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Abstract. We present a finite element formulation to study the behavior of biological membranes
governed by viscous and bending forces and subjected to area and volume constraints. The membrane is
discretized by a surface mesh made up of planar triangles over which the Boussinesq-Scriven operator is
solved to account for the viscous effects. A Laplace-Beltrami identity is used to compute the membrane
curvature. A semi-implicit approach in which curvature and velocity are coupled, is used to improve
stability of simulations. The area and volume constraints are accounted by considering suitable Lagrange
multipliers. We focus on the formation of tethers in lipidic vesicles by means of externally applied forces.
The simulation of a tether formation by pulling a small parcel of an originally spherical membrane was
performed. The results were compared to the analytical solution of a cylindrical membrane under the
influence of an external axial force. The agreement of the overall dynamics of the 3D tether with the exact
solution of the idealized cylindrical tether is quite remarkable, indicating that the fundamental relaxation
processes are adequately captured. Due to the large deformations suffered along the process a suitable
adaptive re-meshing strategy is needed to preserve the mesh quality and thus robustness of computations,
and to capture the tether’s geometrical features. In our re-meshing procedure the new and the original
meshes do not maintain a topological relation.
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1 INTRODUCTION

Phospholipidic membranes are two-molecule-thick curved surface arrays of phospholipids
(Alberts et al., 2010) that constitute the fundamental building material of cellular membranes at
the micrometric scale. The physical properties of this two-dimensional material can be charac-
terized as mostly homogeneous, with some amount of bending rigidity, with a large tangential
elastic bulk modulus (area-preserving material) and a negligible tangential elastic shear modu-
lus. On each one of the two lipid layers, tangential mobility of the amphiphilic molecules is so
high that a better model for this material is that of a surface fluid. Even more, physics exper-
iments have shown that its rheology corresponds to a Newtonian surface fluid (Harland et al.,
2010, 2011), though with solid-like bending rigidity. Interest in studying viscous membranes
like lipid bilayers arises from the ubiquitousness of such material in Nature and because in so
doing one can explain why cells exhibit a wide variety of shapes configurations. Regarding the
latter, the most classical example was provided by Canham (1970) who came up with an idea
of the biconcave shape of the human red blood cell as a shape of a suitable minimum energy.

A salient phenomenon that takes place in phospholipidic bilayers is that, if a small part
of a vesicle is pulled away by some localized force (using an optical trap, for example, as
reported by Lee et al. (2008)) it carries with it a narrow bilayer tube (tether) that can be much
longer that the vesicle itself and nanometric in diameter (Smith et al., 2004). The simulation
of tether formation and extension aims at understanding the fundamental processes that govern
this important phenomenon in biological membranes mechanics as theoretically discussed by
Waugh (1982a) and Bozic et al. (1997) and also experimentally by Waugh (1982b).

In this article we describe a finite element method for phospholipidic membranes that is
general enough (three-dimensional, unstructured, Eulerian) and robust enough to model tether
formation and extension. It is coupled with an adaptive surface mesher so as to control mesh
density and quality. Some numerical results illustrating the method’s capability are reported.

2 MATHEMATICAL FORMULATION

2.1 The Boussinesq-Scriven operator

We consider the motion of a surface Γ � R3 governed by the following elastic energy
proposed by Canham (1970) and Helfrich (1973)

EpΓq �
cCH

2

»
Γ

κ2, (1)

where κ � κ1 � κ2 stands for the mean scalar curvature of Γ (κ1 and κ2 are the principal
curvatures) and cCH is a material dependent parameter. In differential geometry, equation (1) is
known as Willmore energy (Willmore, 1993). The rheology of the interface Γ is governed by
the Boussinesq-Scriven law (Scriven, 1960; Gross and Reusken, 2011). According to this, the
stresses on the surface can be expressed as

σ � λ p∇Γ � uqP � 2µDΓu, (2)

where λ and µ are surface viscosity coefficients, P is the tangent projector onto Γ given by

P � I� qnb qn, (3)
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qn the normal to Γ and DΓ is defined as

DΓu �
1

2
P p∇Γu�∇Γu

T qP. (4)

The surface gradient operator ∇Γf of a scalar function f defined on Γ is defined as P∇ pf
where pf is any regular extension of f to R3. The surface gradient ∇Γw of a vector field w
defined on Γ is defined as the matrix (Cartesian tensor)

t∇Γwuij �
B pwi
Bxj

� t∇Γwiuj, (5)

where wi is the i-th Cartesian component of w and pwi any regular extension of wi to R3.
In the limit of an area-preserving membrane (λÑ �8, frequently called inextensible mem-

brane) the constraint ∇Γ � u is satisfied. As occurs in bulk fluids, for surface fluids it can also
be proved that there exists a surface pressure πs (playing the role of minus an undetermined
surface tension) such that

lim
λÑ�8

λ∇Γ � u � �πs, (6)

so that in the inextensible limit the surface stress tensor reads

σ � �πs P� 2µDΓu. (7)

The bilinear form that expresses the virtual power along a virtual velocity field v performed
by the viscous stresses σ corresponding to an actual velocity field u and surface pressure πs is
given by

W ppu, πsq,vq �

»
Γ

σ : DΓv �

�

»
Γ

2µDΓu : DΓv �

»
Γ

πs ∇Γ � v (8)

In differential form the surface-differential operator associated to the bilinear form above is
the tangential counterpart of the Stokes operator. It was introduced by Scriven (1960) and is
sometimes referred to as Boussinesq-Scriven operator.

2.2 Variational formulation

The Canham-Helfrich energy (1) depends on the shape of Γ and is thus affected by motions
along a virtual velocity field v, unless v is purely tangential.

A useful expression of the derivative of E along v was introduced by Bonito et al. (2010)
and reads:

dEpvq � cCH

»
Γ

�
pI� 2Pq∇Γv : ∇Γκ�

1

2
p∇Γ � vq p∇Γ � κq

�
, (9)

where κ � κ qn. The vector curvature can be defined intrinsically as the surface Laplacian of
the function χ (the identity, i.e., χpxq � x, @x P Γ). It satisfies

�∇Γ � p∇Γχq � κ. (10)
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According to the virtual work principle, the virtual work of the viscous stresses plus the
virtual change in the energy of the system must equal the virtual work of the internal pressure p
of the fluid enclosed by the membrane, i.e., for all v

W ppu, πsq,vq � dEpvq � p

»
Γ

v � qn, (11)

which, coupled to the inextensibility condition and the compatibility condition (10) ends up
giving the following variational problem:

“Find pu, πs,κq P V �Q�K such that»
Γ

2µDΓu : DΓv �

»
Γ

β u � v �

»
Γ

πs ∇Γ � v �

� cCH

»
Γ

�
pI� 2Pq∇Γv : ∇Γκ�

1

2
p∇Γ � vq p∇Γ � κq

�
� p

»
Γ

v � qn @v P V (12)»
Γ

ξ∇Γ � u �
1

A
dA
dt

»
Γ

ξ @ξ P Q (13)»
Γ

κ � ζ �

»
Γ

∇Γχ : ∇Γζ @ζ P K ”. (14)

Here, the internal pressure p is considered given. Alternatively, it can be computed from
a volume restriction. The second term in (12) which contains β corresponds to a regularizing
friction-like term that filters out rigid-body motions and possible vanishing-stiffness modes.
Notice that A is the area of the membrane (A � measpΓq) and that dA{dt can be chosen
arbitrarily to control the total area.

The evolutionary problem reads: Given Γp0q, the initial surface, compute a continuous fam-
ily of surfaces Γptq and a time dependent velocity field up�, tq defined on Γptq, such that at
each instant (12)-(14) for some πsp�, tq and some κp�, tq, which are subproduct of the calcula-
tion. The pair pΓptq,up�, tqq must still satisfy the kinematical condition that the surface Γ moves
according to the velocity field u, or, in mathematical terms, that

@x P Γptq, dist px� upx, tq δ t,Γpt� δtqq ¤ C δt2 (15)

where dist stands for the distance between a point and a surface.

3 DISCRETE FORMULATION

The discrete formulation aims at determining the evolution of Γ, from time tn to time tn�1 �
tn � δt, by computing a velocity field un�1

h defined on Γn such that Γn�1 is determined by the
(Lagrangian) updated nodal positions XJ,n�1 (J nodal index), where

XJ,n�1 � XJ,n � δtun�1
h pXJ,nq (16)

so that (15) is by construction satisfied.
Substituting into (14) one obtains a linearized first-order-accurate discretization in time as

first proposed by Bänsch (2001)

�δt

»
Γn

∇Γu
n�1
h : ∇Γζ �

»
Γn

κn�1
h � ζ �

»
Γn

∇Γχ
n : ∇Γζ (17)
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which creates a coupling between velocity and curvature. Notice that on Γn it holds that
χnpxq � x and thus ∇Γχ � P.

The linear problem that determines un�1
h ends up being: “Find pun�1

h , πn�1
h ,κn�1

h q P Vh �
Qh �Kh such that»

Γn
2µDΓu

n�1
h : DΓv �

»
Γn
β un�1

h � v �

»
Γn
πn�1
h ∇Γ � v �

� cCH

»
Γn

�
pI� 2Pq∇Γv : ∇Γκ

n�1
h �

1

2
p∇Γ � vq p∇Γ � κ

n�1
h q

�
� p

»
Γn

v � qn (18)»
Γn
ξ∇Γ � u

n�1
h �

1

A
dA
dt

»
Γn
ξ (19)

�δt

»
Γn

∇Γu
n�1
h : ∇Γζh �

»
Γn

κn�1
h � ζ �

»
Γn

P : ∇Γζ (20)

hold @v P Vh, @ξ P Qh and @ζ P Kh.” Together with (16), this completely defines the fully
discrete formulation. Notice that all integrals are performed over the known discrete surface Γn.

The area control is performed based on a target area A� by setting dA{dt � �pA �A�q{τ ,
so that if A � A� the right-hand side of (19) vanishes, and if A � A� then A exponentially
approaches A� with characteristic time τ (chosen as 10δt).

A stabilization term is also added to (16) to avoid spurious modes of πh. The adopted tech-
nique is the orthogonal subscales method (Codina et al., 2001) in which the surface gradient
∇Γπh is projected onto the velocity space.

4 REMESHING

The simulation of very large deformations requires of adaptive meshing techniques in order
to maintain the required degree of accuracy during the computations. This step is not only
needed to cope with the low quality triangles that appear during the simulation, but also to
adjust the spatial resolution in places where surface curvature changes in time. For this purpose
we used an automatic discrete surface regridding software (Lohner, 1996).

The process of remeshing starts with a general discrete surface (set of 3D points and trian-
gles), and local surface curvature information (specified at the points), which is provided by
the field solver. Background sources specifying the desired element sizes are generated at the
barycenter of the surface triangles. The desired local element size is computed using the curva-
ture information by the rule eh � α rc, where eh is the desired element size and rc is the radius
of curvature. In this study α was set to 0.1 for all the simulations. The specified element size
is isotropic since only scalar curvature information is used. The regridding procedure starts by
defining one discrete patch as the whole original discrete surface whose boundary is the largest
edge of the original mesh. Using this edge as the initial front, the discrete patch is triangulated
using an advancing front technique, where new points are projected onto the original discrete
surface. A full description of the method together with several techniques for dealing with com-
plex surface geometries can be found in (Lohner, 1996). The output of this step is a completely
new discrete surface.

Although the new discrete surface lies on top of the original given surface, there are dis-
crepancies in the curvature calculation when compared with the original mesh. This introduces
spikes in the internal energy calculation. However these perturbations are rapidly dissipated,
which seems to indicate that do not have an impact on the simulation outcome. The remeshing
strategy in this preliminary study is fixed as “remesh every one hundred steps”. Strategies based
on element size and quality are currently under investigation.
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5 NUMERICAL RESULTS

A tether develops when pulling a parcel of membrane away. If a force F is applied, a
structure will develop composed of a head, a cylindrical tube of length Lptq and radiusRptq and
the connection to the membrane body as shown in Figure 1.

L(t)

tether

membrane

body

F

u=V

u=0

b e

head

u=V

Figure 1: Schematics of membrane tethering.

The dynamics of the tether can be understood with the help of the analytical solution cor-
responding to a (circular) cylindrical membrane of surface viscosity µ and Canham-Helfrich’s
constant cCH that is being pulled from its end by an external axial force F . In this particu-
lar geometry, the exact problem admits an analytical solution with uniform (independent of x)
circumferential and axial stresses. The exact velocity field is given by

u � Ur qer � γ z qez (21)

with Ur and γ given by

Ur � �
1

8πµ

�
F � 2πcCH

1

R

�
1�

pR3

cCH


�
, (22)

γλÑ8 �
1

8πµR

�
F � 2πcCH

1

R

�
1�

pR3

cCH


�
. (23)

Neglecting the contribution of the internal pressure p, and noticing that

dR

dt
� Ur (24)

one arrives at the more tractable equation

dR

dt
�

cCH

4µ

�
1

Req

�
1

Rptq



. (25)

There exists an equilibrium radius Req given by

Req �
2πcCH

F
, (26)
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to which the cylinder will tend as t Ñ 8. At equilibrium, the surface tension πs takes the value

πs,eq � �
F

4πReq

� �
F 2

8πcCH

.

Further, the final decay when R � Req must have the asymptotic behavior

Rptq � Req � C exp

�
�

cCH

4µR2
eq

t



. (27)

The characteristic relaxation time is

τ �
4µR2

eq

cCH

For t much greater than τ the tether is expected to be at equilibrium following a rigid-body
translation along the line of F . The material deforms to take the shape of a cylinder in the region
to the left of point “b” in Figure 1, which is approximately fixed in space (the “beginning” of
the tether). Once the material enters the tether it simply moves at constant velocity along it. The
“end” of the tether (point “e”) moves at a constant velocity V determined by a balance between
the applied force and the viscous stresses at the connection region between the tether and the
membrane body.

Numerical simulations were performed pulling a small parcel of an originally spherical mem-
brane of radius 1. The adopted constants were cCH � 10�3, µ � 1 and F � 2π. This corre-
sponds to Req � 10�3, πs,eq � �500 and τ � 0.004. The friction coefficient β was set to 10�2

everywhere except at the bottom of the sphere, where it was set to 100 to serve as a fixation.
The time step variable, computed from

δt �
hnmin

10}unh}max

,

where hnmin is the minimum edge length at time tn and }unh}max the maximum absolute velocity
at time tn.

A sequence of snapshots of the geometrical evolution can be seen in Figure 2, where the
colours are assigned to the surface according to the local mean curvature κh, for times t �
1.2�10�2, 2.9�10�2, 4.7�10�2 and 5.5�10�2. Notice that the simulation time corresponds to
approximately 14τ , so that an equilibrium tether is expected by the latter times of the simulation.

The profile of the tether as reconstructed from the surface mesh at several instants (once the
tether is formed) can be observed in Figure 3. The obtained tether clearly is tending towards its
analytic equilibrium value of Req � 10�3. Further, in Figure 4 we plot Rptq � Req as a function
of time as obtained from the 3D simulation for two different values of the viscosity, µ � 1
and µ � 2. The two runs were started from an initial condition which already had an incipient
tether and the simulation time was reset to zero, so that the time axis of Figure 4 does not
correspond to the instants shown in Figure 3. The relaxation curves in Figure 4 are compared
to the exact solution of (25), as obtained by numerical integration with a very small time step.
The agreement of the overall dynamics of the 3D tether with the exact solution of the idealized
cylindrical tether is quite remarkable, indicating that the fundamental relaxation processes are
adequately captured.
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Figure 2: Snapshots of the simulation result. The tether can be identified after t � 0.029.
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Figure 3: Profile of the simulated tether at several instants. Notice how a cylindrical region with R � Req sponta-
neously develops.
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Figure 4: Snapshots of the simulation result. The tether can be identified after t � 0.029.

The surface tension πh at time t � 0.0557 is shown as colours on the surface in Figure 5. It
can be seen that practically all the cylindrical region has πh � πs,eq, as expected.
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Figure 5: The surface tension πh at the final time. The white lines correspond to the contour πh � �500, which
coincides with the equilibrium value πs,eq.

Figure 6 shows three snapshots taken at different times from a simulation where the dis-
crete surface is left without any remeshing strategy during several hundreds of time steps. It is
clear from the pictures that the large deformation process rapidly takes its toll on the surface
triangulation if sufficient care is not taken.
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Figure 6: Degradation of the mesh quality if no remesh operation is performed.

6 CONCLUSIONS

In this contribution, we have introduced a fully discrete semi-implicit finite element scheme
for the simulation of viscous membranes with bending elasticity of the Canham-Helfrich type.
The scheme has been applied to the phenomenon of tether formation. The first preliminary
results reported above are encouraging as compared to analytical results of an idealized cylin-
drical tether. Still, the algorithm exhibits some type of weak instability that makes it mandatory
to use quite small time steps and frequent remeshing. Further investigations are under way to
increase the robustness of the method.
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