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Abstract. Uncertainty is one main concern on operational prediction systems, because the initial conditions are 
not precisely determine, model parameters are estimated with few information, and the phenomena itself is not 
completely formulated – for instance: in the numerical weather prediction, turbulence is not fully understood 
and/or described. A quantitative evaluation how good is the prediction can be called predictability. The ”bred 
vector” methodology can be applied to characterized classes of dynamics. Two neuro-fuzzy systems are 
employed as class dynamics classifiers: (a) ANFIS (Adaptive-Network-based Fuzzy Inference System) based on 
Takagi-Sugeno’s approach, (b) GUAJE (Generating Understandable and Accurate fuzzy models in a Java 
Environment) based on Mamdami’s scheme. The technique is applied to a chaotic system: three coupled waves 
in solar physics. A better classification performance is obtained using the ANFIS, but the automatic rules 
generated by the GAUJE are more easily interpretable.  
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1 INTRODUCTION 
A design for a prediction dynamical system can be expressed as: an observation system to 

provide systematic data from a given dynamical system, and a time-evolution mathematical 
model – with its computational implementation. An operational prediction system is not a 
simple task, it depends on appropriated facilities and specialized personal, dealing with 
advanced computer systems (hardware and software). In addition, the science itself is under 
development.  

Here, the focus is to evaluate the goodness of the prediction, or the predictability. 
One approach is to do a set of executions for the forward model, the ensemble prediction 

(Kalnay, 2003). The ensemble prediction is used for the operational centers, as employed by 
the CPTEC-INPE (Center for Weather Prediction and Climate Studies, National Institute for 
Space Research, Brazil) – see Mendonça and Bonatti (2004). From the ensemble, some 
statistics properties can be computed, such as the confidence interval, identifying zones of low 
and high predictability. The ensemble prediction can also be described as a uncertainty  
quantification of the forecast. 

A different approach is presented, where the predictability is formulated as a classification 
problem. The bredding method is used to provide inputs for the dynamics classification. The 
bred vector is computed perturbing the reference dynamics (control) and calculating the 
difference between the perturbed and control dynamics, after some time-steps. This 
methodology has been employed to the American National Center for Environmental 
Prediction (NCEP) to evaluate the prediction (Toth and Kalnay, 1997), and it also be used in 
the several chaotic systems (Evans et al, 2004; Pasini and Pelino, 2005; Cintra and Campos 
Velho, 2008). The bred vector magnitude can be employed to establish different conditions to 
classify the dynamics. Evans et al. (2004) have derived some rules for the dynamics of the 
Lorenz system, and similar rules have been identified to the three coupling waves system to 
the solar physics (Cintra and Campos Velho, 2008). These two former experiments show that 
bred vectors provide a good tool for the prediction of behavior of chaotic systems. However, 
the derived rules, as in the cited studies, were obtained after tedious analysis by experts.  

The present work uses neuro-fuzzy systems to achieve two goals: as a classification tool, 
and secondly for automatic rule generation for dynamics. The experiments were carried out 
on the chaotic non-linear coupled three-waves model (Chian et al., 1994). Two neuro-fuzzy 
systems are employed: ANFIS (Adaptive-Network-Based Fuzzy Inference System (Jang, 
1993)) based on Takagi-Sugeno’s approach, and GUAJE (Generating Understandable and 
Accurate fuzzy models in a Java Environment (Alonso et al., 2008, Alonso and Magdalena, 
2011)) based on Mamdami’s scheme. ANFIS presented a better accuracy, but the rules 
derived by GAUJE are more easily interpretable. 

2 BREDDING METHOD AND CHAOTIC SYSTEM 

Chaotic systems are deterministic dynamical systems with at least one positive  (real part) 
Lyapunov exponent, and they are extremely sensitive to initial conditions. This feature 
imposes an important issue: are the chaotic systems predictable? Since observations always 
contain errors, the initial condition, for example, will never be precisely determined. For 
practical point of view, a prediction for a chaotic system only can be feasible for a short 
period of time, computing new initial condition from new observations. Therefore, the 
evaluation of quality of the prediction is an important issue.  

The breeding method was designed as a scheme to generate perturbations on initial 
condition for ensemble forecasting in prediction of the atmospheric dynamics (Toth and 
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Kalnay, 1997). In this method, the model is executed two times. Firstly, it is run with the 
original data (control), and a second execution with a small perturbation on the initial fields. 
The difference between these two executions, after a certain number of time-steps, is the bred 
vector(s). A measure of the flow instability could be computed from the growth rate of the 
bred vectors. Figure 1 shows bred vectors growth. Alliggod et al. (1996) and Kalnay (2003) 
have reported the studies on stability of flows using Lyapunov vectors and bred vectors. 

 

 
 

Figure 1: Bred vectors: systematic evaluations. 
 
As mentioned above, the bred vector is obtained adding a small perturbation in the initial 

condition, computing the difference between perturbed and control runs, and normalization: 
a) δw0 =w0 +Δw , 

b) δwn =w (t0 + nΔt )−δw (t0 + nΔt ) , 

c) gn = (1 n )log δwn δw0!
"

#
$ . 

2.1 Three coupled waves  

Nonlinear three-waves coupling are of general interest in many branches of physics 
(Chian, 1994). Such coupling can explain the generation and modulation of plasma waves in 
the planetary magnetosphere and solar wind. A simple model for describing the temporal 
dynamics of resonant nonlinear coupling of three waves can be derived assuming 
monochromatic waves, where the time scale of the nonlinear interactions is much longer than 
the periods of the linear (uncoupled) waves. The electric fields are written in the form: 
Eα (x ,t ) = (1 2)Aα (x ,t )exp{i (kαx −ωt )} , where α =1,2,3 . However, for three-waves 
interactions to occur, the wave frequencies ωα  and wave vectors kα  must satisfy the resonant 
conditions 

 
                                                ω3 ≈ω1 −ω2  , k3 ≈ k1 − k2  .                                        (4)     

                                
Under these circumstances, the nonlinear temporal dynamics of the system can be 

governed by the following set of three first-order differential equations expressed in terms of 
the complex slowly varying wave amplitude (Meunier et al., 1982) 

 

                                                

dA1(t ) d τ =v1A1 − A2A3
dA2 (t ) d τ = iδA2 − A1A2A3

*

dA3(t ) d τ =v1A1A3A2
*

                                      
(5)
(6)
(7)
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where  the variable τ = χt , with χ   is a characteristic frequency, δ = (ω1 −ω2 −ω3) χ  is the 
normalized linear frequency mismatch, and the wave speed vα = v̂α χ   gives the linear wave 
behaviors on the long time scale – parameter χ  is a constant. In the experiments, wave A1 is 
assumed to be linearly unstable (v1 > 0) and the other two waves, A2 and A3, are linearly 
damped (v2 =v3 = −v < 0 ) (Chian et al., 1994, Lopes and Chian, 1996). The system admits 
both periodic and chaotic waves. For the chaotic dynamics, a strange attractor is found (see 
Figure 2). The coupled three-waves system has two seasons in the strange attractor. However, 
the seasons have no symmetry. One regime is identified as a line formed by a curve on XY 
plane followed by another curve on the YZ plane (Figure 2). Another regime is characterized 
by the straight line in the intersection between the XY and YZ planes. 

 
Figure 2: Three-waves model attractor colored with the bred vector magnitudes. 

 

 
Figure 3: A1(t) for the three-waves model model. 
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Figure 3 shows the A1(t) amplitude projection of the strange attractor. It is clearer to identify 
the regime changes after a red star appears. The red star means bred vector greater than 0.064, 
blue stars indicate negative growth rate, green and yellow stars the bred vector magnitude 
belongs to [0, 0.032] and [0.032, 0.064], respectively. 

3 NETWORKS, FUZZY SYSTEMS AND NEURO-FUZZY SYSTEMS 
 Artificial Neural Networks (ANNs) (Haykin, 1999) were imagined to simulate the 

learning behavior of the human brain. The network is composed of processing units with 
weighted connection among them. The most cited method to compute the connection weights 
is the backpropagation method, where the adjustment is done to minimize the square 
difference between the target and the ANN output. Here, a neural network with a single 
hidden layer have been used, taken from the WEKA platform. 

Fuzzy Systems (Gomide and Pedrycz, 1998) is focused to emulate some of the human 
capacity of reasoning with diffuse information. Different from the Boolean logic, the fuzzy 
logic is a many-valued logic, supporting the fuzzy set theory. Membership to a fuzzy set is a 
number in the real interval [0, 1] – leaking from the binary values (true or false). In general, 
systems based on fuzzy sets theory have rules of the type “if condition then conclusion” (IF-
THEN rules), where the variables in the contexts of the condition and conclusion are elements 
of fuzzy sets. Probably, Sugeno and Mamdani models are the most well-known kinds of fuzzy 
systems. The Sugeno fuzzy systems have been applied to design control systems (Takagi, T., 
Sugueno, 1985). The Mamdami fuzzy systems has also been applied to control, but due to the 
their characteristics easier interpretation rules are obtained from these system, by comparing 
with Sugeno systems.  

Neuro-fuzzy systems are models combining artificial neural networks features with fuzzy 
rule-based systems. A neuro-fuzzy system (Lin and Lee, 1996) is used to derive a fuzzy rule 
based system, whose defining parameters (fuzzy terms and rules) are identified in a learing 
phase, in a similar process used by neural networks, where a set of input-output pairs is 
employed. Neuro-fuzzy systems are models combining artificial neural networks features with 
fuzzy rule-based systems. A neuro-fuzzy system (Lin and Lee, 1996) is used to derive a fuzzy 
rule based system, whose defining parameters (fuzzy terms and rules) are identified in a 
learing phase, in a similar process used by neural networks, where a set of input-output pairs 
is employed. 

Artificial neural networks are very effective to pattern recognition, but it is hard to explain 
how works the ”black box” of the ANN. On the other hand, fuzzy rule based systems, after to 
create the inference (IF-THEN) rule, is much easier to understand how results are obtained. 
Neuro-fuzzy systems, using neural networks learning engine for creating the inference rules, 
entail to join both approaches.  

Neuro-fuzzy systems are linked to their fuzzy system framework. Therefore, there are at 
least two types of such systems: derived from Sugeno and Mamdami approaches. The initial 
layers of Sugeno and Mamdami neuro-fuzzy systems are the same, but considering other 
layers the implementations are very different. The similar layers are commented bellow. 

 In the first layer, the current value of each input fuzzy variable is compared with the fuzzy 
terms associated with that variable, resulting in a compatibility degree for each term. In the 
second layer, the compatibility degrees from the different input variables are combined, 
resulting in the overall compatibility degree of the potential rules. In the last layers, a fuzzy 
set (respect. a set of constants) is learned for each rule in a Mamdami (respec. Sugeno) 
systems. The numerical experiments are performed with ANFIS (Shing and Jang, 1993), and 
GUAJE (Alonso at al., 2008) neuro-fuzzy computer codes. The configuration of the classifier 
designed by the ANFIS uses the backpropagation algorithm. 

Mecánica Computacional Vol XXXIII, págs. 1783-1791 (2014) 1787

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

4 RESULTS 
The ANN and the ANFIS experiments were produced using platforms WEKA and 

MATLAB, respectively. Training with ANFIS was performed considering 3 triangular fuzzy 
terms for each input variable and constant output, with 300 epochs. The Multilayer Perceptron 
(MLP) with 3 layers (input layer, one hidden layer, and output layer) was chosen as the ANN 
architecture. The ANNs used the following configuration: learning rate = .3, momentum = .2, 
epochs = 500. The number of neurons in the hidden layer was determined by the formula: 

 

                                                                 nHL =
1
2
(nIN + nC )                                                (8) 

 
where nHL  is the neurons in the hidden layer, and nIC, nC are the number of inputs (= 4) and 
classes, respectively.  

The main focus for the GUAJE system is to design a easier interpretable Fuzzy Rule-Based 
Classifiers (FRBS) from the Mamdami’s approach. The package is able to combine 
knowledge from the expert information and/or from the data. For many applications, the 
expert information is hard to obtain or difficult to express in a formal way. Considering NC 
classes C = {C1, C2, C3, …, CNc}, a FRBC is a fuzzy system with capacity to select one class 
from a pre-defined NC classes. For an input vector ( x p ∈ R n ), it is possible to determine an 
activation degree for the vector x p  associated to each class Ci by using a fuzzy inference. 
Clearly, the input vector can have a membership degree different of zero for more than one 
class, but the output class Ci  is derived from the highest µ

C i (x p ) : membership degree of xp 

to the class Ci. The GAUJE system uses a Highly Interpretable Linguistic Knowledge (HILK) 
engine, where the fuzzy classification is based on the Max-Min inference scheme with the 
winner rule fuzzy reasoning tool. The whole process is made up of four main steps: 
1. Selection: Identify the most discriminative variables. 
2. Partition: includes partition learning (automatic generation of fuzzy partitions from data) 
and partition selection. 
3. Rule base learning: linguistic rules are automatically extracted from the data. 
4. Knowledge base improvement : iterative refinement process for partitions and rules. 

The goal here is to identify with class of dynamics the chaotic system is going to drop. 
This is an alternative to compute the confidence interval, where several executions should be 
performed for calculating some statistical properties.  

In the three-waves experiment, we have used 170 samples, divided into training (100), 
validation (30) and test (40). The input is the number of bred vectors in each class (color) 
found in the preceding straight line regime.   

In the two-classes experiment, the classes description are given as: 
A: the straight line trajectory will last up to 1200 time steps; 
B: the straight line trajectory will last more than 1200 time steps. 
In the multi-classes experiment, we have used 6 classes, numbered from 0 to 9. Each class 

is associated to the interval bounding the number of time Each class is associated to the 
interval bounding the number of time steps in which the straight line trajectory is predicted to 
last: Class-0: [0, 1200], Class-1: [1201, 1600], Class-2: [1601, 2000], Class-3: [2001, 2400], 
Class-4: [2401, 2800], Class-5: > 2800.  

Confusion matrices were computed by the use of ANN, ANFIS, and GAUJE. The 
classification performance is shown in Table 1. 
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Table 1: Classification performance for 2 and 5 classes. 
Precision 2 classes 5 classes 

ANN 92,5% 75.0% 
ANFIS 87,0% 77.5% 
GUAJE 87,5% 70.0% 

 
The main focus for the GUAJE system is to design a easier interpretable Fuzzy Rule-Based 

Classifiers (FRBS) from the Mandami’s approach. The package is able to combine knowledge 
from the expert information and/or from the data. For many applications, the expert 
information is hard to obtain or difficult to express in  

 

 
Figure 4: Automatic rules generated by GUAJE/ 

 
Figur3 4 shows the automatic rules (25) generated by the GUAJE system. Several rules can 

be grouped to become even easier interpretable system. 

5 CONCLUSIONS 

We have investigated the ability of ANFIS and GAUJE neuro-fuzzy systems to evaluate 
the predictability of chaotic system. This task is formulated as a classification problem, where 
classes of dynamics are identified. Experiments were performed on the coupled three-waves 
model from solar physics. Our results were compared with a standard artificial neural network 
(multilayer perceptron). The results obtained so far show that neuro-fuzzy systems of the 
Sugeno type (ANFIS) are useful for the prediction of chaotic systems. The use of other 
systems (neuro-fuzzy and otherwise) is under investigation, with the potential for producing 
fuzzy systems by learning, in particular those based in the Mamdami paradigm. The ultimate 
goal is to use the derived fuzzy systems as a basis for the automatic production of 
interpretable rules, such as those created by observation for the three-waves system. 

As already mentioned, the dynamics identification formulates as a classification problem is 
an alternative to evaluate the predictability – another approach for predictability quantification 
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is to use statistical analysis for computing the confidence interval. Applying the neuro-fuzzy 
formulation as classification tool, we can also derive automatic rules. Such rules can be 
employed for forecasters in the practical operations as an auxiliary decision tool.  
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