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Abstract.
The latest version of the Particle-Finite Element Method (PFEM), which incorporates the novel

explicit integration strategy named eXplicit Integration of Velocity and Acceleration following
Streamlines (X-IVAS), has proven to be fast and accurate to solve homogeneous flows, mainly thanks to
the possibility of using large time-steps. In this work the extension of this strategy to solve multiphase
flows is presented, where the calculation of the interface evolution is of fundamental importance.

In Eulerian formulations, one of the most used strategies to determine the interface position is the
advection of an indicator function. This approach is followed, by example, in the Volume of Fluid (VoF)
technique, which can add limiters as a method of guaranteeing boundedness and/or sharpness of phase-
fractions. On the other hand, Lagrangian frames use typically marker particles. In the case of PFEM, the
same set of particles transported for flow calculation allows to carry a marker function to determinate the
interface position without any extra cost. In order to compare the accuracy of PFEM interface evolution
strategy with the Eulerian one implemented in the widely used OpenFOAM®suite, several classical tests
are presented.

In addition to capture the sharpen interface evolution, PFEM algorithm includes the use of an enriched
finite element space to avoid spurious solutions due to the discontinuity of pressure gradients, which also
requires some changes in the streamline integration strategy. The description of those improvements are
also presented in this work. Finally the PFEM algorithm is tested for a number of problems involving
free surface flows with different ratio between the densities and viscosities of the fluids involved. The
accuracy of the results are compared with reference ones, focusing in the capability of using large time-
steps in contrast with Eulerian solvers, including those with implicit phase-fractions advection treatment,
represented by the OpenFOAM®suite.
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1 INTRODUCTION

The efficient solution of multi-phase flows is still an open challenge. Although the dynamics
of single phase flows are well understood and can be solved accurately without loss efficiency,
the computational modeling of two or more phases is a underdeveloped field with growing
interest. In multi-phase flows the most important stage is the calculation of the interface
evolution (Hieber and Koumoutsakos, 2005). Discontinuities of the fields or of its gradients
often introduce numerical problems at the internal interfaces, therefore it is essential calculating
accurately the interface position and this critical zone must remain sharp (Coppola-Owen and
Codina, 2005).

In the Eulerian strategies to solve multiphase problems, a widely used tool is the Finite
Element Method (FEM). However standard FEM is incapable of being accurate since no
discontinuity is allowed in the shape functions field. An alternative to overcome this limitation is
to use Enriched Finite Elements, which adds degrees of freedom to elements that are cut by the
interface in order to capture the part of the solution that escapes from the standard shape function
field. Coppola-Owen and Codina (Coppola-Owen and Codina, 2005) proposed a simple
enrichment function that is capable of capturing accurately gradient discontinuities, while that
to capture discontinuities in the value of the unknown Ausas (Ausas et al., 2012) proposed a set
of three enrichment functions that are able to capture both a gradient discontinuity and a jump in
the field. Another option in the Eulerian framework is the Finite Volume Method (FVM), which
is more widely used than the FEM for fluid dynamics. Its discretization leads to a formulation
conservative on the fluxes, unlike FEM.

Once a strategy to solve the fluid dynamics has been selected, an accurate and efficient
computational methods to describe the evolution of interfaces must be chosen. There are two
methodologies to do this work, namely: interface capturing and interface tracking methods.
Purely Eulerian algorithms use capturing methods: in this approach the interface is determined
by an implicit function that is advected through the computational domain. Popular methods of
this type are the Level Set Method (LSM) (Osher and Sethian, 1988), which have become
widely used when the interface undergoes extreme topological changes, e.g. merging or
pinching off; and the Volume of Fluid (VoF) technique (Hirt and Nichols, 1981), which is
widely implemented in the FVM. The LSM consist of using a distance function that is convected
according to the fluid velocity. This function represents the distance from a point to the
interface. By definition, the interface will be located where its value is zero. The main drawback
is that the level set function field degrades when advancing in time and after some time steps a
reinitialization of the level set must be done to guarantee accuracy on the interface capturing.
On the other hand, VoF defines a function that is the fraction occupied by one of the phases in
each cell of the domain. Once this phase-fraction has been advected along the entire domain,
the interface position can be reconstructed. The FVM is very robust and is likely to be the most
used one in commercial/widespread codes. As an example of application, OpenFOAM®(Weller
et al., 1998) uses this strategy to solve multi-fluid problems. Completing with purely Eulerian
approaches, coupled strategies as CLSVoF (Sussman and Puckett, 2000) are used to overcome
the problems that appear when the interface develops structures whose length scales are smaller
than those afforded by the Eulerian mesh.

Formulations clustered in the Lagrangian framework are a more natural choice for
simulations where there are large deformations. Using particles that are advected carrying
its own properties over the domain, they are able to almost avoid the numerical diffusion.
Also, the Lagrangian perspective makes it possible to use a material derivative formulation
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where the absence of the non-linear convective term transform the Navier-Stokes system
into a transformed linear coupled problem. However, most of Lagrangian formulations
have the uncomfortable drawback of requiring a particle position treatment: search
algorithms, evaluation of the mesh distortions or the re-meshing processes, which are always
computationally expensive, and it would be interesting to explore the possibility of avoiding
those steps.

The original idea with Lagrangian frameworks, proposed by Monaghan (Gingold and
Monaghan, 1977) and later works applied to fluid mechanics (Monaghan, 1988), was a explicit
meshless method named Smoothed Particle Hidrodynamics (SPH) which was strongly limited
by the Courant number. Evolutions start to include mesh calculations to solve implicit systems,
being one of the most known the Particle Finite Element Method (PFEM) (Idelsohn et al.,
2004). The PFEM consist of using a set of particles that define the nodes of a finite element
mesh. Since fluids have no deformation limit, remeshing must be done at each time step.

Alternatives, as PFEM, that combines both Eulerian and Lagrangian tools, have shown to be
a choice respect to pure methods. In the work of Enright et al. (Enright et al., 2002) a pure
Eulerian solver for the fluid is used, but Lagrangian marker particles are used to improve the
LSM, then the interface tracking. On the other hand, combining the original idea of Particle
in Cell (PIC) (Evans et al., 1957) where a fixed mesh is used to calculate forces and pressures
and moving particles to convect properties (which avoids the remeshing), and improving the
particle integration following the fluid streamlines, recently has born the so-called PFEM-2
method (Idelsohn et al., 2012, 2013). In addition, using an improved explicit integration named
X-IVAS (eXplicit Integration following the Velocity and Acceleration Streamlines), there is
no limitation in the time step, being the required precision the only bound for the time-step
(Gimenez et al., 2014). The enhanced PFEM-2 version to solve multiphase problems, presented
in (Idelsohn et al., 2014), also includes enrichment strategies to capture discontinuities.

In this work a review of PFEM-2 for multiphase systems will be presented in Section
2.1. In Section 2.2 a brief explanation of the OpenFOAM®strategies for two-phase problems
will be shown. In Section 3, the results show a comparison of the accuracy of PFEM-2
interface evolution strategy with the one implemented in the widely used Eulerian suite. On
the other hand, in Section 4, PFEM-2 is tested for a number of problems involving free
surface flows with different ratio between the densities of the fluids involved. The accuracy
of the results are compared with reference ones, focusing in the capability of using large time-
steps in contrast with Eulerian solvers, including those with implicit phase-fractions advection
treatment, represented, again, by the OpenFOAM®suite.

2 BRIEF DESCRIPTION OF THE NUMERICAL METHODS

2.1 PFEM-2 for multi-phase flows

The PFEM-2 method is an efficient and accurate methodology to simulate numerically
the dynamics of a flow of two immiscible fluids. In the particular case of using one fluid,
the methodology still holds. The governing equations are the incompressible Navier-Stokes
equations for both fluids, which are supplemented with the conventional boundary conditions
on solid and/or open boundaries. The equations written in a Lagrangian framework are:

∇ · v = 0 (1)

ρ
Dv

Dt
= −∇p+ µ∇2v + f (2)
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Here v, p are the velocity and fluid pressure and f is a external body force (usually gravity
ρg and/or inertial force).

Similarly to other Navier-Stokes algorithms, a classical fractional-step scheme is employed,
which consists on three main stages: predictor, Poisson equation and correction. Since the use
of a hybrid domain discretization, with a fixed background mesh and a cloud of particles, the
predictor step is divided in four sub-steps:

1. An acceleration calculation stage over the mesh.

2. The X-IVAS stage to convect the fluid properties using the particles.

3. The projection of the particle data to the mesh nodes.

4. The implicit calculation of the diffusion term.

The predictor step ends with a predicted velocity v̂n+1 on the mesh. After that, a Poisson
equation to find the current pressure pn+1 is solved. Finally, the velocity prediction is corrected
to find the zero divergence field vn+1.

There are several, albeit small, differences between the PFEM-2 algorithm for homogeneous
flows and the two fluid version. Those differences stem from the density and viscosity
discontinuities that appear in the fluid, consequently most of the changes implemented are
related to the strategies devised to correctly capture the interface between both fluids. An in
deep description of these changes can be found in (Idelsohn et al., 2014), being possible to
mention three main improvements, namely: the kinematic treatment of the fluid particles during
the X-IVAS stage, the enrichment technique for the free-surface definition and the pressure
computation step.

Regarding to interface evolution simulation, each particle p carries the information of the
fluid to which it was initially assigned. This quantity, represented by a scalar function λp,
has integer values −1 or 1 depending if it belongs to the first or second fluid. This value is
advected, adding one equation to the X-IVAS Stage: Dλ

Dt
= 0, i.e. each particle keeps its marker

value during the entire simulation. This function is projected to the mesh nodes to determine
the free-surface position, which is defined as the set of points that satisfy the equation λ = 0.
This strategy, which almost does not include extra computational work to compute the interface
evolution, is based on the LSM, with the advantage of not being necessary to restart the distance
function.

As it was mentioned, interpolation errors on the interface in the pressure and its gradient due
to the density jump give rise to spurious velocities that can render the solution meaningless.
To reduce these errors, enrichment methods, which add degrees of freedom to elements that
are cut by the interface, are employed. In the Figure 1 the enriched element and an enhanced
integration, which cuts the elements into sub-elements, are presented.
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A B 132 A B 132
Figure 1: 2D interface element. The interface is calculated cutting the element at the segment
A− B. An enriched shape function used in PFEM-2 (left) and the partition of the triangle into
three sub-triangles with its own Gauss points to enhace the integration (right).

Finally, the Algorithm 1 presents the current PFEM algorithm to solve incompressible fluids
with two different densities.

2.2 Volume of Fluid solver in OpenFOAM®

In the OpenFOAM®case, the solver interFoam is chosen, which implements a Volume
of Fluid (VoF) algorithm for multiphase flow (Berberović et al., 2009). It includes the multi-
dimensional limiter for explicit solution (MULES) as a method of guaranteeing boundedness
of scalar fields, in particular phase/mass-fractions (more information about MULES can be
found in (Márquez Damián, 2013)). Since OpenFOAM® version 2.3, a new semi-implicit
implementation of MULES is introduced which combines operator splitting with application
of the MULES limiter to an explicit correction rather than to the complete flux. This approach
allows for boundedness and stability at an arbitrarily large Courant number.

3 INTERFACE EVOLUTION TESTS

3.1 Rigid Body Rotation of Zalesak’s Disk

This test consists in the advection of a region composed of a circle with a slot (Zalesak,
1979). If the interface track is accurate enough, after several revolutions, the shape must remain
identical. The computational domain employed is Ω ∈ R2 : [0; 100] × [0; 100]. The advected
region is a circle centered at (50; 75) with a radius of 15 and a slot of width 5 and height 25.
The velocity field is a rigid body rotation around the center of the domain with a period of 628
time units:

u = (π/314)(50− y), (9)
v = (π/314)(x− 50) (10)

The grid has 100 points in each direction, conforming a cartesian mesh (in the case of PFEM
simulations the mesh was split into 20000 triangles). The Courant number used in simulations
is aproximately CFL = 4.5. The initial field and after two revolution are shown on Figure 2. In
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Algorithm 1 - Time-Step PFEM-2 for two immiscible and incompressible fluids.

1. X-IVAS Stage: 
xn+1
p = xnp +

∑N
i=1 v

n(x
n+ i

N
p )δt̂̂vn+1

p = vnp +
∑N

i=1 f
n(x

n+ i
N

p )δt

λn+1
p = λnp

(3)

2. Projection Stage: 
̂̂vn+1

j =

∑
p
̂̂vn+1

p W (xj − xp)∑
pW (xj − xp)

λn+1
j =

∑
p λ

n+1
p W (xj − xp)∑
pW (xj − xp)

(4)

3. Implicit Viscosity Stage:∫
Ω
v̂n+1
j ψj dΩ =

∫
Ω

̂̂vn+1

j ψj dΩ + θ∆t

∫
Ω
µ(x)∇2v̂n+1

j ψj dΩ (5)

4. Pressure-Correction Iterations:
set vnj = v̂n+1

j

for k=1 to K

(a) Poisson Stage:∫
Ω
∇ ·
[

∆t

ρ(x)
∇(δp(n+ k

K
))

]
φj dΩ =

∫
Ω
∇ · v(n+ k−1

K
)

j φj dΩ (6)

(b) Correction Stage:∫
Ω
ψρ(x)v

(n+ k
K

)

j dΩ =

∫
Ω
ψρ(x)v

(n+ k−1
K

)

j dΩ

−∆t

[∫
Ω
ψ∇(δp)

(n+ k
K

)

j dΩ +

∫
Ω
ψ∇(δp∗)(n+ k

K
) dΩ

]
(7)

end for

5. Particle Correction Stage:

ρpv
n+1
p = ρp̂̂vn+1

p +
∑
j

δvn+1
j ψj(x

n+1
p ) (8)
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the case of PFEM simulation, approximately five particles by element were used. Most relevant
OpenFOAM®settings are: SuperBee SuperBee as the divergence scheme for the linear term
in volume fraction advection equation, MULES as the time integration scheme, the number
of alphaSubCycles is 20 (to guarantee interface Courant number less than 0.5) and the
interfase-compression factor cAlpha is set to 1.

Figure 2: Zalesak’s disk results after two full revolutions with 100 grid point per direction and
CFL = 4.5. The grey region represents the initial condition.

PFEM evolution shows a good agreement with the expected result (shape preservation).
Some small errors, which are more evident when the magnitude of velocity is higher,
appear due to approximate a curve with a sequence of straight trajectories. Even though
in OpenFOAM®simulation the interfase-compression method combined with the advetion
scheme avoids numerical diffusion, they modify the disk shape excessively, finishing in a poor
prediction of the final status.

3.2 Single Vortex Case

While Zalesak’s disk test is a good indicator of numerical diffusion in an interface-capturing
method, it does not test the ability to preserve small scale structures of the fluid flow. A well
known test to evaluate the ability of the method to solve structures of different sizes and their
evolution is given by the vortex-in-a-box problem introduced by Puckett et al. (Puckett et al.,
1997). The difficulty of this tests is that requires the solution of an interface stretching problem.
The computational domain is Ω ∈ R2 : [0; 1] × [0; 1], where the interest region is a circle
centered at (0.5; 0.75) with a radius of 0.15, advected with a velocity field defined by the stream
function

ψ(x) =
1

π
sin2(πx) sin2(πy) cos(

πt

T
)

being the velocity components

u = ψx = sin2(πx) sin(2πy) cos(
πt

T
)

v = −ψy = − sin2(πy) sin(2πx) cos(
πt

T
)

Mecánica Computacional Vol XXXIII, págs. 387-405 (2014) 393

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The grid has 256 points in each direction, and the Courant number used in simulations is
aproximately CFL = 4.8.

The setting employed for each numerical method in this case is almost equal to the previous
test, with the only one difference that in OpenFOAM®the interfase-compression factor cAlpha
is set to 0.25 to give more stability through relaxing in some level the strong sharpness
imposition. Using a larger factor, the simulation turns unstable. PFEM-2 t=TOpenFOAM t=Tx
Figure 3: Single vortex test using 256 grid points per direction and CFL = 4.8 (T = 8). Grey
region represents the initial condition.

The results presented in the Figure 3 shows, in PFEM, good agreement with the expected
result (shape preservation) after the cycle. Although the first half of the evolution is well
captured by OpenFOAM®, the reconstruction of the original shape is not good.

4 TWO-PHASE TESTS

4.1 Non-linear sloshing in a rectangular container

When big amounts of liquid are transported, the sloshing phenomenon produces violent
impacts of the fluid which can affect the structural integrity of the container. This case is widely
used as an evaluation test of a two-phase numerical method. Typically, the density of the upper
fluid is several orders of magnitude less than the bottom one, however the same numerical
method must also keep accurate when the density jump is not too large.

For studied cases in this section, the sloshing phenomenon is produced by a horizontal
harmonic excitation x = ah sin(ωht), where ah is the excitation amplitude and ωh is the
excitation frequency of the rectangular tank where the two fluid phases are contained. The
tank is divided in two parts, the bottom part is water with a density of ρI = 1000 [kg/m3] and
the top part contains a fluid with different densities ρII = 1.3, 50, 200, 800 [kg/m3], depending
on the studied case. The dimensions of the tank are a (width) by b (height) and the initial free
surface is at height h from the bottom of the tank, see Figure 4. The free surface starts the
simulation as a horizontal line and is subsequently deformed by the tank excitation and the flow
dynamics.

For the different cases in this work, a 2D rectangular tank a = 1.0 [m] width by b = 1.0 [m]
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Figure 4: Configuration of the Non-linear sloshing in a rectangular container case. Initial
condition is represented by dashed line. Continuous line represents the position of the free-
surface for a certain time.

height is used. The initial height of the interface is h = 0.5 [m] and the lateral excitation applied
is x = 0.05 sin(3t). The simulations were performed considering the flow as laminar and non-
viscous, hence no turbulence model was used and slip boundary conditions are taken. The
density ratio σ = ρII

ρI
was modified to study the density influence on the free surface evolution.

A two dimensional Cartesian mesh of 450 × 225, splitted into triangles in the case of PFEM,
has been used in all cases.

Reference results for this case are taken from (Gómez-Goni et al., 2013) which uses the
codes STARCCM+ and OpenFOAM® (both implementing the VoF strategy) to obtain numerical
solutions and reports the free surface displacement on the left wall of the container. Those
simulations use the same grid as presented above, but, in order to avoid numerical instabilities,
the CFL number was limited to CFLmax = 0.5 which implies ∆t ≈ 0.001. In PFEM-2
simulations such restrictions do not exist, then ∆t is fixed to 0.01, reaching CFLmax ≈ 5.
Figure 5 presents the free surface displacement reported on the left wall of the container for
different density ratios. For each one of them, PFEM-2 simulations show a good agreement
with reference solutions. It is worth mentioning that the time step used is around ten times
bigger than the one used in the reference work.

4.2 Rayleigh-Taylor Instability

This problem consists on the evolution of two layers of fluids initially at rest in the gravity
field. The density of the fluid placed at the top is larger than the one placed at the bottom. Due
to a little disturbance in the contact surface the more dense fluid goes down and the less dense
fluid does the opposite. During the evolution of the problem a mixture is created, which is lately
segregated. The final state reaches an stable equilibrium with the more dense fluid at the bottom
layer and the less dense fluid at the top layer. The growth and evolution of the instability has
been investigated among others by Tryggvason (Tryggvason, 1988) for inviscid incompressible
flows, and by Guermond & Quartapelle (Guermond and Quartapelle, 2000) for viscous flows.

The starting point is the problem documented by Guermond. The computational domain
is [−d/2, d/2] × [−2d, 2d] and the initial position of the perturbed interface is η(x) =
0.1 d cos(2πx/d). The density ratio is 3, which corresponds to an Atwood number of 0.5
according to Tryggvason’s definition At = (ρmax − ρmin)/(ρmax + ρmin). Other physical
parameters are selected to obtain a Reynolds number Re = ρmind

3
2 g

1
2/µ = 1000. The
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(a) (b)

(c) (d)

Figure 5: Level of height on the left wall for a two phase flow for different density ratios. Figure
5a: σ = 0.0013, Figure 5b: σ = 0.05, Figure 5c: σ = 0.2 and Figure 5d: σ = 0.8. References:
# STARCCM, 2 OpenFOAM and filled line PFEM-2.

computational domain is discretized into 80, 000 structured triangles (∆x = 0.01) setting slip
boundary conditions on each wall. Time step selected is ∆t = 0.01, which allows to reach
CFLmax ≈ 8. Between five and eight particles per element are used and two pressure iterations
are required.

To compare with reference results, the time is made dimensionless by using t̃ = t
√
g At.

Results on the vertical position of the tip of the falling and rising fluid (spike and bubble,
respectively) are shown in Figure 6. It can be observed that current solution is in good agreement
with the reference results.
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0,0 0,2 0,5 0,8 1,0 1,2 1,5 1,8 2,0 2,2time−1,50−1,25−1,00−0,75−0,50−0,250,000,250,500,751,00position GuermondTryggvasonPFEM-2
Figure 6: Position of rising and falling bubbles versus time. Case with Re = 1000.

4.2.1 Extending the time step

In order to make emphasis in the capability of the method to manage large time-steps, the
current case is also simulated with a large range of ∆t using the in-house implementation of
PFEM and comparing with results obtained by the widely known suite OpenFOAM®. The
problem setup and domain discretization is the same as presented above and the PFEM settings
are preserved.

In the OpenFOAM®simulation, the following schemes have been for the momentum equa-
tions: CrankNicolson (second order, implicit) time integration, Gauss linear (second
order, Gaussian integration with linear interpolation) discretization for the gradient, divergence
and Laplacian operators (corrected with two nNonOrthogonalCorrectors due to the
triangular mesh, for the later). Relevant VoF settings are: nAlphaSubCycles is set in order
to keep the CFL of the sub-cycling around 0.5, cAlpha= 0.25 to give more stability through
relaxing in some level the strong sharpness imposition, and MULESCorr and MULESCorr is
enabled to integrate the phase fraction equation in a semi-implicit way.

Table 1 presents the comparison of the solutions with PFEM and OpenFOAM®at a particular
time (t̂ = 2.25) using several fixed time-steps (with the largest time-step a CFLmax = 15 is
reached). From the figure, it is possible to assure that PFEM keeps approximately the same
solution for all time-steps, but interFoam can not solve the problem with any accuracy using
∆t > 0.001 because the evolution of the mushroom-like interface differs form the reference
results and the differences increase with large time-steps. Moreover, each simulation of each
simulation of interFoam diverges when CFLmean > 0.5 is reached (this happens at different
times, depending on selected time-step).
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∆t [s] OpenFOAM® PFEM-2

0.001

0.0025

0.01

0.025

Table 1: Rayleigh-Taylor instability captures for t̃ = 2.25. OpenFOAM®simulation
implements VoF+MULES simulation (interFoam solver).

Another relevant feature to take into account is that similar CPU times are required to solve
a time-step when both algorithms are compared. Table 2 summarizes the CPU Times required
to complete 1[s] of real time in the current case. Results show that using the same time-step
both solvers have similar performance, being OpenFOAM®faster. However, due to capability
of time-step enlargement of PFEM, it achieves shorter CPU times with similar solutions.

Solver ∆t CPU Time
OpenFOAM® 0.001 1121[s]

PFEM 0.0025 1011[s]
PFEM 0.01 288[s]
PFEM 0.025 123[s]

Table 2: Total computing times to simulate 1[s] of real time of the 2D Rayleigh-Taylor
instability, running over an Intel i5-3230M CPU @ 2.60GHz with a 8Gb RAM in one processor.

4.3 Towards a simulation of a Jet Atomization

Liquid atomization is an important process which found interest in several engineering
applications such as aerospace propulsion systems, automotive engines, food processing, and
ink-jet printing. Its numerical simulation allows to investigate physical processes of the
atomization because our understanding on physical mechanisms of such phenomena is still
not sufficient. Our investigation group is doing its first steps in this research area and we report
in this work our early results using the tools presented above.

The main properties of the case analyzed are the following: the size of the domain is
(2.1[mm], 0.3[mm], 0.3[mm]), where the first dimension is the streamwise direction and the
other two, the spanwise directions. At the injection level, the jet diameterD is equal to 0.1[mm],
while the liquid jet Reynolds number is equal to Re = 4659. A summary of the physical
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parameters, for this configuration, can be found in Table 3. Also, the geometry and boundary
conditions are presented in the Figure 7. Boundary condition over borders is slip, over bottom
velocity zero gradient and pressure equal to zero with alpha inlet-outlet where α = 0 to entering
flows is imposed. Top boundary has two patches: on inlet a mean inlet of Ûz = −100[m/s] is
imposed and over wall no-slip condition is set.

Parameter Symbol / Unit Value
Gas density ρg [kg/m3] 25

Liquid density ρl [kg/m3] 696
Gas viscosity µg [kg/m s] 1× 10−5

Liquid viscosity µl [kg/m s] 1.18× 10−3

Surface Tension Coefficient σ [N/m] 0.06
Injection Diameter D0 [µm] 100

Mean flow rate velocity Parameter Ud [m/s] 79
Liquid Reynolds Rel 4659

Liquid Weber Wel 7239
Turbulent Intensity u′u′/U2 0.05

Turbulent Scale Lt [m] 0.1D0

Table 3: Simulation parameters.

As a first reference result, we can cite the work of Menard and co-workers (Ménard et al.,
2007; Chesnel et al., 2011), which employ the LSM to track the interface added to the Ghost
Fluid Method (GFM) to describe the interface discontinuites and manage the pressure, density
and viscosity jumps. Also, the Level Set method is coupled with the Volume of Fluid method
(VoF) to ensure mass conservation. The mesh used by Menard in (Chesnel et al., 2011) is
a 2048 × 256 × 256 Cartesian grid with regularly spaced nodes (∆ = 1.17[µm]). Liquid
surface instabilities close to the injector are visible. Their deformation leads to the formation
of ligaments and droplets of various sizes. At the end of the domain, the liquid core has almost
disappeared and a dense spray of droplets leaves the computational domain. The key of the
quickly drop production is the use of a space-time correlated turbulent flow at the inlet: Menard
uses a syntetized correlated turbulence with a method proposed by Klein (Klein, 2003). In the
work of Desjardins (Desjardins et al., 2008), the author employes a forerunner simulation to
impose the inlet turbulent boundary condition, obtaining similar results to the above mentioned.
Both works have a relevant conclusion: by the end of the computational domain, the liquid core
has been fully disintegrated.

Another approach in the numerical characterization of jet atomization is reported by Shinjo
in (Shinjo and Umemura, 2010, 2011). In his work, the author reports that the grid resolution
used by Menard was coarse for the chosen Reynolds and Weber numbers, so this was not a
direct numerical simulation in a true sense: the produced ligaments and droplets did not exhibit
smooth shapes or wave dynamics driven by surface tension, but the overall liquid jet motion
was captured in that simulation. Figure 9b shows the results obtained by Shinjo solving with
a mesh with 400 million of cells (∆ = 1.5[µm]) with a domain of 21.7 × 8.0 × 8.0[µm]. The
ligament drop is done far from the inlet: the main responsible is the plain velocity front at the
inlet imposed by Shinjo instead of using a turbulent-induced flow (Trinh and Chen, 2005).

Our initial simulations using the algorithms presented above (PFEM-2 and interFOAM)
show some similarities with both results, depending on the inlet condition imposed. It must be
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borders bottom wallinlet 2.1mm0.3mm
Figure 7: Geometry and boundary conditions for the case of the 3d jet.

taken into account that in the most refined case simulated with OpenFOAM®, the geometry was
meshed with a cartesian grid of 128×128×1024 (∆x ≈ 2.3[µm]), while the PFEM simulations
has a ∆x ≈ 7.5[µm] (7 millons of tetrahedra), far from the refinement degree used in reference
works.

Figure 8 shows a comparison between our simulation with our minimum reachable mesh-size
compared with Shinjo reference results. In this simulation a plain flow is imposed at the inlet.
The picture shows that the droplet formation and the like-mushroom shape are comparable, but
the minimum drop size is better described using a finer mesh. In that figure also appears the
results obtained with PFEM-2, showing the need for a refined mesh, but also demonstrating the
potential of the methodology to solve this type of problems.

Figure 8: The overall flow structure for each case solving with a mesh ∆x = 2.3[µm] using
OpenFOAM®and compared with Shinjo (Shinjo and Umemura, 2010) which uses a mesh with
∆x = 0.35[µm]. The color indicates the axial velocity in [m/s].
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(a)

(b)

(c)

Figure 9: Overall shape of the liquid jet atomization with: 9a OpenFOAM®in a finer mesh
∆x = 2.3[µm], 9b reference by Shinjo with ∆x = 1.5[µm] and 9c PFEM in a coarse mesh
∆x = 7.5[µm]. Figures correspond to iso-surfaces of α = 0.5.

4.3.1 Vortex-Method

As it was mentioned, the fluid behavior within the domain is determined in large part by
the inlet behavior. In the primary jet breakup case, the solution presented by Menard is really
different from the fluid evolution reported by Shinjo, being the main responsible the heavy-
phase inlet condition. Then, in order to obtain a more realistic behavior of a fully developed
flow in an unsteady simulation it is necessary to introduce turbulent velocity time histories at
the inlet boundary conditions. In this work, the 2D vortex method (Sergent, 2002) is employed
as a turbulence synthesizer to generate a space-time correlated inlet flow.

The 2D vortex method is based on the modification of the velocity field normal to the
streamwise direction: a transverse perturbation is added on a specified mean velocity profile via
a fluctuating vorticity field calculated from the specified mean turbulent kinetic energy, k. The
vortex method is based on the Lagrangian form of the 2D evolution equation of the vorticity:

d~ω

dt
= ~ω · ∇~u+ ν∇2~ω (11)

where ν is the kinematic viscosity. A particle discretization is used to solve this equation.
These particles, or vortex points are convected randomly and carry information about the
vorticity field. If N is the number of vortex points and A is the area of the inlet section, the
amount of vorticity carried by a given particle i is represented by the circulation Γi and an
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assumed spatial distribution η:

Γi(x, y) = 4

√
πAk(x, y)

3N [2 ln(3)− 3 ln(2)]
(12)

η(~x) =
1

2πσ2

(
2e−|x|

2/2σ2 − 1
)

2e−|x|
2/2σ2

(13)

where k is the turbulence kinetic energy. The parameter σ ≈ C
3/4
µ k3/2

ε
provides control over the

size of a vortex particle. The vorticity at a position ~x = (x, y) on the inlet patch generated by
the sum of all vortex points i = 1..N is given by

~ω(x, y) =
N∑
i=1

Γi(t)η(|~x− ~xi|, t) (14)

Finally, using the Biot-Savart law which relates the velocity to the vorticity, the resulting
discretization for the velocity field is given by

~u(~x) =
1

2π

N∑
i=1

Γi
((~xi − ~x)× ~z) (1− e|~xi−~x|2/2σ2

)

|~x− ~x′i|2
(15)

The figure 10 shows a comparison between Menard results and PFEM-2. The imposition
of induced turbulence at the inlet allows to PFEM-2 simulation to generate eddies and broken
structures near to the inlet zone, facilitating the atomization and liquid disintegration. However,
in order to reproduce accurately the drop size and another typical structures, more mesh details
is really required.

(a)

(b)

Figure 10: Liquid jet atomization. 10a reference case by Menard, 10b PFEM and vortex method
BC in the inlet, using a mesh with ∆x = 7.5[µm]. Figures correspond to iso-surfaces of
α = 0.5.
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5 CONCLUSIONS

In this work two different methodologies to solve two phase flows have been presented and
compared. The PFEM-2 method includes all the advantages of the Lagrangian strategies to
capture accurately the interface evolution, either purely advection and in two-phase problems.
The possibility of time-step extension gives to PFEM-2 more computational efficiency to
solve some problem: computing times were compared with the widely used FVM software
OpenFOAM®, and PFEM-2 has demonstrated being the fastest.

The last example of the jet atomization reveals the potenciality of both strategies for solving
that type of problems, being PFEM-2 a interesting alternative due to the capacity of longer
time-steps, and then, shorter CPU times. The main drawback in PFEM simulations is that the
strategy uses only tetrahedrical elements, requiring meshes with more elements. That must be
added to the need for more RAM memory to store all the particle data. Beyond the strategy
selected, the computational resources requirement to simulate accurately the drop formation
and ligament breakup largely exceeds the computing capacity available today in our research
group, however we expect run this cases in larger HPC clusters presenting the results in future
publications.
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