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Abstract. In this paper, the robust design with an uncertain model of a vibro-impact electro-mechanical
system is done. The electro-mechanical system is composed of a cart, whose motion is excited by a DC
motor, and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring
component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier,
placed outside of the cart, constrains the hammer movements. Due to the relative movement between
the hammer and the barrier, impacts can occur between these two elements. The developed model of the
system takes into account the influence of the DC motor in the dynamic behavior of the system. Some
system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier.
The objective of the paper is to perform an optimization of this electro-mechanical system with respect
to design parameters (spring component, and gap of the barrier) in order to maximize the impact power
under the constraint that the electric power consumed by the DC motor is lower than a maximum value.
This optimization is formulated in the framework of robust design due to the presence of uncertainties in
the model.
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1 INTRODUCTION

Electro-mechanical systems are common in actual technologies, and their design is of a great
interest in many areas. Many works have been done in this topic, as Zhankui and Sun (2013)
and lee (2006), for characterizing the mutual interaction between electrical and mechanical
components. This interaction leads us to analyze very interesting nonlinear dynamical systems,
in which the nonlinearities affects the two most important variables used to evaluate the per-
formance of electro-mechanical systems, related to the power consumed by the electrical com-
ponent, and the power used into the movement of the mechanical component. As the mutual
interaction between electrical and mechanical components affects the two powers used to eval-
uate the system performance, the coupling effects must be analyzed in the design optimization
problem for electro-mechanical systems.

The present work deals with the design optimization of a vibro-impact electric-mechanical
system in order to improve its performance. The electrical component of the system is a DC
motor, and the mechanical component is a vibro-impact system. It should be noted that, in Lima
and Sampaio (2012), the equations and the numerical integration were presented for a similar
electric-mechanical system for which the embarked mass was replaced by a pendulum and for
which there was no impact. The vibro-impact dynamics can be affected by many factors, and the
optimal design of vibro-impact dynamical systems requires to taken into account uncertainties
in the computational models that are used (see for instance Sampaio and Soize (2007)).

This paper is organized as follows. In Section 2 , the elements (motor, cart, hammer, and
barrier) of the electro-mechanical system are presented and the initial value problem is formu-
lated for the vibro-impact electro-mechanical system. In Section 3, we define the variables of
interest for the design optimization. The construction of the probabilistic models of the un-
certain parameters, and the formulation of the robust design optimization problem are given in
Section 4. The robust design optimization consists in finding the optimal design point using the
computational model in presence of uncertainties. The numerical results of the robust design
optimization problem are presented in Section 5.

2 DYNAMIC OF THE ELECTRO-MECHANICAL SYSTEM

2.1 Electrical component: DC motor

The modeling of DC motors is based on the Kirchhoff law (see Karnopp et al. (2006)), which
is written as

l ċ(t) + r c(t) + ke α̇(t) = ν ,

jm α̈(t) + bm α̇(t)− ke c(t) = −τ(t) ,
(1)

where t is time, ν is the source voltage, c is the electric current, α̇ is the angular speed of the
motor, l is the electric inductance, jm is the inertia moment of the motor, bm is the damping
ratio in the transmission of the torque generated by the motor to drive the coupled mechanical
system, ke is the constant of the motor electromagnetic force, and r is the electrical resistance.
Figure 1 shows a sketch of the DC motor. The available torque delivered to the mechanical
component, in the z-direction, is represented by τ (see Fig. 1).

2.2 Mechanical component: cart and hammer

As described in the introduction, the mechanical component is composed by a cart whose
movement is driven by the DC motor, and by a hammer that is embarked into the cart. The
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Figure 1: Sketch of the DC motor.

Figure 2: Vibro-impact electro-mechanical system. The nonlinear component spring is drawn as a linear spring
with constant kh1 and a nonlinear cubic spring with constant kh3.

motor is coupled to the cart through a pin that slides into a slot machined in an acrylic plate
that is attached to the cart, as shown in Fig. 2. The off-center pin is fixed on the disc at distance
∆ of the motor shaft, so that the motor rotational motion is transformed into a cart horizontal
movement. The horizontal force that the DC motor exerts in the cart is fx, and the vertical force
is fy (induced by the viscous friction between in the pin and the slot). The available torque τ
and vertical force fy are written as

τ(t) = fy(t) ∆ cosα(t)− fx(t) ∆ sinα(t) , (2)

fy(t) = cpin ∆ α̇(t) cosα(t) , (3)

where cpin is defined in Fig. 2. The embarked hammer is modeled as a rigid body of mass
mh and its relative displacement is h with respect to the cart. In the adopted model, the
constitutive equation of the spring component between the hammer and the cart is written as
fs(t) = kh1 h(t) + kh3 h(t)3. The rate of nonlinearity of the hammer stiffness is defined as
rh = kh3/kh1. The horizontal cart displacement is represented by x. Due to constraints, the
cart is not allowed to move in the vertical direction. The spring-damper element modeling the
medium on which the impacts occur, is constituted of a linear spring with stiffness coefficient
ki and a damper with damping coefficient ci. The equations of the mechanical component are

ẍ(t) (mc +mh) + ḧ(t) mh + cext ẋ(t) = −fimp(t) + fx(t) , (4)

ẍ(t) mh + ḧ(t) mh + cint ḣ+ kh1 h(t) + kh3 h
3(t) = −fimp(t) , (5)

where, cext is the viscous friction coefficient between the cart and the rail and cint = 2ςint
√
mhkh1

is the viscous friction coefficient between the cart and the hammer (ςint is the damping ratio),
and where fimp is the impact force between the hammer and the barrier, which is written as

fimp(t) = −φ(t)
(
ki (x(t) + h(t) + g) + ci (ẋ(t) + ḣ(t))

)
, (6)
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where

φ(t) =

{
1, if x(t) + h(t) + g < 0 and ḣ(t) + ẋ(t) < 0 ,

0, in all other cases ,
(7)

in which g is defined as the horizontal distance from the hammer (when α = π/2 rad) to the
equilibrium position of the barrier.

2.3 Coupled vibro-impact electro-machanical system

Due to the system geometry, we have the following constraint

x(t) = ∆ cos (α(t)) . (8)

Substituting Eqs. (2) to (8) into Eq. (1), we obtain the initial value problem for the vibro-impact
electro-machanical system that is written as follows. Given a constant source voltage ν, find
(α, c, h) such that, for all t > 0,

lċ(t) + rc(t) + keα̇ = ν , (9)

α̈(t)
[
jm + (mc +mh)∆2sin (α(t))2]− ḧ(t) [mh∆ sin (α(t))]− kec(t)

+α̇(t)
[
bm + α̇(t)(mc +mh)∆2 cos (α(t)) sin (α(t)) + cpin∆2 cos (α(t))2 − cext∆2 sin (α(t))2]

= φ
(
ki(∆ cos (α(t)) + h+ g) + ci(−dα̇(t) sin (α(t)) + ḣ(t))

)
∆ sin (α(t)) ,

(10)

ḧ(t)mh − α̈(t) [mh∆ sin (α(t))]− α̇(t) [mh∆ α̇(t) cos (α(t))] + ḣ(t)cint + kh1h(t) + kh3h
3(t)

= φ(t)
(
ki(∆ cos (α(t)) + h+ g) + ci(−∆ α̇(t) sin (α(t)) + ḣ(t))

)
,

(11)

where

φ(t) =

{
1, if ∆ cosα(t) + h(t) + g < 0 and ḣ(t)−∆ α̇(t) cos (α(t)) < 0

0, in all other cases ,
(12)

with the initial conditions: α(0) = 0 , c(0) = ν/r , h(0) = 0 .

3 DEFINING SOME POWERS OF THE SYSTEM

The average of the electric power consumed in an interval [0, T ] is written as

πelec =
1

T

∫ T

0

ν c(t) dt. (13)

Let tjb and tje be the instants of begin and end of the j-th impact, such that for all t belonging to
[tjb , t

j
e], we have ẋ(t) + ḣ(t) < 0. At time t, the impact power, πj

imp(t), is then written as

πj
imp(t) = ki (x(t) + h(t)) (ẋ(t) + ḣ(t)), tjb ≤ t ≤ tje . (14)
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The time average of the impact power during the j-th impact, πj
imp, is written as

πj
imp =

1

tje − tjb

∫ tje

tjb

πj
imp(t) dt . (15)

Let Nimp be the total number of impacts that occur during time interval [0, T ]. The sum of the
averages of the impact power is

πimp =

Nimp∑
j=1

πj
imp . (16)

The variables πimp and πelec are considered for measuring the system performance. More πimp is
large and smaller is πelec, better will be the system performance.

4 ROBUST DESIGN OPTIMIZATION PROBLEM

As explained in the introduction, this paper deals with the robust design of the vibro-impact
electro-mechanical system in presence of uncertainties in the computational model. The three
parameters that are assumed to be uncertain are kh1, ki and ci, which are modeled by inde-
pendent Gamma random variables Kh1, Ki and Ci, with mean values Ki, Ci, and Kh1, and
with the same coefficient variation, denoted by δ. In order to formulate the robust design op-
timization problem, the set of all the system parameters is divided into three subsets. The
first subset is the family of the fixed parameters that is represented by the vector pfix = { ν,
l, r, jm, ke, bm, cpin, cext, ςint, rh, mc, mh, ∆ }. The second one is the family of the design
parameters that is represented by the vector pdes = {Kh1/mh, g}. The third one is the family
of the uncertain parameters that is represented by the random vector Punc = {Ki, Ci, Kh1}.
Since Punc is a random vector, the outputs of the electro-mechanical system are stochastic
processes and, consequently, πimp(pdes,punc) and πelec(pdes,punc), become random variables
Πimp(pdes) = πimp(pdes,Punc) and Πelec(pdes) = πelec(pdes,Punc). The cost function is defined
by

J(pdes) = E{Πimp(pdes)} . (17)

The robust design optimization problem is written as

popt
des = arg max

pdes∈Cad
J(pdes) , (18)

in which Cad = {pdes ∈ Pdes; E{Πelec(pdes)} ≤ celec}, where Pdes is the admissible set of the
values of pdes, and where celec is an upper bound.

5 RESULTS OF THE ROBUST OPTIMIZATION PROBLEM

For pdes ∈ Cad, the cost function is estimated by the Monte Carlo simulation method us-
ing 100 independent realizations of random vector Punc following its probability distribution.
For solving the optimization problem defined by Eq. (18), admissible set Cad is meshed as fol-
lows: for Kh1/mh, 13 values are nonuniformly selected in the interval [703 , 3, 830], and for
g, 20 nonuniform values in [0 , 0.038]. The hyperparameters δKi

, δCi
and δkh1 , which control

the level of uncertainties for Ki, Ci and Kh1 are fixed to 0.1. The optimization problem is
also considered whitout uncertainties in the systems parameters, that is, the deterministic case
(δKh1

= δKi
= δCi

= 0). For computation, the initial value problem defined by Eqs. (9) to (12)
has been rewritten in a dimensionless form. Duration is chosen as T = 10.0 s. The 4th-order
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(a) (b)

Figure 3: (a) Cost function as function of g with (Kh1/mh)opt. (b) Cost function as function of Kh1/mh with
gopt. In both graphs, the E{Πimp(popt

des)} is highlighted for the deterministic and stochastic cases with markers .

Runge-Kutta method is used for the time integration scheme for which we have implemented a
varying time-step. The time-step is adapted to the state of the dynamical system according to
the occurrence or the not occurrence of impacts. When the hammer is not impacting the barrier,
the time step used is 10−4 s, but when the hammer is approaching the barrier and when it is
impacting it, the time step is chosen as the value 10−5 s. The values used for the motor parame-
ters, were obtained from the specifications of the motor Maxon DC brushless number 411, 678.
The others elements of pfix are: ν = 2.4 V, mc = 0.30 Kg, mh = 0.50 Kg, rh = 0.30 1/m2,
cpin = cext = 5.00 Ns/m, ςint = 0.05, and ∆ = 0.01 m. Upper bound celec is 6.00 W. For the de-
terministic case, the components of the optimal solution popt

des are (Kh1/mh)opt = 1, 580 rad2/s2

and gopt = 0.011 m. For case with uncertainties, it is Kh1/mh = 1, 950 rad2/s2 and g =
0.008 m. The role played by uncertainties on the optimal values of the design parameters can
be analyzed through Fig. 3, which display the graphs g 7→ E{Πimp((Kh1/mh)opt , g)}, and
Kh1/mh 7→ E{Πimp(Kh1/mh , g

opt)}. The robustness of the optimal design point, popt
des, can

be analyzed in studying the evolution of the coefficient variation, δΠimp(p
opt
des), of random vari-

able Πimp(p
opt
des) as a function of the uncertainty level. However, in order to better analyze the

sensitivity of the responses with respect to the uncertainty level, we have constructed Fig. 4
that displays the graphs g 7→ δΠimp((Kh1/mh)opt , g) and Kh1/mh 7→ δΠimp(Kh1/mh , g

opt). It
can be seen that the value δΠimp(p

opt
des) occurs in a region for which the two following functions

g 7→ δΠimp((Kh1/mh)opt , g) and Kh1/mh 7→ δΠimp(Kh1/mh , g
opt) are minima. This means the

optimal design point is robust with respect to uncertainties.

6 CONCLUSIONS

In this paper, the formulation and the solution of a robust design optimization problem have
been presented for a nonlinear vibro-impact electro-mechanical system in presence of uncer-
tainties in the computational model. Since this nonlinear electro-mechanical system is devoted
to the vibro-impact optimization, the time responses exhibit numerous shocks that have to be
identified with accuracy, and consequently, a very small time step is required. We have thus
chosen an explicit time-integration scheme and not an implicit one. Nevertheless, due to the
presence of low-frequency contributions in the time responses, a long time duration is required,
which will imply a huge number of integration time step if the time step were chosen constant.
This is the reason why we have implemented an adaptive integration time step. It was one of
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Figure 4: (a) Coefficient variation of Πimp as function of g with (Kh1/mh)opt (b) Coefficient variation of Πimp as
function of Kh1/mh with gopt. In both graphs, the δΠimp(p

opt
des) is highlighted with markers.

the difficulties encountered for the solver implementation. The design optimization problem
of the dynamical system without uncertainties yields an optimal design point that differs from
the nominal values, and which can not be determined, a priori, without solving the design op-
timization problem. In addition, the robust analysis that has been presented demonstrates the
interest that there is to take into account the uncertainties in the computational model. The
optimal design point that has been identified in the robust design framework significantly dif-
fers from design point obtained with the computational model without uncertainties. For this
electro-mechanical system, it has been seen that, the minimum value of the dispersion of the
random output occurs in the region of the optimal design parameters, which means that the
optimal design point is robust with respect to uncertainties.
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