
A HALF-QUADRATIC APPROACH TO MIXED WEIGHTED SMOOTH
AND ANISOTROPIC BV REGULARIZATION FOR INVERSE

ILL-POSED PROBLEMS WITH APPLICATIONS TO SIGNAL AND
IMAGE RESTORATION

Francisco J. Ibarrolaa and Ruben D. Spiesa,b

aDepartamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral,
Santiago del Estero 2829, Santa Fe, Argentina, franciscoj.iba@gmail.com

bInstituto de Matemática Aplicada del Litoral, IMAL CONICET-UNL, Colectora Ruta Nacional 168,
Paraje el Pozo, Santa Fe, Argentina, rspies@santafe-conicet.gov.ar

Keywords: Inverse Problems, Ill-posedness, Regularization, Half-Quadratic

Abstract. Detection-estimation type penalizers have been widely used to regularize inverse ill-posed
problems in which it is known that the solution may present discontinuities ( J. Idier, Bayesian Approach
to Inverse Problems, John Wiley & Sons, (2008)). For the caseof quadratic penalty functionals it is
known that the detection-estimation problem can be reformulated as a non-convex penalization problem.
Although this approach is somewhat formally simpler, finding the corresponding global minimizer is usu-
ally a computationally challenging task, specially in highdimensional problems, such as those in image
processing. At this step, a duality criterion between the non-quadratic and half-quadratic optimization
becomes extremely useful to greatly reduce the computational cost (J. Idier, Convex half-quadratic cri-
teria and interacting auxiliary variables for image restoration, IEEE Transactions on image Processing,
10(7):1001-1009, (2001)).

In this article we will consider general Tikhonov-Phillipsregularization methods where the penal-
izers are given by mixed spatially varying weighted convex combinations ofL2 andBV functionals.
Both isotropic and anisotropicBV diffusion cases will be considered. We will use the above mentioned
non-convex reformulation plus a non-quadratic half-quadratic approach to attack the problem of approx-
imating the global minimizers of those functionals. The associated optimization problems will then be
recast by means of a duality argument as half-quadratic optimization problems. Numerical results in
signal and image restoration problems will be shown.
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1 INTRODUCTION AND PRELIMINARIES

In a general context, a linear inverse problem can be formulated as the need of findingw in
an equation of the form

T w = y, (1)

whereT : X → Y is a bounded linear operator between two infinite dimensional Hilbert spaces
X andY , the range ofT is non-closed andy is the data, which is supposed to be known, perhaps
with a certain degree of error. In the sequel and unless otherwise specified, the spaceX will be
L2(Ω) whereΩ ⊂ R

n is a bounded open convex set with Lipschitz boundary. Under these hy-
potheses, it turns out that problem (1) is ill-posed in the sense of Hadamard (Hadamard(1902)),
the Moore-Penrose inverse ofT is unbounded and small errors in the datay may result in very
large errors in the corresponding approximations ofw (Spies and Temperini(2006)). Before
any attempt is made to approximate the solution of (1), the problem must be “regularized”.
Regularizing an inverse problem consists essentially of replacing the problem by a sequence of
“well-posed” problems whose solutions converge (in an appropriate way) to a solution (or to a
least squares solution) of (1). The Tikhonov-Phillips method is undoubtedly the most common
way of regularizing an ill-posed problem. Although the method can be formulated within a gen-
eral mathematical theory by means of spectral theory (seeEngl et al.(1996)), the widespread of
its use is mainly due to the fact that it can also be formulatedas an unconstrained optimization
problem. In fact, given an appropriate functionalP (w) (we shall refer toP as a penalizer in
the sequel) with domainD ⊂ X , the regularized solution obtained by the Tikhonov-Phillips
method and such a penalizer, is the global minimizer overD, wα, (provided it exists), of the
functional

Jα,P (w) = ‖T w − y‖2 + αP (w), (2)

whereα is a positive constant called regularization parameter. The original method was found
independently by Phillips and Tikhonov in 1962 and 1963 (Phillips(1962) andTikhonov(1963))
usingP (w) = ‖w‖2

L
2(Ω)

. Other penalizers can also be used to regularize the problem. Each
choice ofP results in a different regularized solution possessing particular properties. In the
past 15 years considerable attention has been given to finding “appropriate” penalizers for a
given problem. Thus, for instance, the choice ofP (w) = ‖w‖2

L
2(Ω)

produces always smooth
regularized approximations which converge, asα → 0+, to the best approximate solution (i.e.
the least squares solution of minimum norm) of problem (1) (seeEngl et al.(1996)) while for
P (w) = ‖|∇w| ‖2

L
2(Ω)

the order-one Tikhonov-Phillips method is obtained. Similarly, the choice
of P (w) = ‖w‖

BV(Ω)
(where‖·‖

BV
denotes the total variation norm) orP (w) = ‖|∇w| ‖

L
1(Ω)

,
result in the so called “bounded variation regularization methods” (Acar and Vogel(1994),
Rudin et al.(1992)). The use of these of penalizers is strongly suggested whenpreserving dis-
continuities or edges is an important matter. The method, however, tends to produce piecewise
constant approximations and therefore it will most likely be inappropriate in regions where the
exact solution is smooth (Chambolle and Lions(1997)), producing the so called “staircasing
effect". For general penalizersP , sufficient conditions guaranteeing existence, uniqueness and
weak and strong stability of the minimizers under differenttypes of perturbations were found
in Mazzieri et al.(2012).

Given that each penalizing term engraves the solution with particular properties, in certain
types of problems, particularly in those in which it is knownthat the regularity of the exact
solution is heterogeneous and/or anisotropic, it is reasonable to think that the use of two or more
penalizers of different nature, that could somehow spatially adapt to the local characteristics of
the exact solution, would be more convenient. During the last 15 years many regularization
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methods have been developed in light of this reasoning. Thus, for instance, in 1997 Blomgren
et al. (Blomgren et al.(1997)) proposed the following penalizer:

P (w) =

∫

Ω

|∇w|p(|∇w|)dx, (3)

wherep is a decreasing function satisfyinglim
u→0+

p(u) = 2, lim
u→∞

p(u) = 1. Thus, in regions where

the gradient ofw is small the penalizer is approximately equal to‖|∇w|‖2L2(Ω), corresponding
to a Tikhonov-Phillips method of order one (appropriate forsmooth regions). On the other
hand, when the modulus of the gradient ofw is large, the penalizer resembles the bounded
variation seminorm‖|∇w|‖L1(Ω), which, as previously mentioned, is a good choice for border
detection purposes. Although this model forP is quite reasonable, proving basic properties of
the corresponding generalized Tikhonov-Phillips functional turns out to be quite difficult. The
authors proved existence of global minimizers of functional (2), by using the theory of variable
Lp spaces. In 1997 Chambolle and Lions suggested a different way of combining these two
methods (Chambolle and Lions(1997)). They defined a thresholded penalizer of the form:

Pβ(w) =

∫

|∇w|≤β

|∇w|2 dx+
∫

|∇w|>β

|∇w| dx,

whereβ > 0 is a prescribed threshold parameter. Thus, in regions whereborders are more
likely to be present (|∇w| > β), penalization is made with the bounded variation seminorm
while a standard order-one Tikhonov-Phillips method is used otherwise. This model was shown
to be successful in restoring images possessing regions with homogeneous intensity separated
by borders. However, in the case of images with non-uniform or highly degraded intensities,
the model is extremely sensitive to the choice of the threshold parameterβ. More recently,
penalizers of the form

P (w) =

∫

Ω

|∇w|p(x)dx, (4)

for certain functionsp with range in[1, 2], were studied inChen et al.(2006) and Li et al.
(2010). It is timely to point out here that all previously mentioned results are valid only for
the case of denoising (no blurring), i.e. for the caseT = id. More recently, Mazzieri, Spies and
Temperini studied penalizers of the form

P (w) = λ0

∫

Ω

|
√

1− θ(x)w(x)|2dx+ λ1

∫

Ω

‖θ(x)A(x)∇w(x)‖dx (5)

whereλ0, λ1 are positive constants,θ(x) is a weighting function with values on the interval
[0, 1] andA(x) is a symmetric positive definite matrix field. General existence, uniqueness
and stability results of global minimizers of the corresponding generalized Tikhonov-Phillips
functionals

Jθ(w) = ‖T w − y‖2 + λ0

∫

Ω

|
√

1− θ(x)w(x)|2dx+ λ1

∫

Ω

‖θ(x)A(x)∇w(x)‖dx (6)

can be found inMazzieri et al.(2014b) and Mazzieri et al.(2014a). Several remarks are in
order. First note that the extreme caseθ(x) = 0 ∀x corresponds to the classical Tikhonov-
Phillips method. Forθ(x) = 1 ∀x one gets a pureBV method, with the classical Bounded
Variation method corresponding to the case ofA(x) = I ∀x. Other choices of the matrix field
A are possible in order to induce an anisotropic BV penalization. Feasible ways of constructing
this matrix field can be found for instance inCalvetti et al.(2006). The general case can then
be thought of as a convex combination of a classicalL2 and an anisotropicBV penalizers.

Mecánica Computacional Vol XXXIII, págs. 1951-1966 (2014) 1953

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2 SIGNAL RESTORATION WITH A HALF QUADRATIC APPROACH TO MIXED
REGULARIZATION

Approximating the minimizer of (6) presents quite serious computational challenges. In fact,
for high dimensional problems like those arising in image restoration, all standard optimization
algorithms will require many hours of CPU time in any modern personal computer. In order
to reduce the computational burden originated by this difficulty, we shall next consider an al-
ternative approach to the problem of finding the minimizer of(6). The tactic is based upon a
method developed by J. Idier inIdier (2008) for solving detection-estimation problems, and it
consists of rewriting the functional in an appropriate formvia half-quadratic optimization tools.
To introduce this approach, we will first consider the case ofminimizing functional (6) when
Ω is a subset ofR, meaningw(x) represents the signal we wish to restore. Without loss of
generality we shall assumeΩ = [0, 1]. The operatorA will necessarily be the identity, meaning
our functional takes the form

Jθ(w) = ‖T w − y‖2 + λ0

∫ 1

0

|
√

1− θ(x)w(x)|2dx+ λ1

∫ 1

0

|θ(x)w′(x)|dx. (7)

2.1 Signal restoration by mixed regularization

Since restoring the signalw(x) is tantamount to finding the minimizer of the previous func-
tional, we will need to perform a discretization in order to proceed numerically. For that, we will
takeM equally spaced pointsxm = 2m−1

2M
∈ [0, 1], m = 1, . . . ,M , and define our discretized

signalu ∈ R
M by um

.
= w(xm) for m = 1, 2, ...,M . In the same way, letT ∈ R

N×M and
v ∈ R

N be discretized versions of the operatorT and of the observationy, respectively, and let
θm

.
= θ(xm) for m = 1, 2, ...,M . We now introduce a discrete finite-differences approximation

of functional (7) as follows:

Jθ(u) = ‖Tu− v‖2 + λ0
M

M
∑

m=1

(1− θm)u
2
m +

λ1
M

M
∑

m=2

θm

∣

∣

∣

∣

um − um−1

1/M

∣

∣

∣

∣

. (8)

The restored signalw(x) will then be approximated by the discrete signal represented by the
vector minimizing this functional. The main difficulty for finding such a minimizer arises from
the non-differentiability of the absolute value at the origin, which precludes the differentiability
of Jθ(u). To overcome this impediment we shall replace the absolute value by a functionφ(t)
approximating it and satisfying certain additional regularity and asymptotic assumptions. For
general non-quadratic penalizers, in order to preserve edges and discontinuities between homo-
geneous regions, it is important to appropriately choose the behavior of the functionφ. Two
groups of functions have mainly been considered in the literature. Namely:

• L2L1: we say that a functionφ : R → R is of L2L1 class if it is even, non-constant,
convex and of classC1 onR, C2 at the origin and asymptotically linear.

• L2L0: we say that a functionφ : R → R is of L2L0 class if it is even, non-constant,
non-decreasing onR+, asymptotically constant and of classC2 at the origin.

It is important to point out, however, that anL2L1 or L2L0 function does not need to be an ap-
proximation of the absolute value. Thus, for instance, in certain detection-estimation problems
for the case of restoration of piecewise smooth signals, theL2L0 functionφ(t) = min{t2, η2}
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(for a givenη), results appropriate (Idier (2008), Section 6.4.1). In our case, we will pick the
L2L1 function

φ(t) = φη(t)
.
=
√

t2 + η2 − η, (9)

for η > 0 sufficiently small, and replace functional (8) with

Jθ,φ(u) = ‖Tu− v‖2 + λ0
M

M
∑

m=1

(1− θm)u
2
m +

λ1
M

M
∑

m=2

θmφ

(

um − um−1

1/M

)

. (10)

Now that we have a differentiable functional, we will introduce a duality relation which will
later allow us to conveniently write the corresponding firstorder necessary condition as a linear
system.

2.2 Non-quadratic and half-quadratic duality

Let φ(t) be a non-quadratic function satisfying: (i)φ(t) is even; (ii)φ(
√
t) is concave onR+

and (iii) φ(t) is continuous att = 0 andφ ∈ C1(R\{0}). Under these hypotheses, it can be
shown (Rockafellar(1970), Section 12) that there exists a functionψ(b) so that the pair(φ, ψ)
satisfy the following duality relation:

φ(t) = inf
s>0

(st2 + ψ(s)), (11)

ψ(s) = sup
t∈R

(φ(t)− st2).

Expression (11) is usually referred to as the half-quadratic form ofφ. For instance, forφ = φη

as in (9), it can be easily shown that the corresponding dual function is

ψη(s) = η2s− η +
1

4s
. (12)

By using the dual functionψ(s) we now define the following functional, which introduces an
auxiliary variables ∈ R

M−1
+ :

Kθ,φ(u, s)
.
=‖Tu− v‖2 + λ0

M

M
∑

m=1

(1− θm)u
2
m

+
λ1
M

M
∑

m=2

θm

(

sm

(

um − um−1

1/M

)2

+ ψ(sm)

)

. (13)

Functional (13) is strongly rooted in the origin of the detection-estimation formalism, where an
additional variable is used to define an augmented criterionto take possible discontinuities into
account. It turns out that functionals (10) and (13) are closely related. In fact, by minimizing
Kθ,φ(u, s) with respect tos ∈ R

M−1
+ we obtain:

inf
s∈RM−1

+

Kθ,φ(u, s)

=‖Tu− v‖2 + λ0
M

M
∑

m=1

(1− θm)u
2
m +

λ1
M

inf
s∈RM−1

+

[

M
∑

m=2

θm

(

sm

(

um − um−1

1/M

)2

+ ψ(sm)

)]
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=‖Tu− v‖2 + λ0
M

M
∑

m=1

(1− θm)u
2
m +

λ1
M

M
∑

m=2

θm inf
sm∈R+

(

sm

(

um − um−1

1/M

)2

+ ψ(sm)

)

=‖Tu− v‖2 + λ0
M

M
∑

m=1

(1− θm)u
2
m +

λ1
M

M
∑

m=2

θmφ

(

um − um−1

1/M

)

=Jθ,φ(u), (14)

where the second equality holds since each element ofs is associated independently to one and
only one term of the sum. By defining a diagonal matrixB ∈ R

M×M , with diagonal elements

bm such thatb1 = 0, andbm = argmin
sm∈R+

(

sm

(

um − um−1

1/M

)2

+ ψ(sm)

)

for m = 2, 3, ...,M

(assuming those minimizers do exist) and using identity (14), we can then write

Jθ,φ(u) = ‖Tu− v‖2 + λ0
M

M
∑

m=1

(1− θm)u
2
m +

λ1
M

M
∑

m=2

θm

(

bm

(

um − um−1

1/M

)2

+ ψ(bm)

)

.

Furthermore, if we define the diagonal matrixΘ ∈ R
M×M by Θm,m = θm and we letL1

be the one-dimensional first order finite difference matrix (i.e. (L1u)m = um − um−1 for
m = 2, 3, ...,M andL1,1 = 0), we can finally write

Jθ,φ(u) = ‖Tu− v‖2 + λ0
M
ut(IM −Θ)u+ λ1MutLt

1ΘBL1u+
λ1
M

M
∑

m=2

θmψ(bm). (15)

Finding the minimizer ofJθ,φ(u) is now, in principle, a simple task. In fact, by using expression
(15), the first order necessary condition leads to the (apparently) linear system

(T tT +
λ0
M

(IM −Θ) + λ1MLt
1ΘBL1)u = T tv. (16)

It is important no note, nonetheless, that the diagonal elementsbm of matrixB depend onu and
hence, strictly speaking, (16) is in general a non-linear system. Here again, the duality relation
comes in handy since by differentiating expression (11) we observe that the elementsbm must
satisfy

bm =
φ′(tm)

2tm
, (17)

wheretm = (um−um−1)/(1/M). Let us notice thatφ(t) has continuous second order derivative
at zero, provided thatφ(t) be of classL2L1 orL2L0. Thus,φ has finite second order derivative
at t = 0, and then L’Hôpital’s rule implies thatφ

′(t)
2t

has a removable singularity at zero. Hence
for tm = 0, we definebm = φ′′(0)/2.

We shall now proceed to build an algorithm for approximatingthe minimizer ofJθ,φ(u) by
using expressions (16) and (17) via a fixed-point type argument as follows.

2.3 Numerical implementation of the half-quadratic approach

Since minimizing (15) implies the simultaneous minimization with respect to theinter-
dependent variablesum andbm, we will state a simple cyclic iterative algorithm that was found
to be quite effective:
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Step 1 - Initializing: setj = 0, and initializeuj = u0.

Step 2 - Counting: let j = j + 1.

Step 3 - Updating B: update the componentsbjm of Bj using equation (17). That is,

bjm
.
=
φ′(M(uj−1

m − uj−1
m−1))

2M(uj−1
m − uj−1

m−1)
.

Step 4 - Updating u: updateuj by solving (in the least-squares sense) the linear system

(T tT +
λ0
M

(IM −Θ) + λ1MΘLt
1B

jL1)u
j = T tv.

Step 5 - Convergence: if a previously defined convergence criterion is satisfied, the algorithm
ends and the restored signal is defined to beuj. Else, the algorithm repeats from step 2.

Remark: clearly several convergence stopping criteria can be used in Step 5 above. Here
and in all the examples that follow this was: stop whenever|δj − δj−1| < α, whereδj is the
parameter value of Morozov’s discrepancy principle corresponding touj andα is a sufficiently
small parameter. In our case we tookα = 10−5.

In the next section, we shall generalize this half-quadratic approach to the case of image
restoration problems (i.e. forn = 2).

3 THE HALF-QUADRATIC APPROACH TO IMAGE RESTORATION WITH MIXED
L2 AND ANISOTROPIC BV REGULARIZATION

Consider now the model problem (1) along with functional (6) and assumeΩ = [0, 1]×[0, 1].
Here noww(x) represents the intensity of a gray-scale image at the pointx ∈ Ω. We discretize
the image to obtain anM-by-M matrix U , consisting of the values ofw at the centerpoints
of anM-by-M pixel grid. Next, we stack the columns ofU to get a vectoru ∈ R

M2
so that

uM(l−1)+m = Um,l ∀ l, m = 1, 2, ...,M . We proceed in the same way to obtainΘ ∈ R
M2

andv ∈ R
N2

, corresponding to discretized versions ofθ(·) and the observationy, respectively.
Finally,T ∈ R

N2×M2
will represent an appropriately discretized version of theoperatorT and

Am the2-by-2 matrix obtained by evaluating the matrix-valued functionA(·) at the centerpoint
of themth pixel. Thus, our discretization of functional (6) takes the form

Jθ(u) = ‖Tu−v‖2+ λ0
M2

M2
∑

m=1

(1−θm)u2m+
λ1
M2

∑

m∈M
θm

∥

∥

∥

∥

Am

(

M(um − um+1)
M(um − um−M)

)
∥

∥

∥

∥

1

, (18)

whereM is the set of all indexes which do not correspond to a pixel in the bottom or left
borders of the image. Naturally, the restored image will be approximated by the minimizer of
this functional. In order to find such a minimizer, let us begin by noticing that them-th term of
the discretized anisotropy penalizer on (18) is now

∥

∥

∥

∥

Am

(

M(um − um+1)
M(um − um−M)

)
∥

∥

∥

∥

1

= |M
(

am1,1(um − um−M) + am1,2(um − um+1)
)

|

+ |M
(

am2,1(um − um−M) + am2,2(um − um+1)
)

|, (19)
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whereami,j, i, j = 1, 2, are the elements of the 2-by-2 matrixAm. Here again, to avoid the
non-differentiability at the origin of the absolute value,we will replace it with the function
φ(t) = φη(t) defined in (9), for which the corresponding dual is functionψ(s) = ψη(s) given
in (12). Following the same steps as in section 3.2 and using the duality relation (11), we
approximate (19) by
∥

∥

∥

∥

Am

(

M(um − um+1)
M(um − um−M)

)
∥

∥

∥

∥

1

≈ bm
[

M
(

am1,1(um − um−M) + am1,2(um − um+1)
)]2

+ ψ(bm)

+ cm
[

M
(

am2,1(um − um−M) + am2,2(um − um+1)
)]2

+ ψ(cm),

(20)

where

bm
.
= argmin

sm∈R+

(

smM
2
(

am1,1(um − um−M) + am1,2(um − um+1)
)2

+ ψ(sm)
)

,

and
cm

.
= argmin

sm∈R+

(

smM
2
(

am2,1(um − um−M) + am2,2(um − um+1)
)2

+ ψ(sm)
)

.

Define now theM2-by-M2 diagonal matricesAi,j for i, j = 1, 2, such thatAi,j
m,m = ami,j if

m ∈ M andAi,j
m,m = 0 otherwise, and letR1 andR2 be theM2-by-M2 matrices defined by

R1
.
= A1,1(L1 ⊗ IM) + A1,2(IM ⊗ Lt

1) andR2
.
= A2,1(L1 ⊗ IM) + A2,2(IM ⊗ Lt

1), whereIM
denotes theM-th indentity matrix and⊗ is the Kronecker product. It is then easy to see that,
using (20), functional (18) can be approximated by

Jθ,φ(u) =‖Tu− v‖2 + λ0
M2

ut(IM2 −Θ)u+ λ1u
tRt

1ΘBR1u+ λ1u
tRt

2ΘCR2u

+
λ1
M2

∑

θmψ(bm) +
λ1
M2

∑

θmψ(cm), (21)

whereB andC are theM2-by-M2 diagonal matrices whose diagonal elements arebm and
cm, respectively. We now want to find the minimizer of functional (21). As for the case of
signals (equation (15) ), this seems to be a relatively easy task. In fact, once again the first order
necessary condition resembles a linear system and is given by

(

T tT +
λ0
M2

(IM2 −Θ) + λ1R
t
1ΘBR1 + λ1R

t
2ΘCR2

)

u = T tv. (22)

We should observe, however, that matricesB andC depend onu and system (22) is in fact
nonlinear. Nevertheless, differentiation of the duality relation (11) implies that the diagonal
elementsbm andcm of those matrices must satisfy

bm =
φ′(M

(

am1,1(um − um−M) + am1,2(um − um+1)
)

)

2M
(

am1,1(um − um−M) + am1,2(um − um+1)
) (23)

and

cm =
φ′(M

(

am2,1(um − um−M) + am2,2(um − um+1)
)

)

2M
(

am2,1(um − um−M) + am2,2(um − um+1)
) . (24)

Based upon all of the above, we shall state a cyclic iterativealgorithm for image restoring as
follows:
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Step 1 - Initializing: setj = 0, and initializeuj = u0.

Step 2 - Counting: let j = j + 1.

Step 3 - Updating B: update the componentsbjm of Bj using equation (23). That is,

bjm =
φ′(M

(

am1,1(u
j−1
m − uj−1

m−M) + am1,2(u
j−1
m − uj−1

m+1)
)

)

2M
(

am1,1(u
j−1
m − uj−1

m−M) + am1,2(u
j−1
m − uj−1

m+1)
)

Step 4 - Updating C: update the componentscjm of Cj using equation (24). That is,

cjm =
φ′(M

(

am2,1(u
j−1
m − uj−1

m−M) + am2,2(u
j−1
m − uj−1

m+1)
)

)

2M
(

am2,1(u
j−1
m − uj−1

m−M) + am2,2(u
j−1
m − uj−1

m+1)
)

Step 5 - Updating u: updateuj by solving the linear system
(

T tT +
λ0
M2

(IM2 −Θ) + λ1R
t
1ΘB

jR1 + λ1R
t
2ΘC

jR2

)

uj = T tv

Step 6 - Convergence: if the convergence criterion is satisfied, the algorithm ends and our
restored signal is defined asuj. Else, the algorithm repeats from step 2.

4 APPLICATIONS TO SIGNAL AND IMAGE RESTORATION

The purpose of this section is to present some applications of the algorithms developed above
for half-quadratic mixedL2-BV regularization in signal and image restoration problems.

4.1 A signal restoration example

A basic mathematical model for signal blurring is given by convolution, as a Fredholm inte-
gral equation of first kind:

y(x) =

∫ 1

0

k(t, x)w(t)dt
.
= T w(x), (25)

wherek(t, x) = 1√
2πσb

exp
(

− (t−x)2

2σ2
b

)

is a Gaussian kernel,σb > 0, w is the original signal and

y is the blurred signal. For the numerical examples that follow, equation (25) was discretized in
the usual way (using collocation and quadrature), resulting in a discrete model of the form

Tu = v, (26)

whereT is a(M +1)× (M +1) matrix, u, v ∈ R
M+1 (uj = w(xj), vj = y(xj), xj =

j

M
, 0 ≤

j ≤ M). We tookM = 130 andσb = 0.04. The datag was contaminated with a 1.5% zero-
mean Gaussian additive noise (i.e. standard deviation equal to 1.5% of the range ofv). Figure
1(a) shows the original signalu (unknown in real life problems) and the blurred noisy signalv
which constitutes the data of the inverse problem. Figure 1(b) shows the restoration obtained
with the classical Tikhonov-Phillips method (corresponding to θ(x) = 0 in functional (6) ).
Figure 1(c) shows the restoration obtained with the pureBV penalizer (θ(x) = 1 in (6) ) and
finally, Figure 1(d) depicts the restoration obtained with the mixedL2-BV penalizer withθ(x)
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chosen by scaling to [0,1] the modulus of the gradient of the regularized solution obtained with
a pure Tikhonov-Phillips method. It is timely to point out here that the choice of the functionθ
is a very important matter which we do not discuss in this article. In all cases, the regularization
parameters used (λ0 andλ1) were estimated using Morozov’s discrepancy principle. The actual
values of these parameters for all examples that follow are shown on Table 3 at the end of this
article.
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ISNR = 4.680

ISNR = 2.611

ISNR = 6.508

Figure 1: (a) Original signal and observation; (b) Tikhonov-Phillips restoration; (c)BV restora-
tion; (d) MixedL2-BV restoration.

As expected, the combined method returns a much better restoration. This is clearly reflected
in the ISNRs for all three cases. The CPU times required to perform the latter mixed restoration
was compared to those required by another program based in the traditional Newton-Raphson
method. Given the same stopping criteria, the algorithm proposed here was in average over
thirty five times faster than the other, what provides strongevidence of the computational effi-
ciency of these new half-quadratic approach. We will next present an application to an image
restoration problem, of the method and algorithm developedin Section 3.

4.2 Image restoration examples

4.2.1 A gray-scale image

For the following examples we used a two dimensional convolution model for the blurring
operator with point spread function (PSF) of atmospheric turbulence type (gaussian kernel) with

F.J. IBARROLA, R.D. SPIES1960

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



vertical and horizontal variancesσ2
v andσ2

h, respectively:

T w(x, y) =
∫ ∫

Ω

(2πσhσv)
−1 exp

(

−(x− s)2

2σ2
h

− (y − t)2

2σ2
v

)

w(s, t) ds dt. (27)

Herew(s, t), for (s, t) ∈ Ω ⊂ R
2, represents the gray-scale intensity at the point(s, t) of the

image we want to restore. The setΩ is the support of the image, which in all cases we take
to be[0, 1] × [0, 1]. Here too, model (27) was discretized in the usual way by taking a regular
M ×M grid onΩ and stacking the columns of the discretized version of the imagew(s, t) to
form a vectoru ∈ R

M2
. The resulting discretized model is then of the formTu = v whereT

is anM2-by-M2 matrix and the components ofv correspond to the values of the observation
T w(x, y) at the centerpoints of the corresponding pixels. For the examples that follow we took
σ2
v = σ2

h = 0.02, M = 100 and the data of the inverse problem (namelyv) was contaminated
with 1% additive zero mean Gaussian noise.

Figure2(a) shows the blurred-noisy image (data of the inverse problem) while Figure2(b)
shows the restoration obtained with a Tikhonov-Phillips method (pureL2 penalizer). This
restoration was later used to build the anisotropic penalization matricesAm and the compo-
nentsθm of the convex combination vector. In the following examples, the elementsθm were
computed by scaling to[0, 1] the norm of the discretized gradient of the pure Tikhonov-Phillips
solution. As for the matricesAm, they were constructed following the theory inCalvetti et al.
(2006) (for reasons of brevity we do not give further details here).

(a) (b)

Figure 2: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.

In Figure3 we present the restorations obtained using pureBV penalizers; isotropic case in
(a) and anisotropic in (b).
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(a) (b)

Figure 3: (a) IsotropicBV restoration; (b) AnisotropicBV restoration.

Finally, Figure4 shows the restorations obtained with the mixedL2-BV penalizer; isotropic
case in (a) and anisotropic in (b).

(a) (b)

Figure 4: (a) MixedL2-isotropicBV restoration; (b) MixedL2-anisotropicBV restoration.

For comparison purposes, the original image is presented inFigure5 and all ISNR values
in Table2. Once again, the best restoration is obtained with the combinedL2-anisotropicBV
penalizer. It is also timely to see that the ISNR value of the anistropicBV restoration is signif-
icantly larger than the one obtained with the isotropicBV penalizer. Also, the ISNR increases
from any one of the single methods to the corresponding combined one (namely, isotropicBV
to mixed isotropic and anisotropicBV to mixed anisotropic). These observations clearly high-
light the relevance and potential applications of the combined methods.
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Figure 5: Original image

Restoration Type ISNR
Tikhonov 4.140
Isotropic BV 3.666
Anisotropic BV 5.032
Mixed Isotropic 4.517
Mixed Anisotropic 5.118

Table 1: ISNRs of each restoration

4.2.2 A color image

Finally we present an application to a color image restoration problem. Here the forward
model consists of applying the integral operator given by equation (27) to each one of the three
layers (RGB) of the image. Blurring, noise contamination and restoration were all performed
separately on each one of the layers. Figure6(a) shows the blurred-noisy image (data) while
Figure6(b) shows the restoration obtained with a Tikhonov-Phillips (pureL2) regularization
method. Here too this restoration was used to build the anisotropic penalization matricesAm

and the componentsθm of the convex combination vector.
Figure7 shows the restorations obtained with pureBV penalization terms, both isotropic

(a) and anisotropic (b). The difference between the restorations induced by taking into ac-
count gradient-induced directions stands out clearly. Finally, Figure8 shows the restorations
performed with mixedL2-BV regularization.

(a) (b)

Figure 6: (a) Blurred noisy image (observation); (b) Tikhonov-Phillips restoration.
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(a) (b)

Figure 7: (a) IsotropicBV restoration; (b) AnisotropicBV restoration.

(a) (b)

Figure 8: (a) MixedL2-isotropicBV restoration; (b) MixedL2-anisotropicBV restoration.

To better illustrate and compare the performances of the methods, Figure9shows the original
image while Table2 shows the ISNR values for each one of the five restorations.
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Figure 9: Original image

Restoration Type ISNR
Tikhonov 3.325
Isotropic BV 3.104
Anisotropic BV 4.042
Mixed Isotropic 3.846
Mixed Anisotropic 4.420

Table 2: ISNRs of each restoration

Similar observations as for the gray-scale example can be made here. Namely, the best
restoration is once again obtained with the combinedL2-anisotropicBV penalizer, the ISNR
value of the anistropicBV restoration is considerably larger than the one for the isotropicBV
penalizer and the ISNR values increase from any one of the single methods to the corresponding
combined one. For the sake of completness the next table shows the values of the regularization
parametersλ0 andλ1 use for all previous restorations.

Restoration Signal Gray image Red layer Green layer Blue layer
Tikhonov 1e-2 1e-2 1.42e-2 1.28e-2 1.56e-2
Isotropic BV 6.4e-4 7e-5 1.1e-4 1.2e-4 1e-4
Anisotropic BV — 1e-4 1e-4 1.1e-4 1e-4
Mixed Isotropic 1.01e-2, 6.46e-4 8.59e-3, 6.01e-6 1.32e-4, 9e-5 1.12e-4, 1.1e-4 1.56e-2, 1e-4
Mixed Anisot. — 1e-2, 1e-4 1.42e-2, 1.1e-4 1.28e-4, 1.2e-4 1.91e-2, 1.2e-4

Table 3: Values of the parametersλ0 andλ1 used for the different restorations

5 CONCLUSIONS

In this article we used a non-convex reformulation plus a non-quadratic half-quadratic ap-
proach to attack a general Tikhonov-Phillips regularization method were the penalizers are
given by mixed spatially varying weighted convex combinations ofL2 andBV functionals.
Both isotropic and anisotropicBV diffusion were considered. The associated optimization
problems were then recast by means of a duality argument as half-quadratic optimization prob-
lems. The method proposed in this article resulted in significantly faster algorithms as compared
to direct Newton-based methods. Numerical results in signal and image restoration problems
were shown along with their ISNRs, whose higher values for the mixed-anisotropic restorations
showed substantial improvements.
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