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Abstract. An Eulerian multiphase gas-solid solver with kinetic theory closure has been developed and

implemented on the open-source code OpenFOAM R©. In order to increase the accuracy of the model,

a fully conservative form of the momentum equations has been adopted, keeping the phase fraction in

both space and time derivatives. The enforcement of the packing limit has been addressed by an implicit

treatment of the particle pressure contribution on the phase continuity equation, and a semi-implicit

treatment of the drag term on the momentum equations has been used to construct the face fluxes needed

by the algorithm. The solver has been tested against standard multiphase cases, where analytical or

numerical solutions are available for comparison.
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1 INTRODUCTION

Fuidized bed regimes of multiphase solid-gas flows may be found in many industrial appli-

cations, from energy production reactors to grain drying systems. One of such applications is

the riser of a Fluid Catalytic Cracking (FCC) reactor, in which the interaction between particles

affects the global efficiency of the system. A proper understanding of such systems is critical

to predict results and designing units. In this context, a CFD approach becomes an inexpensive

tool and may complement experimental techniques for the study of large multiphase systems

behavior (Min et al., 2010; Almuttahar and Taghipour, 2008).

One of the many issues in developing a two-phase solid-gas flow solver is the numerical

effort involved in solving a system with a large number of particles. The Eulerian approach

considers a solid phase with no particle tracking and a fluid-like behavior, thus having a set

of mass and momentum balance equations for the solid phase. This technique presents the

drawback of lacking of a proper physical definition for the particles stress tensor, which may

be remedied with the introduction of the granular energy concept and the Kinetic Theory of

Granular Flow (Gidaspow (1994), Lun et al. (1984)) to provide a mathematical closure.

Another subject arises when a large gradient transport problem is being solved numerically.

The issue is based on the fact that different solutions may be found when the non-conservative

formulation of the momentum equations is adopted. This topic has been studied by Staedtke

(2006) and Leveque (2002), who showed that a conservative formulation leads to more accurate

solutions in these kind of problems.

In this work, we developed a two-phase solid-gas solver on the OpenFOAM R© (Weller et al.,

1998) platform, based on the standard twoPhaseEulerFoam solver with the implementation

of the MULES limiter, the kinetic and frictional theory models and the conservative treatment

of the momentum equations based on the study of Passalacqua and Fox (2011).

As a reminder of the present work, the next sections are organized as follows. In Section

2, the theoretical framework of the two-phase solid-gas flow system with kinetic and frictional

theory closures is presented. Section 3 describes the numerical aspects of the code implemen-

tation. Finally, in Section 4, a series of benchmark problems are simulated in order to test the

performance of our solver, by comparing against both analytical and numerical solutions.

2 MULTIPHASE MODEL

2.1 Governing Equations

The Eulerian model for multiphase systems is based on the fact that both phases are treated

as interpenetrating continua (Gidaspow, 1994), where
∑

i αi = 1 must be verified. The mass

and momentum equations for the solid phase are:

∂

∂t
(αsρs) +∇· (αsρsus) = 0 (1)

and

∂

∂t
(αsρsus) +∇· (αsρsusus) = ∇· (αsτ s)− αs∇p−∇ps + αsρsg +Ksg(ug − us) (2)

where

τ s = µs[∇us +∇uT
s ] + (λs −

2

3
µs)(∇· us)I (3)
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While for the gas phase are:

∂

∂t
(αgρg) +∇· (αgρgug) = 0 (4)

and

∂

∂t
(αgρgug) +∇· (αgρgugug) = ∇· (αgτ g)− αg∇p+ αgρgg +Ksg(us − ug) (5)

where

τ g = µg[∇ug +∇uT
g ]−

2

3
µg(∇· ug)I (6)

In order to solve the governing equations, several unknown terms require modeling. These

models are known as closure laws.

For the present study, the lift and virtual mass effects have been neglected and the phases are

coupled through the drag force term. For example, a general form for the drag coefficient may

be modelled as (Schiller and Naumann, 1933):

Ksg = 0.75
Cdαsαgρg|ug − us|

dp
(7)

where the drag force increases with the square of the relative velocity module between

phases. For a list of the available models for the drag coefficients in OpenFOAM R© see the

Appendix.

2.2 KTGF and Frictional Models

Due to the need of a mathematical model for the solid phase global stress tensor (which lacks

of a proper definition when the solid phase is treated as a fluid), different flow regimes need to

be taken into account:

• If the particles are present in a dilute state, then the grains translate freely. This regime is

known as Kinetic Regime.

• If the particles are present in a higher concentration, then, in addition to the previous

effects, the grains may collide with each other. This regime is known as Collisional

Regime.

• If the particles are present in a very high concentration, the grains not only collide in-

stantly, but there is friction and rubbing between particles. This regime is known as

Frictional Regime.

The Kinetic Theory of Granular Flow (Gidaspow, 1994; Lun et al., 1984) provides a set of

mathematical models to contemplate the effects of the Kinetic and Collisional regimes. This

theory introduces the concept of granular temperature (θs) as a primitive variable from which

the solid phase stress tensor may be modeled. A granular energy may be defined as a specific

kinetic energy due to the granular random motion of the particles:

Eg
s =

1

2
|c′|2 = 3

2
θs (8)
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where c′ represents the velocity of the chaotic motion of the grains.

The microscopic balance equation of the granular energy is given by Eq. (9):

3

2

[ ∂

∂t
(αsρsθs) +∇· (αsρsusθs)

]

= (−psI + τ s) : ∇us +∇· (κs∇θs)− γs + Jvis (9)

The following models are based on the solution of the previous equation (see Van Wachem

(2000)):

γs = 3ρsα
2

sg0(1− e2p)θs

(

4

dp

√

θs
π

−∇· us

)

κs = ρsdp
√
θ

[

2α2

sg0(1 + ep)√
π

+
9

16

√
πα2

sg0(1 + ep) +
15

16

√
παs +

25
√
πg0

64(1 + ep)

]

Jvis = −3Ksgθs

On the other hand, when the solid volume fraction reaches a critical high value (usually

αs ≃ 0.6), the contact between particles are no longer given by binary collisions but from the

effects of rubbing and friction with each other. Therefore, the assumption of instant contact,

used by the kinetic theory, is no longer valid and frictional stress models must be employed.

Hence, the modeling of the solid stress tensor switches between theories when this critical solid

volume fraction is reached (known as αs,min). This implies different contributions for each

regime, in order to define µs and ps:

µs = µs,col + µs,kin + µs,fric (10)

To illustrate the variables involved, we present some of the models that may be used to

calculate the solid phase viscosity (Gidaspow, 1994; Johnson and Jackson, 1987):

µs,kin =
10ρsdp

√
θsπ

96g0(1 + ep)

[

1 +
4

5
(1− ep)αsg0

]2

µs,col =
4

5
ρsα

2

sdpg0(1− ep)

(

θs
π

)1/2

µs,fric = 0.5psI
−1/2
2D sin(φ)

λs =
4

3
ρsα

2

sdpg0(1− ep)

(

θs
π

)1/2

Analogous to the particle viscosity, the particle pressure includes a kinetic, collisional and

frictional contribution (Lun et al., 1984; Johnson and Jackson, 1987):

ps = ps,col + ps,kin + ps,fric (11)

where

ps,kin = ρsαsθs

ps,col = 2ρsα
2

sg0(1− ep)θs

ps,fric = Fr
(αs − αs,min)

η

(αs,max − αs)P
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The radial distribution may be defined as (Carnahan and Starling, 1969):

g0 =
1

(1− αs)
+

3αs

2(1− αs)2
+

α2

s

2(1− αs)3
(12)

3 NUMERICAL TREATMENT

The equations are solved using the Finite Volume Method with both phases treated under an

incompressible flow hypothesis (Ferziger and Peric, 2002; Jasak, 1996) and the PIMPLE algo-

rithm for the pressure-velocity coupling (Issa, 1985; Caretto et al., 1973). Hence, the continuum

mass and momentum equations become:

∂αs

∂t
+∇· (αsus) = 0 (13)

∂

∂t
(αsus) +∇· (αsusus) =

1

ρs
∇· (αsτ s)−

αs

ρs
∇p− 1

ρs
∇ps + αsg +

Ksg

ρs
(ug − us) (14)

∂αg

∂t
+∇· (αgug) = 0 (15)

∂

∂t
(αgug) +∇· (αgugug) =

1

ρg
∇· (αgτ g)−

αg

ρg
∇p+ αgg +

Ksg

ρg
(us − ug) (16)

3.1 Momentum Equation

One of the main issues of solving the equations presented in Eq. (13), (14), (15) and (16) is

that we will come to the difficulty of having the volume fraction in all the terms, thus having

a null equation when one of the phases is not present. A non-conservative formulation, as pre-

sented by Weller (2002), may solve this problem by expanding the derivative of the products

with αs, dividing all by αs and isolating the terms in which the phase fraction remains. These

terms could be easily treated to avoid singularities, nevertheless, the discretized equation de-

rived from this formulation may not provide an accurate solution when solving shock-waves.

This behavior is explained by Leveque (2002) and Staedtke (2006), and will be discussed later

on. In this work, we will adopt the conservative formulation to increase the robustness of our

solver and deal with the phase fraction tending to zero, by avoiding the solution in those cells

where the phase fraction becomes smaller than a certain “cutoff” value.

The semi-discrete form of the momentum equations are:

Asus = Hs −
αs

ρs
∇p− 1

ρs
∇ps + αsg +

Ksg

ρs
(ug − us) (17)

Agug = Hg −
αg

ρg
∇p+ αgg +

Ksg

ρg
(us − ug) (18)

Where Hi includes the off-diagonal contributions and Ai condensates the diagonal coeffi-

cients.

Now we may define the coefficients:

ζs =
1

As +
Ksg

ρs

(19)
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ζg =
1

Ag +
Ksg

ρg

(20)

and arrive to the following expressions for the phase velocities:

us = ζs

(

Hs +
Ksg

ρs
Hg −

αs

ρs
∇p− 1

ρs
∇ps + αsg

)

(21)

ug = ζg

(

Hg +
Ksg

ρg
Hs −

αg

ρg
∇p+ αgg

)

(22)

Therefore, the face velocities fluxes are computed as:

ϕs =
∑

f

{

ζs,f

(

Hs +
Ksg

ρs
Hg + αsg

)

f
· S − ζs,f

(αs

ρs
∇p
)

f
· S − ζs,f

( 1

ρs
∇ps

)

f
· S

}

(23)

ϕg =
∑

f

{

ζg,f

(

Hg +
Ksg

ρg
Hs + αgg

)

f
· S − ζg,f

(αg

ρg
∇p
)

f
· S

}

(24)

where S represents the face-normal vector for each cell face.

3.2 Continuity Equation

Since
∑

i αi = 1 must be verified locally at each time step, we may solve one phase con-

tinuity equation and derive the volume fraction of the remaining phase by applying the latter

condition. Thus, solving the continuity equation for the solid phase will allow us to introduce

the particle pressure flux contribution implicitly to enforce the solid packing limit (see Passalac-

qua and Fox (2011)).

∂αs

∂t
+∇· (αsus) = 0 (25)

This equation can be rewritten in a semi-discrete form as:

∂αs

∂t
+
∑

f

αs,fϕs = 0 (26)

Leaving out the particle pressure flux contribution:

ϕ′

s = ϕs +
1

ρs
ζs,f

( ∂ps
∂αs

)

f
|S|∇αs (27)

Here, the definition of ϕs is taken from Eq. (23).

The bounding of the phase fraction between zero and one is achieved using the MULES

limiter (see Marquez Damian (2013)). Then, by defining the mixture and relative fluxes as:

ϕ = αg,fϕg + αs,fϕs (28)

ϕr,s = ϕs − ϕg (29)
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where:

ϕ′ = ϕ+
1

ρs
αs,fζs,f

( ∂ps
∂αs

)

f
|S|∇αs (30)

ϕ′

r,s = ϕr,s +
1

ρs
ζs,f

( ∂ps
∂αs

)

f
|S|∇αs (31)

We arrive to the final semi-discrete form of the phase continuity equation:

∂αs

∂t
+
∑

f

(αsϕ
′)f +

∑

f

(αsαgϕ
′

r,s)f −
1

ρs
αs,fζs,f

( ∂ps
∂αs

)

f
|S|∇αs = 0 (32)

3.3 Pressure Equation

If we sum up both solid and gas phase continuity equations, we obtain:

∇·ϕ = 0 (33)

where ϕ was defined in Eq. (28). Now, if we apply divergence on the phase velocity fluxes

in each term of Eq. (23) and (24) and considering Eq. (33), we may arrive to the following

expression for the pressure equation:

∇·
{[

αs,fζs,f

(αs

ρs

)

f
+ αg,fζg,f

(αg

ρg

)

f

]

(∇p· S)
}

= ∇·ϕ0
(34)

where:

ϕ0 = αs,fϕ
0

s + αg,fϕ
0

g (35)

ϕ0

s =
∑

f

{

ζs,f

[

Hs +
Ksg

ρs
Hg + αsg

]

f
· S − ζs,f

[ 1

ρs
∇ps

]

f
· S

}

(36)

ϕ0

g =
∑

f

{

ζg,f

[

Hg +
Ksg

ρg
Hs + αgg

]

f
· S

}

(37)

Finally, solving Eq. (34) we can correct the phase velocity fluxes by including (∇p· S) on

Eq. (23).

3.4 On the conservative treatment of the momentum equations

One major difference between the standard two-phase solvers that are available on the

OpenFOAM R© distribution and the one developed in this work, is the conservative treatment of

the momentum equations. This concept refers to the way that both αi and ui are operating in

the advective and transient terms of the discrete momentum equation.

We may reformulate Eqs. (14) and (16) as follows:

∂

∂t
(αsui) +∇· (αiuiui) = Ri (38)

where Ri represents all the terms on the right- hand-side of Eqs. (14) and (16).
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Now the derivatives on both terms on the left-hand-side of Eq. (38) may be expressed as:

αi
∂

∂t
(ui) + (αiui)· ∇ui + ui

∂αi

∂t
+ ui∇· (αiui) = Ri

(39)

Here the last two terms of the left-hand-side may be neglected considering the continuity

equations form Eqs. (13) and (15). Thus having:

αi
∂

∂t
(ui) + (αiui)· ∇ui = Ri

(40)

which is the non-conservative form of the momentum equations and the one implemented in

several two-phase solvers on OpenFOAM R©.

This formulation is consistent with the conservative form (Eq. (38)), being both equal in the

continuum. Nonetheless, the discretization practice of Eq. (40) may lead to inaccurate results

under certain flow conditions. Staedtke (2006) and Leveque (2002) show that the numerical

integration of the non-conservative form of the momentum equations may cause a misbehavior

in the solution for high gradient transport problems, such as shock-waves and density currents.

Moreover, Park et al. (2009) proposed some conceptual problems to evaluate the solution

of a non-conservative formulation against a semi-conservative form, where only the advective

term has been treated as in Eq. (38). The solutions shows more accurate results for the semi-

conservative form in cases such as a phase separation problem, where the front velocity of each

phase may be found analytically under a quasi-steady state assumption (Staedtke, 2006).

Two-phase flow problems, specially gas-solid flows, usually involves large gradients trans-

port due to the high density difference between phases, therefore we developed our two-phase

solver based on the numerical integration of the conservative form of the phase momentum

equations (Eq. (38)).

3.5 The PIMPLE algorithm

The algorithm used to couple the pressure field is a combination of PISO (Issa, 1985) and

SIMPLE (Caretto et al., 1973), called PIMPLE, which allows to introduce under-relaxation

factors to enforce the convergence of the iterative procedure and outer iterations in order to

improve the coupling between momentum and mass conservation equations. The sequence

consists of the following steps:

1. Start the continuity equation loop

a. Solve Eq. (32) without the particle pressure contribution, using MULES limiter.

b. Calculate
∂ps
∂αs

and correct the continuity equation to re-obtain αs. If the kinetic

theory is used, solve the granular temperature θs (Eq. (9)) in order to obtain the kinetic

particle pressure ps (Eq. (11))

c. Calculate αg = (1− αs)

d. Iterate from a. until a convergence criterion is reached

2. Calculate the drag coefficient Ksg
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3. Update the momentum equation coefficients

4. Solve the predicted velocity from the phase momentum equation with the previously

stored pressure

5. Start the pressure equation loop

a. Obtain the interpolated values of the phase fraction αi and momentum coefficients

Hi and ζi on the cell faces

b. Construct the partial phase fluxes given by Eq. (36) and (37)

c. Construct the pressure flux contribution coefficient

d. Solve the pressure equation and correct for non-orthogonal meshes

e. Correct the face fluxes with the pressure flux contribution

f. Correct the cell centered phase velocities

6. Iterate from 1. until a convergence criterion is reached

4 TEST CASES

In this section, we present a series of test cases to validate our two-phase solver. In order

to do so, we started studying a one-dimensional water faucet problem, in which a two-fluid

mixture flow descends down a tube and a phase segregation wave propagates through it. This

type of problem allow us to test the performance of the interpolation schemes in large gradients

transport problems.

Next, we present a horizontal transport of particles problem, in which a momentum transfer

between phases takes place. Here the performance of the drag numerical implementation is

tested under different mesh refinements and different particles volume fraction.

Then, we present results for a solid settling suspension problem, with and without a packing

limit. This test allow us to study the behavior of the kinetic theory numerical implementation

and the solver performance under more critical conditions, such as reaching the packing limit

and near-zero phase fraction.

Finally, we present a more practical problem with industrial applications: a fluidized bed.

In this test, we evaluate our solver performance in all general aspects and the solutions are

compared against the ones from authors using the OpenFOAM R© platform.

4.1 Water Faucet

The Water Faucet problem (Ransom and Mousseau, 1991) has been widely studied by sev-

eral authors (Corzo et al. (2012), Nourgaliev et al. (2003)) over the years and established as a

numerical benchmark to test the performance of two-phase flow solvers.

This test consists of a vertical tube of 12 m length and 1 m diameter. The tube is initially

filled with an air-water homogeneous mixture with a liquid phase fraction α0

l = 0.8 and density

ratio ρl/ρg = 1000. The initial and boundary conditions are summarized in Table 1

Due to the gravity acceleration and mass conservation, the liquid vein diameter decreases

and a phase fraction discontinuity propagates downward. Here the momentum transfer term is

negligible and the dominant effect is the gravity force.
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intlet 

outlet 

initial

 state  
steady

 state  

g 

Figure 1: Water Faucet test case scheme

Field Value

α0

l 0.8
αl,inlet 0.8
u0

l (m/s) 10.0
ul,inlet(m/s) 10.0
u0

g(m/s) 0.0
ug,inlet(m/s) 0.0

Table 1: Initial and

boundary conditions

The analytical solution for αg is given by:

αg(y, t) = 1− α0

l u
0

l
√

2gy + (u0

l )
2
, if y ≤ u0

l t+
gt2

2
(41)

The following results have been obtained with a time step of 1 × 10−4 s and 240 uniform

square cells for the space discretization on the vertical direction. The simulations were per-

formed using 3 PIMPLE iterations.

In Figure 2, different advection schemes are presented to compare with the analytical solution

for the gas volume fraction wave propagation at t = 0.5 s.
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Figure 2: Analytical and numerical solution at t = 0.5 s with different advection schemes
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The results show that the van Leer scheme produces the highest balance between accuracy

and stability, where the oscillatory behavior, seen with the Central Difference method, is mostly

suppressed and a sharp wave-front is achieved to capture the high gradients near the disconti-

nuity.

4.2 Horizontal Transport of Particles

This problem consists of a one-dimensional transport of solid particles diluted in an air flow

with a density relation of ρs/ρg = 2000 and a particle radius of rp = 1 mm. The inlet velocity

of the air is higher than the inlet velocity of the particles, so the particles are accelerated due to

the momentum transfer and reach an equilibrium velocity given by:

Ueq = αg
inletu

g
inlet + αs

inletu
s
inlet (42)

inlet condition

velocity fixed 

outlet condition

pressure fixed

Ug, Us  P

Figure 3: Horizontal transport test case

Eq. (43) was deducted by (Morsi and Alexander, 1972) under the assumption of having a

constant drag coefficient for the momentum transfer modeling, and a solid volume fraction

tending to zero.

ln(Ug,inlet − us) +
Ug,inlet

Ug,inlet − us

=
3

4

ρg
ρs

CD

rp
x+ ln(Ug,inlet − Us,inlet) +

Ug,inlet

Ug,inlet − Us,inlet

(43)

The following results are obtained for a time step of 1 × 10−3 s and for different space

refinements. In Figure 4, the solid volume fraction distribution for different mesh refinements

may be noted.
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Figure 4: Solid particles velocity for different number of cells

In Figure 5, results for different solid volume fraction are presented, and a range of appli-

cability of Eq. (43) may be observed. Corzo et al. (2012) and Moukalled and Darwish (2002)

also provided numerical solutions but with a non-conservative formulation of the momentum

equation.
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Figure 5: Solid particles velocity for different volume fractions
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4.3 Settling Suspension

A one-dimensional two-phase liquid-gas settling suspension problem was simulated in a 1 m

vertical tube using an 80-cells grid. The initial condition of the volume fraction of the disperse

phase is α0

l = 0.5 distributed uniformly over the domain. A counter-current flow is developed

under the effects of gravity due to the different phase densities, and the system reaches a steady

state when the dense phase settles completely on the bottom of the tube.

L

pure liquid

pure gas

mixture

U liq

U gas

 g

Figure 6: Settling suspension test case

An analytical solution for each phase velocity is deducted by Staedtke (2006) under the

assumption of a quasi-steady state and neglecting momentum flux terms and virtual mass forces

(Eq. (44)).

∆U = Ug − Ul =
[8(ρl − ρg)rpg

3CDρm

]1/2

(44)

Where:

Ug = αl∆U

Ul = −αg∆U
(45)

The gas phase front velocity computed with Eq. (45) for this case is Ug = 0.122 m/s which

is in agreement with the front velocity obtained numerically (see Figure 7 and 8).
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Figure 7: Numerical and analytical solutions for the phase segregation at different times frames
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Figure 8: Gas phase front velocity and volume fraction at t = 2.5 s

The agreement between the analytical and the numerical solutions in terms of the velocity

fields (see Figure 7) was expected due to the use of a conservative formulation.

4.4 Packed Settling

Simulations of a settling solid-gas mixture have been carried out to test the numerical per-

formance of the granular theory implementation. The test case is similar to the one studied pre-

viously, with the difference that now the disperse phase consists of solid particles. This phase

has an uniform initial distribution of α0

s = 0.3 over a one-dimensional domain of L = 0.3 m.
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Here we used the Schiller-Naumann model (Schiller and Naumann, 1933) for the drag

coefficient and the full granular balance equation (see Eq. (9)) to compute θs. The near-

packing limit region is governed by the frictional regime models where the maximum packing

is αs,max = 0.65, while the most diluted regime (for αs < 0.55) is governed by the kinetic

theory models.

A first order implicit time scheme was used with ∆t = 1×10−4 s, while a uniform 150-cells

grid was used for the space discretization and a Central Difference interpolation scheme for the

advective terms.
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Figure 9: Solid volume fraction evolution
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Figure 10: Pressure evolution

In Figure 9, the phase segregation transient state may be observed, where a constant packing

limit is reached at αs ≃ 0.61. Two sharp wave-fronts propagate at counter-current and meet,
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reaching a completely settled steady state at t = 0.3 s. The pressure profile evolution of the

mixed phases is shown in Figure 10. Constant pressure gradients at both settled regions may

be observed, and a sharp solid-gas interface is achieved at the steady state, which is consistent

with the expected physical behavior.

4.5 Fluidized Bed

A fluidized bed problem was simulated to evaluate the performance of the solver on a more

practical case, where all the aspects studied in the previous cases may be tested (such as the

near-packing condition). The numerical and physical parameters used in this case are detailed

on Table 2:

Group Description Value

Gas density 1.4 Kg/m3

Phase Gas viscosity 1.8× 10−5 Pa.s

properties Particle density 2000 Kg/m3

Particle diameter 350× 10−6 m

Width 0.138 m

Geometry Height 1 m

Bed initial height 0.2 m

Grid 14× 100 (structured squares)

Timestep 1.0× 10−4 s

Numerical Overall simulation time 30.0 s

method Time discretization Second order, implicit

Momentum discretization Central difference

Volume fraction discretization TVD limited linear

Drag Syamlal-O’Brien

Particle pressure Lun

Drag and Kinetic viscosity Gidaspow

KTGF Radial distribution Carnahan-Starling

models Thermal conductivity Gidaspow

Frictional stress Johnson-Jackson

Restitution coefficient 0.9

Wall solid velocity slip

Initial and Vertical inlet gas velocity 0.54 m/s

boundary conditions Outlet pressure 0 Pa

Initial bed packing 0.58

Table 2: General parameters

The results of solid volume fraction and pressure drop (averaged between 5 s and 30 s) at

different sections are shown in Figures 11, 12 and 13. The results are compared against the

ones obtained by Passalacqua and Fox (2011) and the ones obtained with a non-conservative

formulation (Venier et al., 2013).
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Figure 12: Time-averaged solid volume fraction along the vertical direction
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Figure 13: Time-averaged pressure drop along the vertical direction

The results show a good agreement with the ones obtained by Passalacqua and Fox (2011)

with slight differences in the time-averaged solid fraction near the walls (see Figure 11). This

may be due to the boundary conditions used for the solid phase velocity (since Passalacqua and

Fox (2011) use a partial slip condition). Nonetheless, the field profiles for the pressure and the

solid fraction show more accurate results when using a conservative formulation, against the

non-conservative one.

5 CONCLUSIONS

In this work, a two-phase flow solver with kinetic theory for granular flows capability was

developed using the OpenFOAM R© platform. In contrast with the available solvers, a conserva-

tive formulation for the momentum equation was implemented to improve the robustness and

accuracy of our code. The program was tested against a series of standard two-phase cases

showing good performance from both accuracy and stability aspects, and good agreement with

the analytical solutions available. Furthermore, the packing enforcement due the use of the

kinetic-frictional theory was tested on the packing settling test, showing a non-oscillatory tran-

sient state and a sharp phase separation on the full settled state. Finally, a comparison between

conservative and non-conservative formulations was made through the study of a fluidized bed

problem. The results allow us to conclude that the conservative approach is the best way to

handle the momentum equations numerically, showing accurate results when compared with

reference authors.
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NOTATION

Ai discrete diagonal coefficient, 1/s

Cd drag coefficient

Ce Syamlal-O‘Brien drag coefficient

dp particle diameter, m

Eg
s granular energy, m2/s2

ep particle restitution coefficient

Fr frictional pressure module, Pa

g gravity acceleration, m/s2

g0 radial distribution coefficient

Hi discrete off-diagonal momentum terms, m/s2

I identity tensor

I2D second invariant of the deviatoric stress tensor

Jvis transfer rate of energy, Kg/m.s3

Kij momentum transfer coefficient, Kg/m3.s

l length scale, m

p pressure, Pa

ps granular pressure, Pa

Rep relative Reynolds number

S face-normal vector, m2

ui velocity, m/s

t time, s

vrs terminal velocity, m/s

Greek letters

αi volume fraction

γi energy dissipation, Kg/m.s3

θi granular temperature, m2/s2

κi diffusion coefficient of granular energy, Kg/m.s

λi bulk viscosity, Kg/m.s

µi shear viscosity, Kg/m.s

νi kinematic viscosity, m2/s

ρi density, Kg/m3

τ i stress tensor, N/m2

φ angle of internal friction

ϕi phase velocity flux, m3/s2

ζi discrete inverse diagonal coefficient, s

Subscripts

i, j general index

g gas

s solid

p particle
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6 APPENDIX

Kinetic Particle Pressure Models:

Author Model

Syamlal et al. (1993) ps,kin = 2ρsα
2

sg0(1− ep)θs

Lun et al. (1984) ps,kin = ρsαsθs + 2ρsα
2

sg0(1− ep)θs

Frictional Particle Pressure Models:

Author Model

Schaeffer (1987) ps,fric = 1025(αs − αs,min)
10

Johnson and Jackson (1987) ps,fric = Fr
(αs − αs,min)

η

(αs,max − αs)P

Radial Distribution Models:

Author Model

Ogawa et al. (1980) g0 =
1

1−
( αs

αs,max

)1/3

Gidaspow (1994) g0 =
0.6

1−
( αs

αs,max

)1/3

Lun et al. (1984) g0 =
(

1− αs

αs,max

)

−2.5αs,max

Carnahan and Starling (1969) g0 =
1

1− αs

+
3αs

2(1− αs)2
+

α2

s

2(1− αs)3
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Kinetic Viscosity Models:

Author Model

Gidaspow (1994) µs,kin =
10ρsdp

√
θsπ

96g0(1 + ep)

[

1 +
4

5
(1− ep)αsg0

]2

Syamlal et al. (1993) µs,kin =
αsρsdp

√
θsπ

6(3− ep)

[

1 +
2

5
(1− ep)(3ep − 1)αsg0

]

Hrenya and Sinclair (1997) µs,kin =
αsρsdp

√
θsπ

6(3− ep)

[

1 +
(3ep − 1)

2l
+

2

5
(1− ep)(3ep − 1)αsg0 +

5

4

1

(1− ep)αsg0l

]

Granular Conductivity Models:

Author Model

Gidaspow (1994) κs = ρsdp
√
θ

[

2α2

sg0(1 + ep)√
π

+
9

16

√
πα2

sg0(1 + ep)+

15

16

√
παs +

25
√
πg0

64(1 + ep)

]

Syamlal et al. (1993) κs = ρsdp
√
θ

[

2α2

sg0(1 + ep)√
π

+
9

2

√
πα2

sg0(1 + ep)(2ep − 1)

49− 33ep
+

15

2

√
παs

49− 33ep

]

Hrenya and Sinclair (1997) κs = ρsdp
√
θ

[

2α2

sg0(1 + ep)√
π

+
9

2

√
πα2

sg0(1 + ep)(2ep − 1)

49− 33ep
+

15
√
παs(0.5e

2

p + 0.25ep − 0.75 + l)

(49− 33ep)l
+

25

4

√
π

(49− 33ep)(1 + ep)lg0

]
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Frictional Viscosity Models:

Author Model

Ogawa et al. (1980) µs,fric =
1

2
ps,fricI

−1/2
2D sin(φ)

Johnson and Jackson (1987) µs,fric =
1

2
ps,fricsin(φ)

Drag Models:

Author Model

Ergun (1952) Ksg = 150
µgα

2

s

d2pα
2
g

+ 1.75
ρgαs

dpαg

|ug − us|

Wen and Yu (1966) Ksg = 0.75
Cdαsα

−1.65
g ρg|ug − us|

dp

Gidaspow (1994) Ksg =

{

Ergun Model , αs > 0.2

Wen-Yu Model , αs < 0.2

Schiller and Naumann (1933) Ksg = 0.75
Cdαsαgρg|ug − us|

dp

Syamlal et al. (1993) Ksg = 0.75
Ceαsαgρg|ug − us|

dpv2rs

Gibilaro et al. (1985) Ksg = 17.3
µg

d2pα
2.8
g

+ 0.336
ρg

dpα2.8
g

|ug − us|
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Here, the coefficients Cd, Ce, vrs and Rep are defined as:

Cd =







24

Rep
(1 + 0.15Re0.687p ), Rep < 1000

0.44, Rep ≥ 1000
, Ce =

[

0.63 +
4.8

(Rep/vrs)0.5

]2

(46)

vrs = 0.5
(

A− 0.06Rep +
√

(0.06Rep)2 + 0.12Rep(2B − A) + A2

)

(47)

Rep =
ρgdp|ug − us|

µg

, A = α4.14
g , B =

{

0.8α1.28
g , αg ≤ 0.85

α2.65
g , αg > 0.85

(48)
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