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Abstract. Previous results are generalized to consider multiple boiling channels systems. The analysis 

is consistent with the approximations usually adopted in the use of systems codes (like RELAP5 and 

TRACE5) commonly applied to perform safety analyses of nuclear power plants. The problem is 

related to multiple, identical, parallel boiling channels, connected through common plena. Flow 

splitting without reversal was computationally found and to explain this behavior a theoretical model 

limited in scope was developed. The unified analysis performed and the confirmatory computational 

results found are summarized in this paper. New maps showing the zones where this behavior is 

predicted are shown considering again twin pipes. Multiple pipe systems have been found not easily 

amenable for analytical analysis when dealing with more than three parallel pipes. However, the 

particular splitting found (flow dividing in 1 standalone pipe flow plus N-1 identical pipe flows) has 

been verified up to twelve pipes, involving calculations in systems with even and odd number of pipes 

using the RELAP5 systems thermal-hydraulic codes. Although not shown in this paper, results have 

been also generalized to consider the flow in systems of identical, parallel, condensing, inverted U-

tubes.  
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1. INTRODUCTION 

  

In nuclear power plants such as PWR, BWR or PHWR reactors, natural circulation is one 

of the mechanisms for decay heat removal after a transient or accident. In this type of 

installations multiple parallel tubes are a common system configuration. The complexity of 

the flow pattern may be exemplified by simply mentioning that after a very small break loss 

of coolant accident (SBLOCA), the natural circulation flow map go through different 

regimes, from single or two-phase natural circulation to reflux condensation regime, see e.g. 

D’Auria and Frogheri (2002) and Lazarte and Ferreri (2012). The main task is verifying 

whether those designs can avoid the development of instabilities in transients under nominal 

and postulated accident conditions or, also important from the point of view of nuclear safety 

evaluations, that system codes used for such safety evaluations are capable of capturing the 

instabilities threshold. There is plenty of consolidated literature on this subject and a recent 

review (Ruspini et al., 2014) confirms this assertion. The behavior of a set of parallel tubes or 

inverted U-tubes under natural or forced circulation systems in single and two phase flow 

with common inlet an outlet may become complex. It is well-known that these configurations 

can develop several types of instabilities, classified as static or dynamic. In the first case only 

steady-state conservation laws are required for instability prediction.  

In a previous study, see Lazarte and Ferreri (2014), the present authors analyzed steady 

asymmetric flow splitting coming from static instabilities in thermodynamic conditions 

representative of a SBLOCA in an integral test facility (SEMISCALE) that have steam 

generators with two different pipes which, for the sake of results symmetry checks were 

considered identical with average height. This lead to non-symmetric flow splitting. Because 

of this, twin channels systems have been considered in detail and the basic mechanism 

leading to the asymmetric flow splitting was elucidated, a map was constructed showing the 

conditions for such behavior and the approximate, theoretical results verified using the 

systems thermo-hydraulic code RELAP5. 

Other authors have studied flow rate distribution, see Minzer Minzer al. (2006) and 

Baikin et al. (2011) in very long evaporating parallel pipes and performed a stability analysis 

and the corresponding experiments related to solar energy collecting pipes.      

In this paper previous results from the present authors are extended with a unified 

analysis to consider multiple but still small (up to twelve) number of N identical boiling pipes 

systems. In this case, the possible flow splitting becomes even more complicated and above 

N=4 the behavior is studied through system codes. A peculiarity of the results is that under 

certain conditions, the splitting consists in a large fraction of mass flow in one pipe and the 

corresponding remaining fraction distributed in equal mass flow rate in the N-1 pipes. No 

reverse flow exists. The conditions for such a behavior has been established and represented 

in maps numerically computed with an in-house developed code and verified using thermal-

hydraulic systems codes, namely RELAP5 and TRACE5. However, reference to these results 

refers only to RELAP5. Not surprisingly, modification of simulation options (such as user 

options on models or numerical schemes) with the systems codes may lead to different 

predictions.  
 

 

2. TWO PARALLEL BOILING CHANNELS  

 

A typical single boiling channel has a characteristic curves as it is shown in Figure 1. 

Depending on operating conditions, the classical sigmoidal curve has a local minimum and a 

maximum that typically separates liquid and vapor single phases, respectively. In between, 

there is a two-phase flow region. The shape of the curve strongly depends on the relative 

contribution to pressure drop of gravitational, acceleration, form and friction effects. Plenty 
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of literature describes this curve and analyze the channel behavior depending on boundary 

conditions and may be found at Ruspini et al. (2014), Kakak and Bon (2008) and Kakak and 

Veziroglu (1983). For a constant inlet pressure, there could be one or three possible mass 

flow rates.  

Different approximations to analyze this problem are considered in what follows. 

  

 

Figure 1: Single boiling channel characteristic curve.  
 

2.1. Lumped parameter model  

 

Let us consider a single boiling pipe and homogeneous, equilibrium fluid model (HEM) 

as shown in Figure 2. Heat flux is uniform along the tube and three regions may be observed:  

liquid only, steam only and two-phase regions.  
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Figure 2: Single boiling channel.  
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The pressure drop along such a boiling channel (neglecting the vapor phase) can be 

written as: 
 

𝛥𝑃 =  𝑔 𝑍𝐵 𝜌𝑓 + 𝑔 (𝐿 −  𝑍𝐵 ) 𝜌𝑚 +
𝑘𝑖𝑊2

2𝐴2𝜌𝑓
+

𝑓 (
𝑍𝐵

𝜌𝑓
+

𝐿 −  𝑍𝐵 

𝜌𝑚
) 𝑊2

2𝐴2𝐷
+

𝑘𝑒𝑊2𝜙2𝜙
2

2𝐴2𝜌𝑓
 

(1)  

 

where ZB is the non-boiling length, 𝑊 is the mass flow rate, A is the channel area, g the 

gravity acceleration, L the channel length, f the friction factor (assumed constant in this 

analysis), ρf is the liquid density at saturation and ρm a mean density in the two phase region 

calculated at half outlet quality. Parameters ki and ke are the concentrated friction values at 

the inlet and outlet of the individual channels, respectively. 𝜙2𝜙
2

 is the two-phase friction 

factor depending on 
1)(  xvv fgf that acts as mixture density and equals 1.0 when the fluid is 

saturated with x = 0. Using the above definition for 𝜙2𝜙
2 , the mean density (ρm) in equation (1) 

is obtained dividing the saturation density ρf  by 𝜙2𝜙
2  evaluated at half outlet quality.  

Some useful (and commonly used) definitions are: 

 

𝑁𝑝 =
𝑄 v𝑓𝑔

ℎ𝑓𝑔v𝑓𝑊
,     𝑁𝑆 =  

∆ℎ𝑖𝑛 v𝑓𝑔

ℎ𝑓𝑔v𝑓
,      𝑁𝑓𝑟= 

𝑓𝐿

2D
 (2)  

where Np, NS and Nfr are the phase change, subcooling and friction dimensionless numbers; 

vfg, is the difference between the gas and liquid specific volumes and hf and hfg are the 

saturation and latent heat, respectively.  

Suppose now two parallel, identical (twin) channels and, hence, the pressure drop through 

then are equal; i.e. P1 = P2. It is well known that this system may have several stable 

solutions. This means, for equal pressure drop, different mass flow rate each tube. This is a 

static analysis.  

In several cases, the pressure drop along of the channel is assigned and kept constant as a 

boundary condition. However, in this case, the inlet mass flow rate and outlet pressure will be 

fixed. From mass conservation: 𝑊1 +  𝑊2 = 𝑊𝑇 (constant).  

Defining: 𝑁𝑝𝑀 =
𝑄 v𝑓𝑔

ℎ𝑓𝑔v𝑓𝑊𝑇
   and 𝑁𝑝𝑖 =

𝑄 v𝑓𝑔

ℎ𝑓𝑔v𝑓𝑊1
  and setting:  

 

𝜙 =
𝑊1

𝑊𝑇
      1 − 𝜙 =  

𝑊2

𝑊𝑇
 

then 
 

𝑁𝑝1 =   
𝑁𝑝𝑀

𝜙
  ,    𝑁𝑝2 =   

𝑁𝑝𝑀

1 − 𝜙
   

 

The dimensionless magnitude NpM is the phase change number corresponding to a 

channel with same imposed heat as the single channel but with the total system mass flow 

rate.  The channel non-boiling length  𝑍𝐵1 and  𝑍𝐵2 are defined as the positions at which the 

fluid becomes saturated, that is 
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 𝑍𝐵1  =
𝑁𝑠 𝐿

𝑁𝑝1
=

𝐿 𝑁𝑠 𝜙

𝑁𝑝𝑀
           𝑍𝐵2  =

𝑁𝑠 𝐿

𝑁𝑝2
=

𝐿 𝑁𝑠(1 − 𝜙)

𝑁𝑝𝑀
     (3)  

 

Each pressure drop term will be evaluated in what follows. Recall that the expression of 

∆P for channel 2 will be the same as for channel 1, exchanging 𝜙 by (1 − 𝜙). The friction 

term in (1), using the definition of the dimensionless numbers, reads  

 

∆𝑃1𝑓 =  𝑓
𝑊𝑇

2𝜙2

2𝐴2𝐷 𝜌𝑓
𝐿 (𝑁𝑠

𝜙

𝑁𝑝𝑀
+ (1 −

𝑁𝑠𝜙

𝑁𝑝𝑀
) (1 − 𝑁𝑠 +

𝑁𝑝𝑀

𝜙
)) + 

𝑘𝑖𝑊𝑇
2𝜙2

2𝐴2𝜌𝑓

+
𝑘𝑒𝑊𝑇

2𝜙2(1 − 𝑁𝑠 +
𝑁𝑝𝑀

𝜙 )

2𝐴2𝜌𝑓
 

(4)  

where 𝜙2𝜙
2  was replaced by 1 − 𝑁𝑠 + 𝑁𝑝𝑀𝜙−1.  

The gravity contribution, results, 

 

∆𝑃1𝑔 =  𝑔  𝑍𝐵1  𝜌𝑓 + 𝑔 (𝐿 −  𝑍𝐵1 ) 𝜌𝑚1 =  𝑔 𝑁𝑠 𝜌𝑓

𝜙

𝑁𝑝𝑀
+

𝑔 𝐿 (1 − 𝑁𝑠
𝜙

𝑁𝑝𝑀
) 𝜌𝑓

(1 − 𝑁𝑠 +
𝑁𝑝𝑀

𝜙 )

 (5)  

 

Once again, the value 𝜌𝑚1may be calculated at the half exit quality. Adding (5) to (7), the 

total pressure drop along channel 1 become  

 

∆P1 =  
𝑘𝑖𝑊𝑇

2𝜙2

2A2ρf
+

𝑘𝑒𝑊𝑇
2

𝜙2 (1 − 𝑁𝑠 +
𝑁𝑝𝑀

𝜙 )

2𝐴2𝜌𝑓

+ 𝑓
𝑊𝑇

2𝜙2

2𝐴2𝐷𝜌𝑓
𝐿 (𝑁𝑠

𝜙

𝑁𝑝𝑀
+ (1 − 𝑁𝑠

𝜙

𝑁𝑝𝑀
) (1 − 𝑁𝑠 +

𝑁𝑝𝑀

𝜙
)) 

(6)  

Pressure loss ∆P2 has the same expression as (6), (7) and (8) changing 𝜙 by 1 − 𝜙.Since 

∆P1 = ∆P2 then  

 

𝐺(1 − 𝜙) = ∆P1

𝐴2𝜌𝑓

𝑁𝑓𝑟  𝑊𝑇
2 =  ∆P2

𝐴2𝜌𝑓

𝑁𝑓𝑟  𝑊𝑇
2 = 𝐺(𝜙) 

(7)  

𝐺(𝜙) =  𝑘𝑖𝑚𝜙2 + 𝑘𝑒𝑚𝜙2 (1 − 𝑁𝑆 +
𝑁𝑝𝑀

𝜙
) + 2𝜙2 (

𝑁𝑆 𝜙

𝑁𝑝𝑀
+ (1 − 𝑁𝑠

𝜙

𝑁𝑝𝑀
) (1 − 𝑁𝑠 +

𝑁𝑝𝑀

𝜙
)) (8)  

 

For simplicity, kem and kim denote ke and ki divided by Nfr. The objective is to find the 

fixed points of the equation G(𝜙) – G(1 − 𝜙) = 0. In previous work by these authors (Lazarte  

and Ferreri, 2014), gravity terms were neglected simplifying the equation. The authors 

showed that the expression for pressure drop is a polynomial of degree three and the fixed 

points and a stability region can be obtained. However when gravity contribution is included, 

the following expression should be added to the function G () 
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𝑁𝑠𝜙

2𝐿𝑁𝑝𝑀𝐹𝑜2𝑁𝑓𝑟 
+

1

𝑁𝑓𝑟𝐹𝑜2

(1 −
𝑁𝑠𝜙
𝑁𝑝𝑀

)

(1 − 𝑁𝑠 +
𝑁𝑝𝑀

𝜙 )

 (9)  

 

where Fo is the Froude number defined as  

 

𝐹𝑜2 =
𝑣2

𝑔𝐿
=

𝑊𝑇
2

4𝐴2𝜌𝑓
2𝑔𝐿 

 (10)  

 

The velocity v is the inlet velocity and it was expressed as function of the total mass flow rate 

WT. The area corresponds to one channel flow area.  

When gravity is added to the pressure drop term, the function G() becomes more 

complex. Actually, the function may be represented by third degree polynomial plus the ratio 

between a linear and a quadratic function of . Therefore, at least five fixed points may be 

obtained and the obvious solution is = 0.5 (equal flow in each channels). On the contrary to 

case without gravity contribution, fixed points cannot be obtained in a closed analytical form. 

The above simplified model will be tested with numerical values depicted in Table 1 to find 

the stability regions and the characteristic curve for two twin parallel channels. Moreover, as 

it would be shown below, the stability map for multiple equal parallel tubes may be computed 

using just the same procedure for two tubes but considering a particular splitting or using 

expression coming from stability analysis. 

 

Nomenclature Value Variable / units 

D 0.0124 Inner channel diameter (m) 

ki 23 Inlet concentrated pressure losses (-) 

ke 5 Outlet concentrated pressure losses (-) 

f 0.01 Friction factor (-) 

L 3.66 or 12  Total length of the U-tube (m or ft) 

𝜌𝑓 739.86 Liquid saturated density (kg/m3) 

𝜌𝑔 36.6 Vapor saturated density (kg/m3) 

µ 9.46x10-5 Liquid Dynamic viscosity at saturation (Pa s) 

𝑊𝑖 0.1 Mass flow rate per channel i (kg/s) 

p 7 Absolute pressure (MPa) 

T 20ºC Inlet temperature (ºC) 

𝑄 125 kW Power delivered to each pipe. 

 

Table 1 Numerical values used in the calculations,  

like in Ambrosini and Ferreri (2006). 
 

 

 

2.2. Pressure drop characteristic curve for two parallel tubes 

 

As shown in Figure 1 above, depending on the external characteristic the system (a 

single boiling tube), may experiment different steady states. For instance, for a constant 

external pressure the system could have at most three mass flow rate, namely: Wi with i =1 to 

3. When two pipes are joined together, then up to nine steady states may arise, i.e.,  

         For channel 1:  W11, W12, W13  
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         For channel 2:  W21, W22, W23 

The nomenclature is: the first index identify channel number and the second the possible 

solution. For both channels connected to the same inlet and outlet plena:  

𝑊𝑇 = ∑ 𝑊𝑖𝑗

3

𝑖,𝑗=1

 (11)  

 

Then, at most 3N different mass flow rates with N the number of pipes. When the pipes 

are identical among them, several solutions are the same and can be disregarded. For two 

identical pipes, at most 6 possible solutions may be obtained.  

Straightforward application of the lumped parameter model considering the values shown in 

Table 1, allows obtaining the inlet pressure curve (constant inlet mass flow rate and outlet 

pressure. The procedure was:  

a) For each inlet pressure within a range, all possible mass flow rates are determined. 

b) Since both channels have the same mass flow rate, then for each inlet pressure the 

total mass flow rare is determined as the sum of individual channels mass flow 

(Figure 3). 

c) The inlet pressure is plotted for each mass flow as it is shown in Figure 3  

 

 
Figure 3: Pressure drop characteristic curve for two parallel 

channels. 

 

Figure 3 shows a typical “∞” shape. For large and small mass flow rate the system 

behaves as one single channel working with a single phase fluid (liquid or vapor). In between 

there is a complex region showing interaction and feedback between channels (between 

points A and B). Since, both pipes are identical then the numbers of mass flow possible states 

are less than 9; as it was stated above, for a constant inlet pressure (dotted line in the figure) 

there are 6 possible solutions. The shape of the curve depends on the characteristic curve of 

each channel, which in turn is a function of friction losses and heat flux delivered to the fluid.  

Recalling that the fraction of flow splitting  = W1/WT, a flow splitting map as function of 

the total mass flow rate is depicted in Figure 4. 
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Figure 4 Flow splitting in twin parallel channels as a function 

of total mass flow rate. Results from lumped parameter model 

and parameters values from Table 1 
 

In Figure 4 it may be observed that as the mass flow rate decreases from 0.2 to 0.16 kg/s, 

three possible states appear. Two of them correspond to symmetric flow splitting. The total 

flow rate at which flow splitting begins coincides with the position at which the derivative of 

the pressure drop curve changes the sign (at A and B). 

 
2.3. Stability analysis of two parallel boiling channels 

 

The momentum conservation equation for a channel, named k, may be written as  

 

𝑚𝑘

𝑑𝑊𝑘

𝑑𝑡
= 𝑃𝑖𝑛(𝑊𝑇) − 𝑃𝑜𝑢𝑡 − Δ𝑃𝑘(𝑊𝑘) (12)  

 

Being mk = Lk/Ak, WT and Wk is the mass flow rate for the k channel, respectively. Rewriting 

(12) for two twin channels, reads  

 

𝑚1

𝑑𝑊1

𝑑𝑡
= 𝑃𝑖𝑛(𝑊𝑇) − 𝑃𝑜𝑢𝑡 − Δ𝑃1(𝑊1) 

 

(13)  

𝑚2

𝑑𝑊2

𝑑𝑡
= 𝑃𝑖𝑛(𝑊𝑇) − 𝑃𝑜𝑢𝑡 − 𝛥𝑃2(𝑊2) 

 

(14)  

Recalling that W1 + W2 = WT, and m = m1 = m2 (from hereinafter all channels are 

assumed identical among them) adding (13) and (14) results  

 

𝑚
𝑑𝑊𝑇

𝑑𝑡
= 2𝑃𝑖𝑛(𝑊𝑇) − 2𝑃𝑜𝑢𝑡 − (Δ𝑃2(𝑊2) + Δ𝑃1(𝑊1)) (15)  
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In order to solve the transient behavior of twin boiling channels, for instance equations 

(13) and (15) should be solved together. The other channel is obtained by the difference.  

Perturbing the mass flow rate in both channels and the total as Wk = Wk0 + Wk, where Wk0 

corresponds to the steady state solution and Wk are the infinitesimal perturbations. Replacing 

in (13),  
 

𝑚
𝑑𝑊10

𝑑𝑡
+ 𝑚

𝑑 δ𝑊1

𝑑𝑡
= 𝑃𝑖𝑛(𝑊𝑇0) +

𝑑𝑃𝑖𝑛_

𝑑𝑊𝑇
δ𝑊𝑇 − 𝑃𝑜𝑢𝑡 − Δ𝑃1(𝑊10) −

dΔ𝑃1

𝑑𝑊1
δ𝑊1 

 

(16)  

and using steady-state condition for Wk0, then the perturbed momentum equation for channels 

1 and 2,  

 

𝑚
𝑑 δ𝑊1

𝑑𝑡
=

𝑑𝑃𝑖𝑛

𝑑𝑊𝑇
δ𝑊𝑇 −

dΔ𝑃1

𝑑𝑊1
δ𝑊1 (17)  

 

𝑚
𝑑 δ𝑊2

𝑑𝑡
=

𝑑𝑃𝑖𝑛_

𝑑𝑊𝑇
δ𝑊𝑇 −

dΔ𝑃2

𝑑𝑊2
δ𝑊2 (18)  

 

Now, considering that the perturbation may be written as wi = i e
t, calling 𝛼𝑠 =

𝑑𝑃𝑠

𝑑𝑊𝑠
 , 

being s = 1,2 or T, the resulting equations are: 

 

𝑚1𝛽1𝜆 = 𝛼𝑇(𝛽1 + 𝛽2) − 𝛼1𝛽1 
 

𝑚2𝛽2𝜆 = 𝛼𝑇(𝛽1 + 𝛽2) − 𝛼2𝛽2 

(19)  

 

or  

 

(𝑚1𝜆 + 𝛼1 − 𝛼𝑇)𝛽1 − 𝛼𝑇𝛽2 = 0  
 

− 𝛼𝑇𝛽1 +  (𝑚2𝜆 + 𝛼2 − 𝛼𝑇)𝛽2 = 0 

(20)  

 

Finally, the above system equations could be written in matrix form. The determinant of 

the system of equations is:  

 

|
(𝑚𝜆 − 𝛼𝑇 + 𝛼1) −𝛼𝑇

−𝛼𝑇 (𝑚𝜆 − 𝛼𝑇 + 𝛼2)
| = 0 (21)  

 

The characteristic equation is: λ2 + a1λ + a2 with  

 

𝑎1 = 𝛼1 + 𝛼2 − 2 𝛼𝑇 
 

𝑎2 = 𝛼1𝛼2−𝛼𝑇(𝛼1 + 𝛼2) 

(22)  

 

The system is stable to perturbations when the real part of the characteristic equation 

roots are negative, i.e. 

 

(𝛼2 + 𝛼1) (
𝛼1𝛼2

𝛼1 + 𝛼2
− 𝛼𝑇) ≥ 0, or 𝑎1 < 0 (23)  
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(𝛼2 − 𝛼𝑇) + (𝛼1 − 𝛼𝑇) ≥ 0, or 𝑎2 < 0 

 
(24)  

For a constant mass flow rate or a vertical external characteristic curve,  
 

𝛼𝑇 =
𝑑𝑃𝑖𝑛

𝑑𝑊𝑇
=  −∞  (25)  

 

It could easily verified that the system is stable if  

 

(𝛼2 + 𝛼1) ≥ 0 (26)  

or 

 
𝑑Δ𝑃1

𝑑𝑊1
+

𝑑Δ𝑃2

𝑑𝑊2
≥ 0 (27)  

 

Since Δ𝑃1y Δ𝑃2 are functions of 𝜙 (the mass flow rate fraction) then  

  
𝑑Δ𝑃1

𝑑𝜙
-

𝑑Δ𝑃2

𝑑𝜙
=  

𝑑(Δ𝑃1 − Δ𝑃2)

𝑑𝜙
≥ 0 (28)  

 

For twin parallel boiling channels, using the lumped parameter model disregarding the 

gravity contribution the stability region could be easily obtained, given by 

 
2

𝑁𝑝𝑀

[(𝑘𝑒𝑚 + 2)𝑁𝑝𝑀
2 + 𝑁𝑝𝑀(2 + 𝑘𝑒𝑚 + 𝑘𝑖𝑚 − 4𝑁𝑆 − 𝑁𝑆𝑘𝑒𝑚) + 3𝑁𝑆

2(2𝜙2 − 2𝜙

+ 1)]   ≥  0 

(29)  

 

with the constrain the Npm ≥ Ns/. For 𝜙 =
1

2
, the system is stable for NpM outside the shaded 

area in Figure 5 that shows the stability map for a two twin boiling parallel channel with 

vanishing gravity force contribution; the inner area corresponds to the instability area. It has 

to be remarked that the horizontal axis is NpM variable defined as the phase change number of 

channel with total system flow rate and the power of individual channel. i.e. 𝑁𝑝1 =  2 𝑁𝑝𝑀 

since   = 0.5. The red lines indicate the thermodynamic quality of one in a single channel. 

As stated above, a stability map may be built using analytical expression (29) for twin 

parallel channels. However, in what follows a larger number of channels will be considered, 

so an analytical expression may be complex to obtain. Another, but equivalent way for 

plotting the stability map for twin channels, is evaluating the pressure drop over the Ns-NpM 

plane for a constant total mass flow rate  = 0.5±, for each channel. This corresponds to use 

equation (27). Here  is a small parameter uses to calculate a difference around 0.5. The 

difference of pressure drop in each channel divided by 2 gives the plotted discrete 

approximation of the derivative.  
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Figure 5: Stability map obtained by lumped parameter model for twin boiling 

parallel pipes. No gravity contribution. Parameter values from Table 1.   

 

Figure 6 shows the stability region with gravity contribution. It may be observed by 

comparison with Figure 5 that gravity tends to stabilize the system for a constant subcooling 

number. This is consistent with the results obtained by Popov et al. (2000), indicating that the 

critical subcooling number (minimum subcooling number) increases when gravity is 

included. On the other hand, it should be remarked that absence of gravity is conceptually 

different than considering a horizontal channel. Basically, pressure drop in the two phase 

region should also take into account the pipe flow pattern even considering homogeneous and 

equilibrium model. 

 

 
Figure 6   Stability map obtained by lumped parameter model for two twin boiling 

parallel pipes considering gravity contribution and using values from Table 1. 
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2.4. Parametric studies  

 

It is usual to perform parametric studies to check the effects of different system 

parameters on its overall behavior. For instance, in Figures 5 and 6 the effect of gravity in the 

stability curve was clearly shown. Keeping all parameters constant and switching on gravity 

contribution the unstable region becomes greater and the minimum value (vertex) moves to 

lower Ns values. The concentrated pressure losses at the outlet tend to destabilize the system, 

so increasing the outlet concentrated pressure coefficient ke to 10 or 50 as is shown 

respectively in Figures 7 and 8, the instability regions are enlarged and the minimum 

subcooling number moved to lower values, equivalent to higher inlet temperatures.  
 

 
Figure 7   Stability map obtained by lumped parameter model for two twin 

boiling parallel pipes, considering gravity contribution and using values 

from Table 1 with one exception: ke = 10. 

 

In Figure 9, instead of a flow splitting, a RELAP5 simulation shows mass flow rate out-

of-phase oscillation. This oscillation shows a sign change indicating intermittent flow 

reversal. Static instabilities and dynamic instabilities in boiling channel may come up 

together, and both could be distinguished due to the oscillation characteristic time. For 

instance, density wave instabilities have larger oscillatory frequency in relation to pressure 

drop oscillation.   
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`

 

Figure 8  Stability map obtained with lumped 

parameter model for two twin boiling parallel 

pipes, considering gravity contribution and 

using values from Table 1 but ke = 50. 

Figure 9  Calculated RELAP5 mass flow 

rate for two twin boiling parallel pipes with 

the same conditions of Figure 8. 

 

 
3. MULTIPLE PARALLEL BOILING CHANNELS 

 

In this section an extended model to get the stability regions for three and multiple 

identical boiling pipes system is performed. The procedure shown here could be easily 

extended to a larger number of channels. A stability map is built, as above, evaluating the 

stability condition related with pressure drop over the Ns-NpM plane for a constant total mass. 

 
3.1. Three parallel boiling channels 

 

For three parallel channels, we follow the same procedure as in Section 2.3, namely: 

writing the momentum conservation equation for each channel, perturbing their flow rates 

with respect to the steady state values and rearranging, the system characteristic equation is 

determined from the vanishing determinant of the following matrix.  

 

|

(𝑚𝜆 − 𝛼𝑇 + 𝛼1) −𝛼𝑇 −𝛼𝑇

−𝛼𝑇 (𝑚𝜆 − 𝛼𝑇 + 𝛼2) −𝛼𝑇

−𝛼𝑇 −𝛼𝑇 (𝑚𝜆 − 𝛼𝑇 + 𝛼3)
| = 0 (30)  

 

It was assumed, as above, that the three channels have the same length and flow area and its 

ratio is denoted by m. The characteristic equation has the form: 

  

P(𝜆) =  𝛼1𝛼2𝛼3 − 𝛼1𝛼2𝛼𝑇 − 𝛼1𝛼3𝛼𝑇 − 𝛼2𝛼3𝛼𝑇

+ 𝑚(𝛼1𝛼2 + 𝛼1𝛼3 + 𝛼2𝛼3 − 2(𝛼1 + 𝛼2 + 𝛼3)𝛼𝑇)𝜆 + 𝑚2(𝛼1 + 𝛼2 + 𝛼3

− 3𝛼𝑇)𝜆2 + 𝑚3𝜆3 
 

To determine the stability regions, the conditions to get a negative real part of the 

characteristic equation roots must be found. Applying the Hurwitz theorem said conditions 

are: 
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(α1 + α2 + α3 − 3αT) ≥  0 
 

(31)  

α1α2 + α1α3 + α2α3 − 2(α1 + α2 + α3)αT ≥  0 (32)  

 

α1α2α3 − α1α2αT − α1α3αT − α2α3αT ≥  0 
(33)  

 

Recalling that αT → −∞ , then the first condition may be easily satisfied (the 

characteristic curve of each channel are smooth functions of the mass flow). The second 

condition, (32) has two terms. The sign of first depends on individual values of ’s, which 

are upper bounded. The sign of the latest term of (32), −2(α1 + α2 + α3)αT, is positive if so 

(α1 + α2 + α3). Then, a necessary (but not sufficient) condition is: 

 

α1 + α2 + α3 ≥  0 (34)  

 

The third condition could be analyzed in the following way. Replacing αT =  − |αT| reads 

 

α1α2α3  (1 + |αT| (
1

α1
+

1

α2
+

1

α3
)) ≥  0 (35)  

 

Condition (35), neglecting the first term in brackets, may be rewritten 

 

α1α2α3 (
1

α1
+

1

α2
+

1

α3
) ≥  0 

or 

∏ αk

3

k=1

(∑
1

αk

3

k=1

) ≥  0 (36)  

 

The above expression is a necessary condition for getting stability region for static 

instabilities for three boiling parallel channels. It should be note that stability depends on a 

single channel stability condition since just one of the 𝛼𝑘 values of any of the channel 

changes sign, the whole system becomes unstable. This result is in agreement with the results 

of Akagawa et al., 1971. However, flow instability may trigger different ways of flow 

splitting that should be taken into account.  

 
3.2. Multiple parallel boiling channels 

 

For any number of parallel boiling channels, the procedure becomes rather cumbersome. 

Writing the momentum conservation equation for each channel, perturbing their flow rates 

with respect to the steady state values and rearranging, N differential equations are obtained, 

namely:  

 

 

𝑚𝑘

𝑑 𝛿𝑊𝑘

𝑑𝑡
=

𝑑𝑃𝑖𝑛

𝑑𝑊𝑇
𝛿𝑊𝑇 −

𝑑𝛥𝑃𝑘

𝑑𝑊𝑘
𝛿𝑊𝑘 

 

(37)  
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where subindex k represents the channel number. Once again, replacing wk = k et, the 

remaining algebraic equations are: 
 

𝑚𝑘𝛽𝑘𝜆 = 𝛼𝑇 ∑ 𝛽𝑗

𝑗=1

− 𝛼𝑘𝛽𝑘 (38)  

 

mk is quotient between length and channel area, 𝛼𝑘 =
𝑑𝑃𝑘

𝑑𝑊𝑘
 with k = 1,2…N or T (for the total 

mass flow rate. Writing the set of equation in matrix form:  

 

|
|

(𝑚1𝜆 − 𝛼𝑇 + 𝛼1) −𝛼𝑇 ⋯ ⋯ −𝛼𝑇

−𝛼𝑇 (𝑚2𝜆 − 𝛼𝑇 + 𝛼2) −𝛼𝑇 −𝛼𝑇 −𝛼𝑇

⋮ −𝛼𝑇 ⋱ −𝛼𝑇 ⋮
⋮ ⋮ −𝛼𝑇 ⋱ −𝛼𝑇

−𝛼𝑇 ⋯ ⋯ −𝛼𝑇 (𝑚𝑁𝜆 − 𝛼𝑇 + 𝛼𝑁)

|
|

= 0 

 
Stability regions are determined by finding the conditions where the real part of the 

characteristic equation roots is negative. Analytical conditions could be written based on the 

coefficient of the characteristics equations but are difficult to be applied. From Hurwitz 

theorem, it could be derived that a necessary condition for having negative real roots is that 

all characteristics coefficient should be negative. However, the reverse is not true. The 

stability conditions for four channels are: 

  

∑ 𝛼𝑘 − 4 𝛼𝑇

4

𝑘=1

≥  0 

 

−3αT ∑ 𝛼𝑘

4

𝑘=1

+  ∑ 𝛼𝑖𝛼𝑗

4

𝑖,𝑗=1
𝑖≠𝑗

≥  0 

 

−2αT ∑ 𝛼𝑖𝛼𝑗

4

𝑖,𝑗=1
𝑖≠𝑗

+ ∑ 𝛼𝑖𝛼𝑗𝛼𝑘

4

𝑖,𝑗,𝑘=1
𝑖≠𝑗≠𝑘

≥  0 

 

∏ 𝛼𝑘

4

𝑘=1

− 𝛼𝑇 ∑ 𝛼𝑖𝛼𝑗𝛼𝑘

4

𝑖,𝑗,𝑘=1
𝑖≠𝑗≠𝑘

≥  0 

 

(39)  

 

Using a similar procedure performed previously for three channels, it may be shown that the 

necessary conditions are:   

 

∑ αk

4

𝑘=1

≥  0 (40)  

and 
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∏ 𝛼𝑘

4

𝑘=1

(∑
1

αk

4

𝑘=1

) ≥  0 (41)  

 

Both equations (41) and (40) are necessary conditions for stability and, as it could be 

shown, these expressions for different number of identical channels are similar. For instance, 

equations (34) and (40) could be extended to N parallel identical channels, yielding 

 

∑ 𝛼𝑘
𝑁
𝑘=1 ≥  0      or     ∑

𝑑Δ𝑃𝑘

𝑑𝑊𝑘

𝑁
𝑘=1 ≥  0 (42)  

 

Recalling that the fraction of mass flow though a channel is: 

 

𝜙𝑘 =
𝑊𝑘

∑ 𝑊𝑗
𝑁
𝑗=1

  (43)  

 

When bifurcation or the conditions for several multiple steady states are met in N parallel 

channels, the splitting will develop in pairs. This hypothesis will be verified shortly with the 

system code. The latter means that N-1 channel will have the same flow and only one splits. 

The flow ratio for N-1 is equal, and hence 𝜙1 =  𝜙2 = ⋯ =  𝜙𝑘−1 = 𝜙. This could be 

expressed as:  
 

𝜙 = 𝜙1 =
𝑊1

∑ 𝑊𝑗 + 𝑊𝑁 𝑁−1
𝑗=1

= ⋯  =
𝑊3

∑ 𝑊𝑗 + 𝑊𝑁 𝑁−1
𝑗=1

= ⋯ 
𝑊𝑁−1 

∑ 𝑊𝑗 + 𝑊𝑁 𝑁−1
𝑗=1

 (44)  

 

and the fraction of the individual channel as function of the other N-1 channel results: 
 

𝜙𝑁 =
∑ 𝑊𝑗 −  ∑ 𝑊𝑗

𝑁−1
𝑗=1

𝑁
𝑗=1

∑ 𝑊𝑗 𝑁
𝑗=1

= 1 − (𝑁 − 1)𝜙 (45)  

 

Since 𝑑ϕ𝑘 = 𝑊𝑇
−1𝑑𝑊𝑘 

 

1

𝑊𝑇
∑

𝑑Δ𝑃𝑘

𝑑𝜙𝑘

𝑁

𝑘=1

=
1

𝑊𝑇
( (𝑁 − 1)  

𝑑Δ𝑃1

𝑑𝜙
−

1

(𝑁 − 1)
 
𝑑Δ𝑃𝑁

𝑑𝜙
) ≥  0 (46)  

 

Considering that Δ𝑃1 =  Δ𝑃𝑁 

 

(𝑁 − 1)2  
𝑑Δ𝑃1(𝜙)

𝑑𝜙
−

𝑑Δ𝑃1(1 − (𝑁 − 1)𝜙)

𝑑𝜙
≥  0 (47)  

 

The latter expression is the necessary condition for N parallel tubes; with the condition 

that splitting is channel to channel. The quantity Δ𝑃1(𝜙) and Δ𝑃1(1 − (𝑁 − 1)𝜙) means that 

pressure drop P1 is evaluated at expression between brackets. In addition the stability area is 

also delimited by 𝑁𝑠 = 𝑁𝑝(1 − (𝑁 − 1)𝜙) that correspond to single to two-phase separation.  
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4. RELAP5 CALCULATIONS  

 

RELAP5 is a best estimate systems code extensively used for nuclear safety evaluations 

related to nuclear power plants. It provides numerical results using closure correlations and 

steam tables. Results heavily depend on user choices. The present authors discussed in detail 

the effects of different code options and fluid models; see Lazarte and Ferreri (2014). It is 

important to state here that the predictions using this thermo-hydraulic system code 

confirmed the approximate model predictions. The reader is referred to said reference for the 

detailed analysis. 

Figure 10 shows a sketch of the geometry implemented for a four identical pipes system. The 

pipes were divided into 48 cells. The inlet mass flow rate is imposed with a time dependent 

junction, the outlet pressure is fixed with a time dependent volume. Simulations have been be 

performed using HEM and the two fluid model.  

  

 
Figure 10  RELAP5 nodalization for a system with four identical pipes 

 

It is interesting to verify the behavior of a system composed of three or four parallel 

channels. For simulating this case, additional pipes have been added in parallel to the twin 

pipes case and identical to the others. The inlet mass flow rate and power delivered to the 

channel were changed accordingly. It must be noted that the same rate of power delivered to 

the fluid was not used in all cases. The system behavior for three parallel channels using 

RELAP5 with and without gravity and the HEM or two phase flow model is shown in Figure 

11. Considering vanishing gravity there is a flow splitting at 1300 s, corresponding in this 

case to 125 kW.  The flow splitting is asymmetrical; that is, one pipe of them increases its 

flow rate while the other channels reduce proportionally their flow rate and is equal among 
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them. This behavior supports the hypothesis used for deriving the instability area in three 

pipes systems.  

 

 
Figure 11  RELAP5 calculated mass flow rate through channels (named 1, 2 and 3). There is 

a stable flow splitting close for the HEM with vanishing gravity contribution and with the 

two fluid model. No splitting exists for HEM model with gravity contribution. 

 

When gravity is taken into account, no flow splitting was observed at least at the 

expected power. Moreover, the RELAP5 code fails near to the 2000 s, corresponding to 

200 kW. On the contrary, with two fluid model and gravity, flow splitting occurs at 1300 s, 

corresponding to 167 kW. 

RELAP5 calculations for four identical channels are shown in figures 12 through 15 

considering different modeling options. One again, when gravity is taken into account no 

flow splitting took place unless exit k’s value is increased as the case in figures 13 and 14, 

respectively. Flow splitting for vanishing gravity or with gravity and ke equal to 25 comes at 

125 kW, whereas for two fluid model near to 170 kW. This is consistent with the three 

channel models showing that two fluid model requires more power to become unstable. This 

difference might be due to the nucleate subcooled boiling region before fluid saturation.        

In addition, as in the three channels case, flow splitting appears in (1 and N-1) pairs. It should 

be noted that power required for flow splitting is independent of the number of channels, this 

means that for two, three or four parallel channels the needed power is ranged 120-130 kW. 

This support the idea that flow splitting or flow maldistribution comes up when a single tube 

becomes unstable.    
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Figure 12  RELAP5 calculated mass flow rate 

through channels (named 1, 2, 3 and 4). There 

is a stable flow splitting close for the HEM 

model with vanishing gravity. 

Figure13  RELAP5 calculated mass flow rate 

through channels (named 1, 2, 3 and 4). There 

is a stable flow splitting close for the HEM 

model with gravity. 

 

  

Figure 14  RELAP5 calculated mass flow 

rate for a four parallel pipe arrangement with 

HEM model and gravity contribution. The 

exit concentrated pressure losses coefficient 

was set to 25. Stable flow splitting is 

observed. 

Figure 15   RELAP5 calculated mass flow 

rate for a four parallel pipe arrangement with 

two fluid model and gravity contribution. 

The exit concentrated pressure losses 

coefficient was set to 5 (Table 1). Stable 

flow splitting is observed. 

 

Finally, some results for nine and twelve parallel identical tubes are shown in Figures 16 

and 17, respectively. Flow oscillations may be observed in Figure 17 after flow splitting for 

twelve tubes by increasing power delivered to the fluid. This oscillation corresponds to a 

dynamic instability of density wave type. It must be noted that flow splitting comes, once 

again, in pairs (1 tube increase or decrease flow rate while the other eleven increase their 

flow rate proportionally).   
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Figure 16   RELAP5 calculated mass flow 

rate for nine parallel pipes with two fluid 

model. Stable flow splitting is observed, 

eight channel to increase mass flow and the 

others decrease mass flow. 

Figure 17   RELAP5 calculated mass flow 

rate for twelve parallel pipes with two fluid 

model. Stable flow splitting is observed, 

eleven channels to increase mass flow and 

the others decreases mass flow. 

 
 

5. CONCLUSIONS 

 

Static instabilities in boiling channels with fixed inlet mass flow rate and outlet pressure 

have been studied. An analytical simplified model using HEM was developed to study static 

instabilities in twin parallel channels. The latter analysis was extended to three and four 

parallel channels and, finally, for N parallel channels.  Using a perturbation analysis upon the 

momentum equation for HEM model, a stability analysis was performed for two, three and 

four parallel channels and a necessary condition and the stability maps based on 

dimensionless numbers were obtained. It was shown that when the instability boundary is 

crossed the mass flow rate in the channels split, even though in twin channels in non-

symmetric ways. When a larger number of channels are checked, it was found that splitting 

comes up in a particular way: one channel increases (decreases) mass flow whereas the other 

N-1 channels decrease (increase) mass flow rate. From necessary stability conditions, a 

system with several parallel channels could be stable while some of the channels fall 

individually in the unstable condition.  

Concluding, stability maps for flow splitting in a system of three or four parallel 

channels were obtained. Systems consisting of up to twelve identical parallel pipes have also 

been considered. It was shown that gravity has a stabilization effect in the sense that unstable 

region becomes smaller. In addition, when the outlet concentrated pressure drop coefficient 

increases the system becomes more unstable, as is well known from density wave oscillation 

analysis. Both instabilities may come up separated or together as depicted in Figure 16 and 

Figure 17.        
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NOMENCLATURE 

 
Parameter Description 

  

𝜌m Mean density (kg/m3) 

ki 
Concentrated pressure losses at pipe 

entrance 

ke Concentrated pressure losses at pipe outlet 

𝑊𝑇 Total mass flow (kg/s) 

A Flow area (m2) 

D Pipe diameter (m) 

p Pressure (Pa) 

g gravity acceleration 

L channel length 

ZB boiling length 

𝜌𝑓 the liquid density 

𝜙2𝜙
2  Two-phase friction factor 

f Single-phase friction factor 

𝑁𝑝 =
𝑄 𝑣𝑓𝑔

ℎ𝑓𝑔 𝑣𝑓 𝑊
 

 

Phase change number 

𝑁𝑠 =
𝛥ℎ𝑖𝑛 𝑣𝑓𝑔

ℎ𝑓𝑔 𝑣𝑓
 Subcooling number 

𝑥𝑒 =  𝑥𝑒𝑖𝑛
+

𝑄

ℎ𝑓𝑔𝑊
 Thermodynamic quality 

vfg 
difference between the specific gas and 

liquid volumes vg – vf 

𝑁𝑓𝑟 =  
𝑓𝐿

2𝐷
 friction factor number 

𝜙 =
𝑊𝑖

𝑊𝑇
 Mass flow rate fraction of channel i 

𝑁𝑝1 =   
𝑁𝑝𝑀

𝜙
  , 

𝑁𝑝2 =   
𝑁𝑝𝑀

1 − 𝜙
 

 

Mass flow rate fraction of channel 1, 2 
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