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Abstract. Viscoelastic problems deserve great interest in Computational Mechanics literature. In the 
last years different approaches have been proposed in order to model viscoelastic problems, as in the 
case of the generalized Maxwell model and its numerical implementation. 
In particular Kaliske and Rothert (M. Kaliske and H. Rothert, Comput. Mech., 19(3): 228-239 (1997)) 
discussed basic reological models and the formulation of a generalized Maxwell model and the 
corresponding implementation of three dimensional viscoelastic model both for small and large strain 
cases.  
The numerical implementation addressed by Kaliske and Rothert is quite simple for small strain case 
and can be extended to a large strain format amenable to be included in finite element codes SOGDE 
and Metafor.  
The implementation of the discussed model in a 1D constitutive model, written in Matlab, is 
addressed. The well known relaxation and creep tests are simulated and compared with analytical 
results. Furthermore, the influence of constitutive parameters on the viscoelastic response is 
discussed. In addition, the model is implemented in Finite Element codes and the obtained results are 
compared with the 1D ones. 
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1 INTRODUCTION 

Materials with both elastic and viscous behaviors are usually called "viscoelastics". An 
essential feature of them is the time-dependent response. These materials have received great 
scientific and technological interest due to the diversity of its applications and consequently 
different approaches have been proposed to model viscoelastic response, see Fancello et. al 
(2006,2008) and Bonet (2001) for instance. Some common applications of these materials are 
human cervical spine (Shim et. al, 2005), bovine cortical bone (Bekker et. al, 2014), vibration 
absorbers (Saidi, 2011), tires (Lee, 2011), among others. 

There several differential constitutive models (Ottosen, 2005; Drozdov, 1996) able to 
represent the response of viscoelastic materials. One such model is the Kelvin-Voigt, currently 
implemented in Metafor code (Ponthot, 1995, 2002). A more general is the so called 
generalized Maxwell or Wiechert model. A feature of the latter is to consider that the 
relaxation occurs at a distribution of times. 

Applications related to biomechanics, for instance, make it necessary to implement this 
constitutive model numerically in large strain finite element codes such as SOGDE (García 
Garino, 1993; Careglio et. al, 2005; García Garino et. al, 2006) and Metafor. 

In this work we performed the numerical implementation addressed by Kaliske and Rothert 
(1997) of the generalized Maxwell model. In particular, this model is implemented in a one-
dimensional code as well as a finite element one. 

Several numerical experiments are performed. In particular, relaxation and creep problems 
are studied and the results are compared with analytical ones. Then, the case of constant strain 
rate is studied with the different numerical implementations that have been made in this work. 

In addition, sensitivity to constitutive parameters of the generalized Maxwell model and 
numerical implementation from Kaliske and Rothert (1997) are presented. 

A summary of the viscoelastic and numerical models are briefly presented in section 2 of 
this paper. The results of numerical simulations are shown in section 3. Finally, in section 4 
the conclusions of the work are provided. 

 

2 VISCOELASTIC AND NUMERICAL MODELS 

In this section, the viscoelastic model used and the numerical model is briefly described, 
and can be found in greater detail in the work of Kaliske and Rothert (1997). 

The viscoelastic model corresponds to a generalized Maxwell one, as shown in Figure 1, 
where µ0 is the elastic material constant of the so called Hooke-element and µj are the elastic 
material constant of the Maxwell-element with j=1..N. For these elements the coefficient of 
viscosity is ηj. This coefficient can be expressed in terms of the relaxation time τj as ηj = τj µj. 
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Figure 1: Generalized Maxwell model. 

In the numerical model for linear viscoelasticity and one-dimensional case the current state 
of stress is computed by: 
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where εn+1 is the current strain and hjn+1 are the internal stress variables given by: 
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Equations (1-2) have been implemented in a one dimensional code for one Gauss point. 
The extension to the three-dimensional case is: 

 ∑
=

+++ +=
N

j

n
j

nn h
1

11
0

1 σσ  (3) 

with: 

 11
0

++ = nen C εσ  (4) 

 [ ]nn

j

j

j
n
j

j

n
j t

t

h
t

h 0
1

0
1

exp1

exp σσ

τ

τ
γ

τ
−

∆













 ∆−−

+












 ∆−= ++  (5) 

where Ce is the constitutive elastic tensor and γj=µj/µ0 is the normalized elastic material 
constant. The constitutive viscoelastic tensor Cv,n+1 is given by: 1, +nvC

eC
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Equations (3-6) have been implemented in a finite element code. 
Alternatively, the three-dimensional case, in order to be initially considered for large 

strains, it can be conveniently expressed as: 
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where κ is the bulk modulus and dev denote the deviatoric part of the tensors. Finally, the 
equations (7) to (9) have been preliminarily implemented in Metafor. 

3 NUMERICAL SIMULATIONS 

In this section several problems are considered in order to evaluate the response of the 
numerical model described above and the different implementations. 

3.1 Benchmarks 

Several benchmarks are performed in this section. The results are compared with analytical 
ones. Both relaxation and creep tests are considered, which are usually used to assess the 
time-dependent behavior of viscoelastic materials. 

3.1.1 Relaxation test with one branch of Maxwell 

The first benchmark is the simulation of the relaxation test. The model consists of one 
Hooke-element and one Maxwell-element. The model is shown in Figure 2. The strain is 
applied instantaneously and remained constant over time. 
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Figure 2: Generalized Maxwell model with one branch. 

For this case the analytic solution it can be expressed as:  
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The material properties are shown in Table 1. The applied strain is ε=2 while the interval 
time is 0s< t≤1s with ∆t=0.1s. 

 
µ0=10 N/mm2 
µ1=10 N/mm2 
η1=10 MPa s 

τ1=1s 

Table 1: Material properties. 

The stress history is shown in Figure 3. For numerical results the equations (1-2) are used, 
while for the analytical ones the equation (10) is employed.. It can be seen that for relaxation 
test numerical results are able to reproduce the behavior of the analytical ones with a good 
agreement. 

 
Figure 3: Stress history for relaxation test. 
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3.1.2 Relaxation test with one branch of Maxwell and different relaxation times 

The second benchmarks correspond to the relaxation test and the same configuration model 
of the Figure 2. In this case four different relaxation times are considered. The properties of 
the material are shown in Table 2. In this case the simulations are carried out with ε=0.01, in 
the interval 0s< t≤20s for ∆t=0.01s. For this case the relaxation times are τ1=1,5,10,20 
seconds. 

 
µ0=4 N/mm2 

µ1=10 N/mm2 
η1=10 MPa s (τ1=1s) 
η1=50 MPa s (τ1=5s) 

η1=100 MPa s (τ1=10s) 
η1=200 MPa s (τ1=20s) 

Table 2: Material properties. 

The analytical results are computed from equation (10) and compared with the numerical 
ones. The evolution of the stress in time is plotted in Figure 4. In all cases, the agreement of 
the obtained results is excellent.  

It can be seen from the curve corresponding to τ1=1s that the numerical model is able to 
reproduce the characteristic asymptotic behavior of the stress for some cases of the relaxation 
test. 

 
Figure 4: Stress history for relaxation test. 
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From a point of view of the sensitivity to constitutive parameters it can be said that when 
relaxation time τ1 decreases due to viscosity η1 decreases, the stress is lower for the same 
time. Further, according as τ1 decreases the stress behavior tends to be asymptotic. 

The influence of relaxation time τ1 on stress for the maximum time reached (tmax=20s) is 
plotted in Figure 5. Consistent with results of Figure 4 when τ1 increases greater values of 
stress are obtained. 

 
Figure 5: Sensitivity to relaxation time of the generalized Maxwell model with one branch. 

3.1.3 Creep test with one branch of Maxwell 

The third benchmark is the simulation of the creep problem for one Hooke-element and 
one Maxwell-element. The stress is applied instantaneously and remained constant over time. 
For this case, the analytical solution is given by: 
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The material properties are the same as those of Table 1. The applied stress is 
σ0=100N/mm2 in the time 0s< t≤10s with ∆t=0.1s. 

It should be clarified that the implemented code is strain-driven type. Taking this into 
account, from equation (11) and previous data is possible to obtain the strain history that is 
shown in Figure 6.  
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Figure 6: Strain history for creep test. 

It can be seen in Figure 7 that the numerical results obtained from the strain-history 
recovery the corresponding stress-history. Also, it can be observed that a good agreement 
between numerical and analytical values is reached. 

 
Figure 7: Stress history for creep test. 
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3.2 Constant strain-rate test 

From the good results obtained previously for two basic tests in viscoelasticity it is possible 
to study other cases. In this subsection the viscoelastic problem for the particular case of 
constant strain-rate is addressed. This is another classic test for determining the mechanical 
behavior of time-dependent materials. 

First, the simulations are carried out with the implementation for one point of Gauss where 
the sensitivity to constitutive parameters is studied. Next, the viscoelastic problem is studied 
with the finite element implementations. 

3.2.1 Constant strain-rate test with different number of Maxwell-elements 

The influence of number of branches in the generalized Maxwell model is studied in this 
case. The numerical simulations are performed with one Hooke-element and different number 
of Maxwell-elements, while the parameters µ0, µj and τj  are kept fixed. Thus, γj and ηj are the 
same in each branch of Maxwell. 

The material properties are shown in Table 3. The strain changes linearly and has a value of 
0< ε≤0.5 with ∆ε=0.05. The time interval considered is 0< t≤1 with ∆t=0.1. 

 
µ0=10 N/mm2 
µj=10 N/mm2 

ηj=10 MPa s (τj=1s) 

Table 3: Material properties. 

The evolution of stress with strain for different number of Maxwell-elements is shown in 
Figure 8. As can be seen the stress response is nonlinear although the strain has a linear 
variation with time.  

Furthermore, when the number of Maxwell-elements increases greater values of stress are 
obtained. This is highlighted in Figure 9, in which the influence of numbers of Maxwell-
elements on the maximum stress σmax reached it can be observed. The increase of Maxwell 
elements leads to greater values of σmax. 
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Figure 8: Stress versus strain for constant strain-rate. Different number of Maxwell-elements. 

 
Figure 9: Sensitivity of σmax to the number of Maxwell-elements. 
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3.2.2 Constant strain-rate test with different relaxation times 

In this case the influence of different relaxation times on the generalized Maxwell model is 
studied with a fixed number of branches. The numerical simulations are carried out with ten 
Maxwell-elements and the same relaxation time in each branch. The material properties are 
shown in Table 4 with j=1..10. The applied strain and the time are the same as in 3.2.1. 

  
µ0=10 N/mm2 
µj=10 N/mm2  

ηj=1 MPa s (τj=0.1s)  
ηj=5 MPa s (τj=0.5s) 
ηj=10 MPa s (τj=1s) 
ηj=50 MPa s (τj=5s) 

ηj=100 MPa s (τj=10s) 
ηj=200 MPa s (τj=20s) 

ηj=200000 MPa s (τj=20000s) 
Table 4: Material properties. 

The stress-strain curves are shown in Figure 10. It can be seen that when τj increases (due 
to the viscosity ηj increases) greater values of stress are obtained. It should be noted that for 
values of τj higher to unity the responses are similar for different relaxation times and the 
values of stress are close to each other. Moreover, it should be noted that for τj equal to 20000 
the stress strain relation is closed to the linear elastic limit case for ηj approaching to infinity. 
The linear elastic limit case corresponds to eleven elastic parallel springs. Since all the springs 
have equal elastic constant, the elastic equivalent constant is 110 N/mm2 for the linear elastic 
limit case. 

 
Figure 10: Stress versus strain for constant strain-rate. Different relaxation times. 
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Sensitivity of σmax to the different relaxation times is plotted in Figure 11. It can be 
observed for values of τj equal or less than unity (τj =0.1,0.5,1) that σmax is very sensitive to 
the change of relaxation time. Otherwise, for values of τj higher than unity (τj=5,10,20) the 
influence of this parameter on σmax is small. 

 
Figure 11: Sensitivity of σmax to the different relaxation times. 

3.2.3 Finite element simulations with one branch of Maxwell 

Finally, the results from 3.2.1 are taken as references to validate the implementations and 
simulations carried out with 2D finite element code and Metafor. Here, the same properties as 
in 3.2.1 are considered together with a Poisson's ratio equal to 0.4995. The geometry and 
boundary conditions used in finite element codes are shown in Figure 12, where P is the 
applied load and is equal to 10N. In the simulations a plane strain problem with Q1 finite 
element type is considered.  

 
Figure 12: Geometry and boundary conditions. 
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The results obtained with the three numerical codes are plotted in Figure 13. The results 
from one point of Gauss/2D finite (linear) element implementations appear stiffer than 
Metafor. From a point of view of the global response it can be said that the three codes lead to 
similar results. It can be seen from Figure 13 that the difference reached for the stress (ε=0.05) 
is approximately equal to 12%. 

It can be noted that the implementations in the finite element codes are only preliminary. 
Further studies are needed to validate these implementations. 

 
Figure 13: Stress versus strain. 

4 CONCLUSIONS 

In this work one point of Gauss code based on the numerical implementation addressed by 
Kaliske and Rothert (1997), able to reproduce the response of viscoelastic materials that can 
be modeled by a generalized Maxwell model have been developed. This code has been 
validated against classical tests used in viscoelasticity such as relaxation and creep, yielding 
very good results relative to analytical ones. 

In addition, the generalized Maxwell model in two finite element codes has been 
implemented, with good results. Nevertheless, further work should focus on more detailed 
comparisons for the large strains finite element codes implementations. 

Furthermore, the influence of constitutive parameters related to the viscoelastic behavior 
has been studied. For the case of constant strain-rate for different numbers of Maxwell-
elements the increase of maximum stress occurs gradually. However, for the case of constant 
strain-rate with different relaxation times and a fixed number of branches the increase of 
maximum stress is not gradual, particularly for values of relaxation times equal or less than 
unity. 
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