horizontal pressure

gradients, as a result of gravity over fluids with different density. These flows manifest as an

horizontal current of light fluid above a heavy fluid, or as a current of heavy fluid below light

fluid, and can be produced by a small density difference between the two fluids(García, 1992).

In the turbulent regime, gravity currents are of a non-linear nature and exhibit a wide range of

temporal and spatial scales.

Gravity currents are present in nature in many situations, like avalanches in the mountains,

volcanic plumes, or sand storms in the desert. These natural phenomena play an important

role in the transport of mass, momentum and energy. Works of Huppert and Simpson (1980),

Fannelop and Waldman (1971), Hoult (1972), studied the behavior of stratified currents by

laboratory experiments and theoretical models.

When the current spread out in an horizontal plane, and has an unhindered motion in all di-

rections, the front acquires a cylindrical shape (cylindrical currents). Three-dimensional highly

resolved simulations of cylindrical density currents were studied by Cantero et al. (2007a), for

different Reynolds numbers.

Earth’s rotation brings another level of complication to the study of gravity currents, when

the Coriolis force modifies drastically the development of the flow. Hallworth et al. (2001)

reported on experimental and numerical investigations of axisymmetric gravity currents in a

rotating system.

In this work we address the rotational effects in gravity currents with cylindrical initial con-

dition by means of direct numerical simulations (DNS). We report on four three-dimensional

direct numerical simulations with grid resolutions up to 118-million points, various bound-

ary conditions (“Free slip“ and ”No slip“), and rotational velocities. We present results about

macroscopical quantities, such as the maximum distance of propagation of the front in its first

oscillation and in its steady-state lens shape and the frequency of the successive outward fronts.

Also, we perform a detailed analysis of the characteristic turbulent structures present in rotating

gravity current.

2 MATHEMATICAL AND NUMERICAL FORMULATION

The problem under consideration is depicted schematically in Fig. 1. It consists of a rectan-

gular tank rotating at a constant angular velocity Ωz along the vertical axis z. Co-rotating with

the tank there is a heavy fluid of density ρ1, initially confined in a cylindrical region of radius

r0 and occupying the full height of the domain H (blue shaded area in fig. 1), separated from

the lighter ambient co-rotating fluid of density ρ0. The heavy fluid is then released, and the flow

spreads in the horizontal direction (x and y).

We consider flows in which the density difference is small enough that the Boussinesq ap-

proximation is valid. Under these circumstances, and in a system of reference attached to the

tank, the dimensionless governing equations are

∂ũ

∂t̃
+ ũ · ∇̃ũ = −∇̃p̃+

1

Re
∇̃2ũ − ρ̃ ẑ − 2C̃(ṽx̂ − ũŷ) , (1)

∇̃ · ũ = 0 , (2)

∂ρ̃

∂t̃
+ ũ · ∇̃ρ̃ =

1

ReSc
∇̃2ρ̃ . (3)
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Figure 1: Schematic of the configuration for the cylindrical system.

Here, ũ = {ũ, ṽ, w̃} is the dimensionless velocity, p̃ the dimensionless pressure, and the

dimensionless parameters are the Reynolds, Schmidt, and Coriolis numbers defined as

Re =
U H

ν
, Sc =

ν

κ
and C̃ =

ΩzH

U
, (4)

where ν is the kinematic viscosity and κ the molecular diffusivity.

In equations (1)-(3), we have employed the length scale H , the velocity scale U =
√
RgH

with R = (ρ1 − ρ0)/ρ0, and the time scale T = H/U . The dimensionless density is given by

ρ̃ =
ρ− ρ0
ρ1 − ρ0

. (5)

The governing equations (1)-(3) are solved in a dimensionless rectangular box of size L̃x ×
L̃y × H̃ , with periodic boundary conditions along the horizontal directions x̃ and ỹ for all the

variables. Because the current spreads in the radial direction along the horizontal (x̃-ỹ) plane,

we set L̃x = L̃y.

We have employed a fully de-aliased pseudo-spectral code (Canuto et al., 1988), in which

Fourier expansions are employed along the horizontal directions x̃ and ỹ. In the vertical di-

rection z̃, a Chebyshev expansion is used with Gauss-Lobatto quadrature points (Canuto et al.,

1988). The flow field is time advanced using a Crank-Nicolson scheme for the diffusion terms.

The advection terms are handled with the Arakawa method (Durran, 1999) and advanced with

a third-order Runge-Kutta scheme. The buoyancy term is also advanced with a third-order

Runge-Kutta scheme. At the top and bottom walls, a zero-gradient condition is enforced for the

density field ρ̃. We have employed different boundary conditions for velocity at the bottom and

top walls (detailed in Table 1).

3 RESULTS AND DISCUSSION

In this work we present four simulations of cylindrical gravity currents with the geometrical

configuration depicted in figure 1. A detailed description of the cases studied is presented in

Table 1. Case (1) to (3) only differ in the Coriolis parameter, and case (4) has a different bound-

ary condition at the bottom wall (“No Slip”). All simulations have a “Free Slip” boundary

condition at the top wall.
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case C̃ Re L̃x × L̃y × H̃ Nx ×Ny ×Nz B.C. rmax rlens ωp

1 0.1 4000 18× 18× 1 960× 960× 128 FreeSlip 7.2 6.3 0.2
2 0.15 4000 15× 15× 1 768× 768× 128 FreeSlip 5.7 5.3 0.3
3 0.25 4000 15× 15× 1 768× 768× 128 FreeSlip 4.2 4.1 0.5
4 0.15 4000 15× 15× 1 768× 768× 128 NoSlip 4.5 − 0.37

Table 1: Numerical simulations studied in this work. Also shown are the boundary conditions employed for the

velocity at the bottom wall (B.C.), the values of the maximum distance of propagation of the front (rmax), the

radius of the steady state lens shape (rlens), and the frequency of the subsequent fronts for the rotating currents

(ωp).

3.1 Effects of rotation in cylindrical gravity currents: Coriolis parameter

The velocity of rotation of the system, and hence the Coriolis parameter, has a great impact in

the development of the flow. In this section we discuss the flow dynamics and the quasi-steady

state lens shape acquired by the current.

3.1.1 Maximum distance of propagation of the front: The steady state lens shape

For the computation of the maximum distance of propagation of the front we define a local

equivalent height h. Shin et al. (2004) and Marino et al. (2005) define a local equivalent height

in an unambiguous way as

h̃(r̃, θ̃, t̃) =

∫
1

0

ρ̃ dz̃ . (6)

At locations where the entire layer is occupied by the heavy fluid, the equivalent height is

unity, whereas at locations where the light fluid fills the entire layer, the equivalent height h̃ is

zero. The local current height can then be averaged over the azimuthal direction. We define the

mean equivalent height as

h(r̃, t̃) =
1

2π

∫
2π

0

h̃(r̃, θ̃, t̃) dθ̃ . (7)

The mean front location rF can now be defined as the radial position where the mean equiv-

alent height h, becomes smaller than a small threshold δ. Precise definition can be found in

Cantero et al. (2007b). For the computation of the maximum distance of propagation of the

front, in its first oscillation, the threshold h = 0.01 is used.

Because we will study cylindrical gravity currents, the mean flow will be computed as

f(r̃, z̃, t̃) =
1

2π

∫
2π

0

f̃(r̃, θ̃, z̃, t̃) dθ̃ , (8)

where f̃ is the density field ρ̃, or the velocity field ũ.

Figure 2 shows the front location as a function of time for different thresholds of h, for cases

(1) to (3). In all cases, the front starts to accelerate, until the velocity of the front becomes

zero and the current start to move inward. This first inflection happens for h = 0.01 at t̃ ≈ 20 ,

t̃ ≈ 15, t̃ ≈ 12, for cases (1) to (3), respectively. The first oscillation of the front happens before

as the Coriolis parameter increases. The front oscillations repeat several times with attenuated

amplitude until the flow reaches eventually its steady state. At the first oscillation, the maximum

distances of propagation of the fronts are rmax = 7.2, rmax = 5.7 and rmax = 4.2, for cases
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(1) to (3), respectively. As we could expect, less propagation in the positive radial direction

occur with increasing velocity of rotation of the system. At later times, when the flow is in its

steady state lens shape, the mean distance of propagation of the front rlens (the mean radius of

the lens) is also influenced by the Coriolis parameter, being this values rlens = 6.3, rlens = 5.3
and rlens = 4.1, for cases (1) to (3) respectively. The values of rmax and rlens are also shown in

Table 1.
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Figure 2: Front location rF as a function of time t̃ for different thresholds of h, from h = 0.01 to h = 0.1, for

a)Case (1), b)Case (2), c)Case (3). All three simulations have “Free Slip - Free Slip” boundary conditions at the

bottom and top walls, respectively.
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3.1.2 Frequency of oscillation of the front

As it was described in the previous section, the front’s position of the cylindrical gravity

currents has an oscillatory behavior until the flow reaches the steady state lens shape.

The mean pulse period T p for each simulation is defined as the averaged time interval on

which the successive outward fronts, tracked by h = 0.01, reach a fixed radial distance r. The

pulse frequency ωp is defined as

ωp =
2π

T p

. (9)

Values of ωp for all simulations are shown in Table 1 and Fig. 2.

Comparing the mean pulse frequency of the successive outward fronts ωp, we find a linear

dependence with the Coriolis parameter:

ωp = 2C̃ . (10)

Similar results are reported by Hallworth et al. (2001) with laboratory experiments of ax-

isymmetric gravity currents.

3.1.3 Mean velocity profiles in the tangential and radial directions

The oscillations present in the flow are better understood by the analysis of mean velocity

profiles of the current. We will explain the development of the flow for case (3), with the highest

Coriolis parameter of C̃ = 0.25. After this, a comparison with cases (1) and (2) will be made.

We use the cylindrical axis configuration shown in Fig. 1.

The mean radial velocity profiles (ur) as a function of z̃ for case (3) are presented in Fig. 3

for radial positions r = 1 and r = 3. Fig. 4 shows the mean tangential velocity profiles (ut) as

a function of the radial position r for z̃ = 0.025 and z̃ = 0.975, also for case (3).

When the heavy fluid is released and starts to move in the positive radial direction as a result

of the buoyancy force, a Coriolis force in the negative tangential direction is produced, and

hence, a flow in this direction. This effect can be seen in Fig. 3a for t̃ = 2.5, where a velocity

in the positive radial direction ur ≈ 0.66 produces a Coriolis force in the negative tangential

direction and a velocity ut ≈ 0.4 in the negative tangential direction at the front (see Fig. 4 at

z̃ = 0.025 and r ≈ 2).

At t̃ = 5, the front is still moving in the positive radial direction, but at r ≈ 1 (see Fig.

3a for t̃ = 5) the buoyancy force can not longer balance the Coriolis force in the negative

radial direction produced by the velocity ut in the negative tangential direction, and a secondary

current starts to move in the negative radial direction. This can be seen in Fig. 3 for t̃ = 5 and

z̃ ≈ 0, where ur ≈ −0.22.

At the front of the current, the flow in the negative tangential direction at r ≈ 3 (see Fig. 4

for z̃ = 0.025), produces a Coriolis force in the negative radial direction, but this force is not as

strong as the buoyancy force in the front, and hence, the front still moves in the positive radial

direction.

At t̃ = 10, the body of the current is moving in the negative radial direction, and when it

arrives to the center of the domain (r = 0), the current is reflected in the opposite direction.

This can be seen in Fig. 3a at t̃ = 10, where a secondary wave is moving in the positive radial

direction at z̃ ≈ 0.28, over the main current moving in the negative radial direction at z̃ ≈ 0. As

this secondary wave starts to move outward, the body of the current is still moving inward (see
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Fig. 3b at t̃ = 10 for r = 3), and the head is moving outward. At t̃ ≈ 12, the Coriolis force in

the negative radial direction (produced by the flow in the negative tangential direction) balance

and surpass the buoyancy force in the opposite direction, making the head of the current move

in the negative radial direction (see Fig. 2c) for t̃ ≈ 12).

At t̃ = 20, the secondary wave that we saw at t̃ = 10, catches up with the head of the current

and the second oscillation of the front occurs (see 2c for t̃ ≈ 20). This flow in the positive radial

direction produces again a Coriolis force in the negative tangential direction, and the process

described before repeats itself several times after.
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Figure 3: Mean radial velocity ur as a function of height z̃ for a) r = 1, b) r = 3, for case (3).

At about t̃ = 100, the amplitude of the oscillations in the front position drops significantly,

and the current acquires the steady state lens shape. As we can see in Fig. 5 for t̃ ≥ 100, the

mean radial velocity ur is practically zero.

Figures 6 and 7 show the mean radial velocity profiles for r = 1, for cases (1) and (2),

respectively. Comparing figures 3, 6 and 7 for r = 1 and t̃ = 2.5, we see that the mean radial

velocity of the heavy fluid is lower with increasing Coriolis parameter (ur ≈ 0.74 , ur ≈ 0.70,

ur ≈ 0.62, for C̃ = 0.1, C̃ = 0.15 and C̃ = 0.25, respectively). This is because an increase in the

velocity of rotation of the system, produces a stronger Coriolis force in the negative tangential
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Figure 4: Mean tangential velocity ut as a function of r, for z̃ = 0.025 and z̃ = 0.975, for case (3).
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direction, that generates a higher negative tangential flow. This higher flow produce a stronger

Coriolis force in the negative radial direction that pushes the flow inward.

At t̃ = 5, a secondary flow in the negative radial direction produced by the Coriolis force

is not yet present in cases (1) and (2), but it is in case (3). This can be seen in Fig. 3, 6 and 7

for r = 1 and t̃ = 5, where for case (3) the radial velocity at the bottom wall is ur ≈ −0.22,

and for cases (2) and (1) is ur ≈ 0.08 and ur ≈ 0.2, respectively. After this, at t̃ = 10, the

secondary flow is already reflected at the center of the domain in case (3), but is still moving in

the negative radial direction in cases (1) and (2).
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Figure 6: Mean radial velocity ur, at r = 1, as a function of height z̃ for case (1).
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Figure 7: Mean radial velocity ur, at r = 1, as a function of height z̃ for case (2).

3.2 Effects of boundary conditions in rotating gravity currents

The boundary condition at the bottom wall influences drastically quantities such as rmax,

rlens and ωp.
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In this section we compare cases (2) and (4), where the only difference between these two

simulations is the boundary condition at the bottom wall: Case (2) with a “Free Slip” boundary

condition, and case (4) with “No Slip”.

Fig. 8 shows the front location as a function of time, for different thresholds of h, for case

(4). Here we can see that the flow in the radial direction for case (4) is restricted by the shear

stress at the bottom of the domain. As a result, the maximum radius of the first outward front

rmax is smaller than in case (2) (rmax = 5.7 and rmax = 4.5, for cases (2) and (4), respectively).

This difference can also be seen comparing Figs. 7 and 9, where mean radial velocity profiles

(ur) as a function of z̃ are presented for radial position r̃ = 1, for cases (2) and (4), respectively.

At t̃ = 2.5 and r̃ = 1, the positive radial velocity at z̃ < 0.04 for case (4) is lower than for case

(2), producing a weaker Coriolis force in the negative tangential direction, and hence, lower

negative tangential velocities of the flow. Lower radial velocities are also seen for times t̃ = 5,

t̃ = 10 and t̃ = 20.

Another distinctive difference is that the maximum radius of the successive outward fronts

for case (4) are not smaller that of the previews oscillations (see fig. 8), behavior seen in case

(2) (see fig. 2b). This can be explain analyzing figures 10 and 11, where we present mean tan-

gential velocity profiles (ut) as a function of the radial position r for z̃ = 0.025 and z̃ = 0.975,

for cases (2) and (4), respectively. As we explained with figures 7 and 9, lower radial veloc-

ities seen in the flow for case (4), produces a weaker Coriolis force in the negative tangential

direction, and lower tangential velocities. This can be seen in figures 10 and 11, where lower

negative tangential velocities for z̃ = 0.025 are reached in the heavy fluid, for case (4). This

lower tangential velocity produces a weaker Coriolis force in the negative radial direction, al-

lowing the maximum radius reached at each oscillation to be greater than the maximum radius

at the previews oscillation. At later times (t̃ > 80), the Coriolis force in the negative radial

direction can not balance the boundary force, and as a result, a quasi-steady state lens shape is

not reached.

Also, an increase in the frequency of the successive outward fronts ωp is observed in case (4)

(see fig. 2b and 8).
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3.3 Influence of rotation in three-dimensional flow structures

The presence of the Coriolis force generates distinctive turbulent structures, not present in a

flow without rotation. Fig. 12 shows these characteristic structures and its effect on the interface

between the light and heavy fluid for case (2). Fig. 12a shows the three-dimensional structure

of the interface, where an isosurface of density ρ̃ = 0.05 is shown for time t̃ = 7.5. Also in

this figure are depicted isocontours of density for ỹ = 0 (gray contours). Fig. 12b shows the

isosurface of “swirling strength“ λ̃ci = 4 for the same time. The “swirling strength“ can be

defined as the absolute value of the imaginary portion of the complex eigenvalues of the local

velocity gradient tensor ∇ũ, and gives a means to determine the compactness of the vortical

structures of the flow (see Zhou and Kendall (2005) and Chakraborty and Adrian (2005)).

In Fig. 12, although the body of the current has azimuthal symmetry, the interface at the

head of the current is highly influenced by the quasi-streamwise Kelvin-Helmholtz vortices

KH2 surrounding the main Kelvin-Helmholtz vortex core KH1.

KH1

KH2

Figure 12: a) Three-dimensional structure of the interface visualized by an isosurface of density ρ̃ = 0.05 at

t̃ = 7.5, for case (2). Also in this figure are depicted isocontours of density for ỹ = 0 (gray contours); b) Isosurface

of swirling strength λ̃ci = 4 at t̃ = 7.5, for case (2).

We address the influence of rotation by analyzing case (4), where a ”No-Slip“ boundary

condition at the bottom wall is imposed, and produces more complex and developed turbulent

structures. Fig. 13 shows the three-dimensional structure of the interface between the light

and heavy fluid, where an isosurface of density ρ̃ = 0.05 is presented for different times. This

figure also shows isocontours of density for ỹ = 0 (gray contours). Fig. 14 shows isosurfaces

of swirling strength λ̃ci for the same time instances as in Fig. 13.

In Fig. 14a (for time t̃ = 5) it can be seen the Kelvin-Helmholtz vortices KH1 and KH1′,
rotating counter-clockwise, formed at the first stages of development of the flow, and a sec-

ondary Kevin-Helmholtz vortex core KH2 between the first. This secondary vortex core KH2
and vortex KH1′ stops its radial motion at about t̃ ≈ 7.5 as a result of the Coriolis force in the

negative radial direction.
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Figure 13: Three-dimensional structure of the interface visualized by isosurfaces of density ρ̃ = 0.05 for case (4).

Also in this figure are depicted isocontours of density for ỹ = 0 (gray contours). a) t̃ = 5; b) t̃ = 6.25; c) t̃ = 8;

d) t̃ = 10.
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Also in Fig. 14a, a clockwise-rotating vortex V 1, appears in front of vortex KH1 at the

bottom, as a result of shear stress, and a Kelvin-Helmholtz vortex KH3 at the nose. As a

consequence of rotation, a vertical vortex core V V 1 is present at the center of the domain (until

t̃ ≈ 25), and an array of quasi-streamwise Kelvin-Helmholtz vortices KH4 form surrounding

vortex core KH3.

All Kelvin-Helmholtz vortices are produced by shear stress. Kelvin-Helmholtz vortex cores

KH1, KH1′, KH2 and KH3, are the result of radial shear stress between the light and heavy

fluid, and vortices KH4 are the result of tangential shear stress between the two fluids.

In Fig. 14b, for t̃ = 6.25, a new vortex core KH5 forms behind vortex KH1, when a

secondary flow starts to move inward, as a result of the Coriolis force in the negative radial

direction. Also, it can be seen a loss of the strength of vortices KH1′ and KH2. Between

the lobes at the front (see fig. 14b), the quasi-streamwise vortices KH4 are now connected to

streamwise vortices at the bottom, that end up rising to the top and surrounding the Kelvin-

Helmholtz vortex KH1. This array of vortices is V 2 in Fig. 14b. At time t̃ = 8 (Fig. 14c),
vortices V 2 grow in strength, while vortex core KH1′ his now two weak to be seen in an

isosurface of λ̃ci = 2.5
Kelvin-Helmholtz vortices KH1 and KH3 twist and stretch, while the array of quasi-

streamwise vortices KH4 at the front stretch in the radial direction and move in the negative

tangential direction. A connection between all the KH4 vortices can be seen, forming a toroidal

spiral around vortex KH3. A bottom view of the front (inset in fig. 14c), shows a set of hairpin

vortices HP1 behind vortex KH1, weakly connected to vortices V 2.

At time t̃ = 10 (fig. 14d), Kelvin-Helmholtz vortex cores KH1 and KH3 split in smaller

turbulent structures, interacting with the quasi-streamwise vortices KH4 and V 2. The latest,

stretch in the tangential direction as a result of the Coriolis force, and continue to loose strength

through time.

4 CONCLUSIONS

We have addressed the effect of rotation in gravity currents for a cylindrical configuration

by direct numerical simulation. An oscillatory behavior of the flow is observed. This is docu-

mented by tracking the mean front position rF . At later times, a steady-state lens shape charac-

terizes all currents when a Free slip boundary condition is employed for the bottom wall. When

a No slip boundary condition is employed for the bottom wall, the lens shape is reached but

its radius continues to increase with time owing to the imbalance of the Coriolis and buoyant

forces.

With increasing Coriolis parameter C̃, a more restricted development of the flow is observed,

being the maximum radius at the first oscillation of the front rmax = 7.2, rmax = 5.7 and

rmax = 4.2, for C̃ = 0.1, C̃ = 0.15 and C̃ = 0.25, respectively. Also, in the cases where the flow

reaches steady state, the mean distance of propagation of the front rlens (the mean radius of the

lens) is also influenced by the Coriolis parameter, being this values rlens = 6.3, rlens = 5.3 and

rlens = 4.1, for C̃ = 0.1, C̃ = 0.15 and C̃ = 0.25, respectively.

We explained these behaviors by the analysis of mean radial and tangential velocity profiles.

When the front moves in the positive radial direction, a Coriolis force appears in the negative

tangential direction. This Coriolis force produces a flow in the same direction, and this tangen-

tial flow in turn produces a Coriolis force in the negative radial direction. When the buoyancy

force can not balance this Coriolis force, the front starts to move inward.

After the first arrest of the front, several oscillations in the front position can be seen. A linear
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relation between the Coriolis parameter and the frequency of these oscillations was found:

ωp = 2C̃ .

We also found that boundary conditions at the bottom wall influence the front position. When

”No-slip“ boundary condition is enforced, the shear stress at the bottom wall restricts the flow

in the radial direction, producing a lower maximum radius at the first outward front (rmax = 4.5
and rmax = 5.7, for ”No-Slip“ and ”Free-Slip“, respectively). This lower radial velocity, gen-

erates a weaker Coriolis force in the negative tangential direction, and combined with the shear

stress at the bottom, produces lower tangential velocities. This lower tangential velocity pro-

duces a weaker Coriolis force in the negative radial direction that can not balance the buoyancy

force at later times, and as a result, the steady state lens shape is not reached.

Finally, we have identified the distinctive turbulent structures present in rotating cylindrical

gravity currents. A vertical vortex core V V 1 appears at the center of the domain, and an array

of quasi-streamwise Kelvin-Helmholtz vortices KH4, interconnected and forming a toroidal

spiral around Kelvin-Helmholtz vortex core KH3. All turbulent structures are stretched and

bended by the Coriolis forces in the radial and tangential directions, and even we can see a

Kelvin-Helmholtz vortex KH5 at a secondary inward front.
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