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Abstract. In this work we present the 3D Finite Element Analysis (FEA) of an optical passive mi-

crosensor for measuring pressure in biofluids and the simulation of the required characterization setup.

Previously, we reported the design and analysis of a prototype where simulations were performed by

using the Finite Element Method (FEM) in order to analyze the mechanical behavior of the grating;

the results were exported to an optical software for diffraction analysis. The microsensor is based on

a deformable diffraction grating made of an elastomeric polymer (PDMS); as the PDMS membrane

containing the diffraction grating is subjected to a pressure, its optical properties are varied and an in-

direct measurement of the pressure is attainable. Now, we report the fabrication and characterization of

the optical passive microsensor. The simulation of the setup required for characterization brings many

advantages as it enables a rapid understanding of the optical properties of the microsensor without im-

plementing it. Therefore, a correct model of both the optical and the mechanical model accelerates the

development-time of the prototype so as to carry out possible re-designs in the future.
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1 INTRODUCTION

The micro-electro-mechanical-systems (MEMS) designed for the use in medicine and bi-

ological applications (BioMEMS) are devices fabricated with similar techniques as those for

MEMS, but with the main purpose of being biocompatible (Grayson et al., 2004). Such de-

vices are of particular interest in biomedical and biological areas where a miniaturized system

is required, e.g. biosensors and microactuators that could be integrated and implantable. In the

case where optical elements are also employed the devices are known as micro-opto-electro-

mechanical systems (MOEMS). In the last years, MOEMS have been developed for monitoring

local pressure in situations where both sensitivity, precision, minimal impact on the system

to be studied, and reduced size are needed. Measurement of local pressure is of fundamental

importance in flow characterization in microfluidic devices and many different physical princi-

ples were employed to achieve this goal. Optical passive monitoring of pressure is an interesting

method because it allows real-time and remote sensing without the need of powering the sensor.

An optical microsensor also has, if properly designed, excellent sensitivity and high-precision

which are very desirable features of a transducer in these particular areas.

In a previous work, we presented the design and simulation of a pressure sensor based on a

PDMS diffraction grating (Braggio and Guarnieri). This prototype was simulated using an opto-

mechanical model in the pressure range of interest. The PDMS deformable diffraction grating

showed to be a useful device for monitoring local pressure. Here we report the fabrication and

characterization of this PDMS grating, aimed to work as an optical passive pressure sensor.

Both simulations of the mechanical and optical model were performed. In the case of the

mechanical model, many variations have been carried out with respect to our previous work. A

hyperelastic model was used to describe the stress-strain relationship of the PDMS grating and

the results from this model were compared with the linear elastic model and experimental data.

These results were then used in the optical simulation. The outcomes obtained from simulations

were compared with the measurement of the mechanical properties of PDMS carried out by Tae

Kyung Kim et.al and with those achieved by our experiment (Kim et al., 2011).

The main purpose of this article was to advance in the understanding of the mechanical and

optical properties of PDMS to be used as an optical passive pressure microsensor. It was also

intended to validate the coupled opto-mechanical model for future applications in the design

of the device. The present work is composed of seven sections. First, the design and work-

ing principle of the microsensor is briefly described. In section 2 the theoretical aspects of the

optical and mechanical models are presented; sections 3 and 4 describe the fabrication of the

microsensor and the simulations that were performed, respectively. Section 5 explains the char-

acterization procedure that was carried out, whereas section 6 presents the results obtained. The

last two sections submit the discussion and conclusions of the work.

1.1 Design and Working Principle

The device consists of a binary phase surface-relief grating embedded on a 100 micrometer-

thick section of PDMS. The grating is of the transmissive-type. It has a rectangular shape and

its pattern consists in a series of parallel equidistant grooves at a given period. This period is

known as the pitch of the grating. In Fig. 1 a schematic of a typical surface-relief diffraction

grating is shown. The height of the grooves is dg , the pitch is λ and the width of the grooves

is fΛ. The thickness of the substrate is denoted by dw and the refractive indices of the air, the

grooves and the substrate as nL, nH and nW , respectively.

The operating principle of the detector is based on the optical changes that undergo in the
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Figure 1: Schematic representation of a diffraction grating.

diffraction grating, as it is subjected to strains. These mechanical deformations have conse-

quences on the pitch of the diffraction grating and as the pitch varies, it causes a shift in the

angular positions of light beams deviated from the optical sensor. In the next section, the phys-

ical explanation of a diffraction grating is presented. In the absence of mechanical deformation

(better expressed as strain), the grating has a nominal pitch. When incident light with a par-

ticular wavelength reaches the grating it is deviated into a series of beams at different angles.

This diffraction pattern has no change if the optical properties of the grating are maintained

and the wavelength of the light remains constant. At a certain distance from the grating, each

particular light spot (diffraction mode) has a defined distance to the central one (0−mode). As

the grating is subjected to strain the pitch varies and there is a shift in the original diffraction

pattern. Therefore, there is an indirect measure of the applied mechanical stress in the grating.

The microsensor consists of the following major blocks: a substrate, where the grating is

embedded, and the diffraction grating itself. As it can be seen, the fundamental blocks of the

device are very simple, but an excellent comprehension of the transducer is of fundamental

importance to design and develop a proper sensor. Both the substrate and the grating are made

of the same material. The microsensor offers the desired features: it is of simple fabrication, has

a very good sensitivity, and it is made of a material with excellent properties for both optical and

biomedical applications. In summary, the deformable PDMS diffraction grating is the pressure

transducer and the deviated (diffracted) beams indicate changes in the applied pressure.

1.2 THEORY

1.2.1 Optical Model

A transmission or transmissive phase grating is a diffraction grating that consists of an array

of diffracting elements that produces a periodic alteration in the phase of the emerged wave

(Hecht, 2002). When monochromatic light is incident on a grating surface, it is diffracted into

discrete directions and in fact there is a unique set of discrete angles where the beams can be

seen, zones where the light interferes constructively (Palmer and Loewen, 2005). In the case

of incident light with a wavelength of λ and a pitch d (distance between any two consecutive

grooves as said before) the diffracted beams appear at angular locations determined by the

grating equation (Eq. (1):

sin(θ)− sin(θ0) =
mλ

d
(1)

where θ is the angle of diffraction for the mth-order beam, θ0 is the angle of incidence of the

probing beam. This equation expresses the fact that if the parameters remain unchanged, the

diffraction pattern is unaltered. In Fig. 2 a typical diffraction pattern of a transmission grating

is shown. The diffraction angles are measured from the grating normal.

If the angle of incident light is zero and the distance from the diffraction grating to the plane
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Figure 2: Diffraction pattern of an incident beam of light produced by a transmission grating.

of detection is much greater than the pitch of the grating, then the following equation holds:

y ≈
mλD

d
(2)

Where y is the vertical distance of the m-th diffracted beam measured at the plane of detec-

tion, D is the distance from the grating to the detector-plane and d is the pitch of the grating.

The latter equation is the one that explains the working principle of the microsensor. If the pitch

is a function of the mechanical stress prescribed on the PDMS grating, then as the pitch value

decreases the diffraction pattern becomes wider.

1.3 Mechanical Model

In order to simulate the mechanical behavior of the microsensor a two parameters Mooney-

Rivlin model was used. This one is suitable for modeling nearly incompressible hyperelastic

materials such as PDMS. As a common knowledge, one of the most widely used models for

such a material is the Mooney–Rivlin (MR) constitutive model (Yu and Zhao, 2009b). Many

other hyperelastic models have since been developed (Kim et al., 2011). A model such as

the MR is suitable for materials that are isotropic, highly elastic and incompressible under the

condition of relatively high strain rate (Dong et al., 2005).

A hyperelastic material is defined by its strain energy function Ws, which is a function of the

strain state. For an isotropic material, the strain energy function depends only on the invariants

of the Cauchy-Green tensor as shown in the following equation:

Ws = Ws (I1, I2
, I

3
)

I1 = trace(C) = C11 + C22 + C33

I2 =
1

2
(I2

1
− trace(C2))

I2 = det(C) = J2

(3)
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In the case of nearly incompressible materials, the strain energy function can be separated in

two parts as expressed in equation 4. The first term is function of the modified invariants Ī1 and

Ī2 that have no dependency on the volumetric effects, whereas the second part of the equation

corresponds to the volumetric energy function shown in equation 5.

Ws = Ws

(

Ī1, Ī2

)

+ U(J) (4)

U(J) =
1

2
κ(J − 1)2 (5)

Ī1 = I1J
−

2

3 Ī2 = I2J
−

4

3 (6)

Because of the mixed formulation used in the model, the hydrostatic pressure becomes a

dependent variable which is derived from:

p = −
∂U

∂J
(7)

Finally, the strain energy function W s for the Mooney Rivlin model is shown in equation 8.

Ws = C10(Ī1 − 3) + C01(Ī2 − 3)− p(Jel − 1)−
p2

2κ
(8)

Then, the strain energy function of this model is only a linear function of the modified in-

variants Ī1 and Ī1 and the pressure.

1.3.1 Determination of Mooney-Rivlin Coefficients

In order to calculate the coefficients of the MR models, a mathematical approach was done.

As said before, there are two coefficients that need to be determined in the model and their

values can be derived from the uniaxial experimental test.

If the right Cauchy-Green deformation tensor C is considered, the Green strain tensor is

defined by the following relationship:

E =
1

2
(C − I) (9)

The second Piola–Kirchhoff stress tensor S can be expressed as:

S =
∂W

∂E
= 2

∂W

∂C
(10)

With the intention of simplify further calculations, the coordinate directions could be aligned

with the principals directions of deformation; then the Cauchy strain tensor becomes:

C =





λ2

1
0 0

0 λ2

2
0

0 0 λ2

3



 (11)

Therefore, the invariants of C become:

I1 = λ2

1
+ λ2

2
+ λ2

3

I2 = λ2

1
λ2

2
+ λ2

2
λ2

3
+ λ2

3
λ2

1

I3 = λ2

1
λ2

2
λ2

3

(12)
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The classic uniaxial and equibiaxial tensile tests can also be used for the characterization of

a polymeric material with similar results as those carried out with more sophisticated facilities

(?).

A uniaxial tensile test can be used in conjunction with analytic procedure to determine the

critical material parameters of the MR hyperelastic model. For a special case of uniaxial tension,

λ1 = λ, λ2 = λ2 = λ−

1

2 , σ11 = σ, σ22 = σ22 = 0 and the stress-strain equation can be expressed

as (Yu and Zhao, 2009b; Dong et al., 2005):

σUT = σ11 = 2C10(λ
2
−

1

λ
) + 2C01(λ−

1

λ2
) (13)

Where σUT is the true stress in the uniaxial tension test and σ11 is the Cauchy Stress tensor

in the principal direction.

As seen in equation 13, the coefficients of MR model are unknown and we need to impose

two conditions in order to calculate them. The first condition is that for the MR-model to be

consistent with its linear counterpart, at small strains i.e. the slope must equal the Young’s

modulus in the linear elastic model. The second condition is imposed by giving a defined stress

value at the maximum strain at which the sample is submitted. Finally, the following system of

linear equations is derived from which C10 and C01 can be computed:

σ11 = −

(

1

λ
− λ2

) (

2 c1 +
2 c2
λ

)

∂σ11

∂λ
=

(

2 c1 +
2 c2
λ

) (

2λ+
1

λ2

)

+
2 c2

(

1

λ
− λ2

)

λ2

(14)

The system of equation results in:

0 = 6 c1 + 6 c2 −
1

4

0 =
387 c1
100

+
387 c2
160

−
3

16

(15)

2 MATERIALS AND METHODS

2.1 Fabrication

A detailed explanation of the fabrication process is far beyond the scope of this work; how-

ever the steps followed in the fabrication and in particular the materials and masks used are

presented here.

The technique followed for the construction of the PDMS microsensor is the replica molding

method. This method belongs to what in general is known as soft lithography technique and

is a rapid-prototyping technique where a mold or stamp is replicated from a master using an

elastomer as key-material. A detailed explanation of this method can be found in the review

from Xia and Whitesides among other soft lithographic techniques (Wilbur et al., 1996; Xia

and Whitesides, 1998). Fig. 3 shows a simplified flowchart of the method.

The process begins with the design of the pattern to transfer. By mean of a mask, the pattern

is transferred to a photosensitive material. This technique is known as projection photolithog-

raphy. The mask was projected, i.e. the dimensions were reduced, onto a resist-coated glass

substrate which was 30 [mm] in diameter. A negative photoresist (maN-1405 - Microchem)

was used (Corning).
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Figure 3: Summarized flowchart of the Replica Molding Technique.

Figure 4: Schematic diagram of multiple exposures and Photolithographic Mask used in the

fabrication of the grating.

Fig. 4 shows the mask designed and used for the construction of the PDMS grating. In the

figure, at the left it is depicted with colors the different exposure doses used by the UV incident

light, being the green-colored circles the calculated optimal dose and the other variations of it.

Once the master was created, PDMS in a 10:1 base polymer/curing agent mixing ratio was

poured onto the master and baked in a hot-plate at a temperature of 70[oC] for 25 minutes.

Finally, the PDMS was cut and peeled off from the substrate in order to obtain the strips that

then were characterized.

2.1.1 Poly-dymethil-siloxane (PDMS)

As said before, the microsensor is fabricated using PDMS as key material. PDMS is a kind of

rubber-like material with nearly or purely incompressible property. PDMS is used because of its

outstanding properties, such as low price, optical transparency, biocompatibility, and flexibility.

PDMS is an elastomer with excellent properties that can be deformed reversibly and repeteadly

without residual distortion. It is thermally stable, inexpensive, nontoxic, and commercially

available (Yoon et al., 2010; Keum et al., 2012). PDMS has proven to be an exceptional material

for micro-technology (Hosokawa and Maeda, 2001). Values of Young’s modulus for PDMS

Mecánica Computacional Vol XXXII, págs. 3781-3797 (2013) 3787

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 5: Processed photograph of the undeformed PDMS sample in the uniaxial tension test.

have been reported from around 0.35 to 3[MPa] (Foland et al., 2011). Micro-devices made

from PDMS are easy to fabricate using the replica moulding technique (Schueller et al., 1999;

Wilbur et al., 1996; Xia and Whitesides, 1998). PDMS has many features which makes it

an excellent material for a pressure sensor, e.g. good biocompatibility, nontoxic and optically

transparent (Chronis et al., 2003), easily fabricated and widely used in micro-fluidic devices (Yu

and Zhao, 2009a). PDMS might be used as a biomedical material due to its excellent aspects

like microfabricability, biocompatibility, and robust functionality. The major advantages of

PDMS can be found in its fabrication process and material properties, as it was shown before.

3 SIMULATION

3.1 Mechanical Model

Mechanical simulation of the device was performed using a Finite Element Analysis (FEA)

software. The entire sample was simulated in 3D mechanical model and both a linear elastic

and a non-linear model were performed in order to compare the simulation with the experi-

mental results. In the case of the non-linear model, a mixed-formulation was used because of

the nearly-incompressibility of the PDMS. A mixed U-P (displacement-pressure) formulation

allows element matrices to be formed using mixed variational principles with the pressure in-

troduced to enforce the incompressibility constraint. It is applicable to nearly incompressible

rubber-like materials with arbitrarily large displacements and strains.

3.1.1 Geometry of the model

Fig. 5 shows highlighted in green the undeformed geometry of the PDMS sample. After

scaling and processing the photo, the real initial dimensions of the sample were measured. The

sample had a length of 10[mm], a width of 3.465[mm] and a thickness of 100[µm] (the latter

known from the spin-casting process). These values were the initial dimensions of the geometry

used in the finite element analysis.

3.1.2 Boundary Conditions

In the simulation, the boundary conditions were set up in the same way as performed in the

experiment, i.e. one of the sides was fixed, whereas a prescribed displacement in the x-direction

(horizontal direction) was applied at the other one. The upper and lower sides were left free.
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3.1.3 Mesh, Type and Numbers of Elements

As mentioned in subsection 1.3, in order to ease the solution when nearly incompressible

materials are used, a mixed U-P (displacement-pressure) formulation was performed. The ele-

ments used in the simulation were of the lagrangian type with quadratic shape functions for the

displacements and linear functions for the pressure.

The input data used in the simulation are summarized in the following table (Table 1), with

the MR coefficients calculated as it was shown in 1.3.1.

PDMS Bulk Modulus (K) [MPa] PDMS Density [Kg/m3] C10[MPa] C01[MPa]
962 0.971 0.059754522 −0.018087855

Table 1: PDMS Subdomain Input Data – Mooney Rivlin Model

The PDMS subdomain was meshed using hexahedral elements; the numbers of elements was

270 and the total number of degrees of freedoms was 8911.

So as to validate the MR model, the linear elastic model for the PDMS sample was also

simulated to check consistency at small strains. Table 2 shows the constants used in the linear

elastic model.

PDMS Young’s Modulus (E) [MPa] PDMS Poisson’s Ratio (*) PDMS Density [Kg/m3]
0.250 0.499957 0.971

(*): derived from Equation 16

Table 2: PDMS Subdomain Input Data – Linear Elastic Model

A Young´s modulus of 0.250 [MPa] was used for the PDMS calculated from the experimental

data by Tae Kyung Kim et.al. A Poisson´s ratio of 0.499957 was derived from equation 16.

These values were the input data in the linear elastic simulation.

υ =
3K − E

6K
(16)

3.2 Optical Model

Optical simulation was performed in an optical ray tracing software for optical design and

analysis. The main advantages of using such software are the reduction in time and costs needed

to design the optical prototype and to find the convenient characterization setup.

The number of rays used in the ray-tracing simulation was 1x106. The light was set as

monochromatic, collimated and coherent. The wavelength of light source was 632.8[nm] in

concordance with the laser used in the experimental setup. As the initial grating pitch in the

optical simulation, we used the results obtained from the experimental optical characterization

of the undeformed sample. In section 4 the procedure to calculate the pitch of the grating is

explained. The dimensions were the same as those simulated in the mechanical model and the

distances from light source to the sample and from the sample to the detector plane (image

plane) were the same as in the experiment.

4 EXPERIMENTAL SETUP AND CHARACTERIZATION PROCEDURE

A transmission diffraction scenario was carried out to characterize the PDMS grating and

its sensitivity with the prescribed strains. This characterization procedure is the key element in
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Figure 6: Photographic montage of the performed uniaxial tension test.

order to validate the use of the PDMS diffraction grating as a pressure sensor.

The PDMS strip is held by its ends in a homemade gripper as shown in Fig. 6. Highlighted

in green is the PDMS sample; the sample is subjected to prescribed displacements and these are

measured after postprocessing the photographs.

In subsection 1.2.1 , equation 1 gives the angles of the diffracted modes when a beam of

monochromatic light pass through the diffraction grating. As said before, if the distance from

the grating (sample) to the detector plane is much greater than the pitch of the grating, then the

vertical distance of the mth-mode to the 0-mode is determined by equation 2.

Therefore, if the sample-detector distance D, the wavelength of light λ and the vertical dis-

tance of the mth mode are known, the pitch can be calculated. As it can be seen in the latter

equation the vertical distance has a linear dependence on the diffraction-mode, so the vertical

distances of the [−2,−1, 0,+1,+2] modes were measured and a linear regression was made.

Then, the slope and the pitch were calculated. In the next section, it is shown the linear regres-

sion made to estimate the pitch of the undeformed sample. This procedure was carried out with

both the experimental results and those from simulation. In Fig. 7 it can be seen the diffrac-

tion pattern produced by the PDMS grating. The [−2,−1, 0,+1,+2] modes are highlighted in

green, whereas also the ±3 modes appear but attenuated. Below in the figure, the simulated

diffraction pattern is shown with the distances between spots measured in pixels.

5 RESULTS AND DISCUSSION

The results in the work are first subdivided in those obtained from the mechanical analysis of

the device and those attained from the optical simulation. It is also shown how the pitch of the

grating was calculated in each case. At the end of this section, the results from the mechanical

and optical models are coupled in order to compare them with the outcomes of the experiments.

5.1 Mechanical Model Results

The results of the mechanical model simulation are given in Fig. 8,Fig. 9 and Fig. 10. In the

first figure it can be seen the three dimensional view of the sample when it was subjected to a

prescribed displacement of 6[mm]. These results correspond to the Mooney-Rivlin mechanical

model. It was of interest to study the first principal stress field at the center of sample, where the

grating was located; this is important to evaluate the uniformity of the strains produced in the

region of interest (Fig. 8). In the second figure, the linear and non-linear mechanical models are

compared. In addition, the experimental results achieved by Tae Kyung Kim et.al are shown.

As it can be seen, there is consistency between the models and the experimental data in the

range of small strains. For strains smaller than 0.35 the linear elastic model describes better the

L. BRAGGIO, F.A. GUARNIERI3790

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 7: Diffraction pattern produced by the PDMS diffraction grating in the experiment

(above) and the corresponding simulation (below).

stress-strain relationship, whereas for strains greater than 0.4 the MR model fits it better.
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Figure 8: Three-dimensional view of the strained sample at a prescribed displacement of 6[mm].

Figure 9: First principal Stress Field of the deformed geometry (prescribed displacement of

6[mm]).
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Figure 10: Stress-strain curves of the PDMS sample and comparison of the different models

and the experimental data.

5.2 Optical Model Results

The optical simulations were performed with the assumptions made in 3.2. In Fig. 11 shows

the procedure that was done in order to calculate the initial pitch value of the undeformed grating

and the subsequent values as the sample was deformed. In the vertical axis the distances from

each mode to 0-mode are shown; from the slope of the linear regression the pitch of the grating

is calculated. The experimental data (green diamonds) are well-fitted with the linear regression

(red dashed lines). This was the case for each estimation of the pitch values.

Fig. 12 shows a simulation of the diffraction grating for a particular pitch value (initial pitch

in this case) with the consequent diffraction pattern; it is also displayed the distance from the

sample to the detector. The color bar expresses the irradiance in [W/cm2].

5.3 Results from coupled models

After validation of the MR mechanical model, a parametric mechanical simulation was once

again performed being the prescribed displacements-values in this case those measured from

postprocessing of the experimental characterization photographs. The results are shown in

Fig. 13 where a comparison between experiment a simulation is done. The variation of the

pitch of the grating is displayed vs. the prescribed strain. The pitch varies from an initial value

of 66[µm] in the undeformed geometry to an approximated final value of 114[µm] at a strain of

around 0.63.
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Figure 11: Distances of the diffraction modes to 0-mode and the corresponding linear regres-

sion.

Figure 12: Simulation of the optical model, showing the diffraction pattern and the distance

from sample to detector plane.
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Figure 13: Comparison between experiment and the performed simulation using the Mooney-

Rivlin model.

6 CONCLUSIONS

The design, fabrication and analysis of an optical passive microsensor have been presented

in theory, simulation and experiment. The present work aimed to study the mechanical behavior

of a PDMS diffraction grating, while also the variations in the optical properties of the grating,

intended to be used as an optical passive microsensor. Therefore, a non-linear mechanical model

(two parameters Mooney-Rivlin model) was used and compared with the linear elastic model

so as to best describe the experimental results. The conclusion conducted by the finite element

analysis showed that the non-linear model is better for modeling the stress-strain relationship of

the sample in the desired entire range of strain. For more precise results other types of models,

e.g. an Ogden or more parameters Mooney-Rivlin model have to be considered.

As intended, the device showed an optical response to mechanical deformations. From the

findings presented here, it can be concluded that such a device can be used as pressure microsen-

sor with the consequent benefits that it offers. The fabrication and characterization procedures

were also presented and the results showed a good agreement between simulation and experi-

ment with a relative good sensitivity. Of course, further analysis and simulations must be done:

for example, it will probably be necessary to perform a biaxial extension test to completely de-

scribe the mechanical properties of the PDMS elastomer, and to use other mechanical models.

Future work will focus on these aspects.

A pressure sensor based on PDMS diffraction grating was simulated. An opto-mechanical

model was used in the pressure range of interest and resulted in a shift in the angular posi-

tions of light beams diffracted from the grating. From the analyses made, pitch variation was

demonstrated. The sensitivity to changes in the radius of curvature was considered. Because the
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probing beam was aimed at the center of the membrane, there were no considerable variations in

the position of the diffracted beams. The variations in the pitch due to mechanical deformation

produced sufficient optical response to applied pressure ranging from 0 to 2500[Pa].
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