
A NEW WAVELET PACKET BASES TO SOLVE FREDHOLM’S
INTEGRAL EQUATIONS OF THE FIRST KIND

Eduardo P. Serranoa, María Inés Troparevskyb and Marcela A. Fabioa

aCentro de Matemática Aplicada, Universidad de San Martín, Argentina, eduardo.eduser@gmail.com,

mfabio@unsam.edu.ar

b Departamento de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina,

Paseo Colón 850 CABA, mariainestro@gmail.com

Keywords: Integral Operators, Wavelets, Eigenfunctions, Inverse Problem

Abstract. Different high order discretization methods and numerical expansions have been developed

to find approximate solutions to integral equations with different kernels. However, direct application of

standard numerical methods to the matrices obtained by discretizations of these equations can produce

meaningless solutions. If the kernel is continuous, smooth and bounded, the integral operator is compact.

In this context Fredholm’s Integral Equations of the First Kind, i.e, Kf(x) =
∫ b
a h(x, y)f(y)dy =

g(x), where f is the solution function and g is the data, are in general ill-conditioned inverse problems.

However, restrictions to finite dimensional spaces where the unknown function f and g live can assure

existence, unicity and well-conditioned of the problem. In this work we construct approximate solutions

to inverse problems associated to integral operators of the first kind applying a wavelet decomposition.

We restrict the problem to a bounded set of frequencies and we approximate the eigenfunctions of the

operator from the images of finite set of wavelets functions trough the operator. Based on some properties

of the basis, the resulting scheme is numerically stable.
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1 INTRODUCTION

Integral equations of type:

Kf(x) =

∫ b

a

h(x, y)f(y)dy = g(x) (1)

are called Fredholm’s Integral Equations of the First Kind (IFK) and have been largely studied

since Fourier times. Different high order discretization methods and numerical expansions have

been developed to find approximate solutions to integral equations with singular kernels, see

(Hao et al., 2014; Maleknejad et al., 2013; Serrano et al., 2014a; Du and Cui, 2008; Groestsch,

2007; Kress, 2014). However, direct application of standard numerical methods to the matrices

obtained by discretizations of these equations can produce meaningless solutions (see Groestsch

(2007) for a survey of the basic theory and methods). The quality of the solution to this type of

equations largely depends on the functional spaces where f and g live.

If the kernel is continuous, smooth and bounded, the linear operator K is a compact operator and

solving the integral equation is in general, an ill-conditioned problem. However, restrictions to

finite dimensional spaces where the unknown function f and the data function g live can assure

existence, unicity and well-conditioned of the problem, see Groestsch (2007).

The existence of eigenfunctions and eigenvalues of the integral operator K enables us to

expande f , g or the kernel, in terms of the eigenfunctions. These expansions can be useful

when trying to solve the integral equation Kf = g and also we solving the Inverse Problem

(IP), i. e., to recover f from g.

The existence of eigenfunctions of the operator K depends mostly on the symmetry of its kernel.

But even in the case that they exist, computation of the eigenfunctions of a given operator could

be a difficult task.

Wavelet decomposition has been widely applied to solve various integral equations because

it provides fast computation schemes and, at the same time, it gives an appropiate representa-

tion of the functions involved, see (Serrano et al., 2014a,b, 2012; Walnut, 2002). In this work

we construct approximate solutions to inverse problems associated to IFK applying wavelet

decompositions. We restrict the problem to a bounded set of frequencies and approximate the

eigenfunctions of the operator from the images of finite set of wavelets.

We consider a particular integral equations of the form (a particular case of IFK):

Kf(x) =

∫

Ω

ĥ(x, ω)f̂(ω)dω = g(x) (2)

with Ω a compact set in the frequency domain.

If ĥ(x, ω) = ĥ(ω) eixω and ĥ is a symmetric tempered distribution, we have a convolution

operator

Kf(x) =

∫

Ω

ĥ(ω)f̂(ω)eixω dω = 2π (h ∗ f)(x) = 2π

∫

R

h(x− y)f(y) dy. (3)

Littlewood Paley decomposition leads us to the partition:

Ω =
⋃

j

Ωj (4)

where

Ωj ≃ {2jπ ≤ |ω| ≤ 2j+1π} (5)
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is associated to the wavelet space Wj , see Walnut (2002) and Mallat (2009). We consider the

subproblems related to Eq. 2:

Kj : L2(R) → Wj,

Kj θj(x) =

∫

Ωj

ĥ(ω)θ̂j(ω)eixωdω = gj(x) (6)

where gj is the projection of g onto Wj . In general, the solution θj 6∈ Wj , however we propose

to approximate it in this space. Furthermore, we look for approximate eigenfunctions θjk ∈ Wj

of the operator Kj , such that:

Kj θjk(x) = λjkθjk(x) + εjk(x) (7)

with the minimum error ||εjk||2.

For these purposes, for each index j, we compute the approximate eigenfunctions θjk ∈ Wj

from the images of a wavelet basis ψjk trough Kj for k in a finite set Kj ⊂ Z in the context of

a multiresolution analysis scheme, see Walnut (2002).

Using these elemental functions θjk we find approximate solutions to each subroblem (Eq.

6) and afterwards, we combine them to construct an approximate solution to the IP, (Eq. 2).

Based on some properties of the basis, the resulting scheme is numerically stable.

In section 2 we define the approximate eigenfunctions. The approximate solution to the IP

is developed in section 3. In section 4 we present an example. Finally we state the conclusions.

2 APPROXIMATE EIGENFUNCTIONS

2.1 The Wavelet Basis

In this work we choose a mother wavelet ψ well localized in both, time and frequency do-

main, that satisfies the following properties, see (Meyer, 1990):

1. the family {ψjk(x) = 2j/2ψ(2jx − k), j, k ∈ Z} is an orthonomal basis of L2(R)
associated to a multiresolution analysis (MRA),

2. ψ ∈ S (the Schwartz Clase) is a smooth, infinitely oscillating mother wavelet with fast

decay.

3. the spectrum |ψ̂(2−jω) | is supported on the two-sided band

Ωj = {ω : 2j(π − α) ≤ |ω| ≤ 2j+1(π + α)}, for some 0 < α ≤ π/3 .

The design of this basis and the implementation algorithm based on the Fast Fourier Trans-

form have been developed by the authors in (Serrano and Fabio, 2011).

The properties of ψ ensure uniform convergence in each Wj .

2.2 Approximate Eigenfunctions in Wj

Looking forward to find accurate solutions to the IP, we construct approximate eigenfunc-

tions θjk of the operator K to decompose the unknown function f . First, we define the images

of the wavelete basis trough K. They will be helpful to build the approximate eigenfunctions.

Definition 2.1 Let

vjk(x) = Kjψjk(x) =

∫

Ωj

ĥ(ω)ψ̂jk(ω)eiωx dω. (8)
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We remark that the functions vjk are invariant under traslations and real since ĥ is a symmetric

distribution:

vjk(x) = vj0(x− 2−jk).

Let K any finite index set {k1, . . . , kM} and denote

Wj(K) = span{ψjk, k ∈ K} ⊂ Wj.

Next we define the approximate eigenfunction.

Definition 2.2 A function θ is an approximate eigenfunction of K in the wavelet space Wj , if

θ ∈ Wj(K) for some finite set K, ‖θ‖2 = 1 and there is λ ∈ R such that:

〈Kj θ − λθ, ψjk〉 = 0 (9)

for all k ∈ K.

In order to find θ we observe that from

θ(x) =
∑

k∈K

cjkψjk(x) (10)

it follows:

Kjθ(x) − λθ(x) =
∑

k∈K

cjkvjk(x) − λ
∑

k∈K

cjkψjk(x) (11)

Then, Eq. 9 becomes:
∑

k∈K

cjk〈vjk, ψjn〉 − λcjn = 0 for n ∈ K (12)

This system is equivalent to the spectral problem in R

GC = λC (13)

where C ∈ R
M×1 and G = (〈vjk, ψjn〉)k,n∈K

∈ R
M×M .

We assume that ĥ(ω) is a real symmetric distribution and there exist positive constants A,B
such that

0 < A ≤ |ĥ(ω)| ≤ B <∞.

Then we can prove that the matrix G is symmetric, Toepliz and non singular.

Now, let λm ∈ R an eigenvalue with normalized eigenvector C(m) =
(
c
(m)
jk

)

k∈K

. Then, the

function

θ(m)(x) =
∑

k∈K

c
(m)
jk ψjk(x) (14)

is an approximate eigenfunction in Wj with eigenvalue λm.

In the same way, we complete an orthonormal basis of eigenvectors {C(1), . . . , C(M)} and,

hence, an orthonormal basis forWj(K) of approximated eigenfunctions {θ(1)(x), . . . , θ(M)(x)}.

Note that Q =
(
C(1), . . . , C(M)

)
∈ R

M×M is an orthogonal matrix and it gives the coordi-

nates of the new basis in the wavelet basis {ψjk1(x), . . . , ψjkM
(x)} of Wj(K).

This scheme can be extended to Wj through a partition of Z of disjoint finite sets Kl. Then

Wj =
⊕

l

Wj(Kl) (15)

and the union of the respective bases give us an orthonormal basis of Wj .

We will call it Approximate Eigenfunctios Wavelet Packet Bases or AEWP- Bases.
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3 APPROXIMATE SOLUTION TO THE IP

Suppose g ∈ L2(R) and consider the IP given in Eq. 2

g(x) =
∑

k∈Z

∑

j∈Z

〈g, ψjk〉ψjk(x). (16)

For each j let

gj(x) =
∑

j∈K

〈g, ψjk〉ψjk(x) (17)

an approximate projection of g on Wj , where K = K(j) is some finite index set such that

||gj||
2 =

∑

k∈K

|〈g, ψjk〉|
2 = (1 − ρ)2

∑

k∈Z

|〈g, ψjk〉|
2 (18)

for some ρ≪ 1.
Denote {θ

(1)
j (x), . . . , θ

(M)
j (x)} the approximate eigenfunctions basis of Wj(K) and the co-

ordinates matrix Qj ∈ R
M×M .

The coefficients d
(m)
j of gj are obtained from its wavelet coefficients by

(
d

(m)
j

)
= Qt (〈gj, ψjk〉)k∈K

. (19)

Recalling that the eigenvalues λm are non zero, finally we obtain the approximate solution in

Wj(K),

fj(x) =
∑

m∈K

d
(m)
j

λm

θ
(m)
j (x). (20)

4 EXAMPLE

An important class of IP are the one associated to pseudodifferential operator with kernel

ĥ(ω) = 1
(1+ω2)(s/2) . They satisfy the hypotheses to ensure the existence of approximate eigen-

functions bases.

In this section we consider de FIE related to Eq. 2 with s = 0.3. The subproblems are restrict

to a bounded set of frequencies Ωj = {ω : 2j+1(π/3) ≤ |ω| ≤ 2j+3(π/3)}.

Figures 1(a) and 1(b) show the graph of ψ−1,0(x) and v−1,0(x), respectively. The computed

of θ
(5)
−1,4(x) and θ

(9)
−1,4(x) are displayed in Figures 2(a) and 2(b), respectively.

(Hao et al., 2014)

5 CONCLUSIONS

In this work we construct approximate solutions to inverse problems associated to inte-

gral operators of the first kind applying wavelet decompositions. We restrict the problem to

a bounded set of frequencies and we approximate the eigenfunctions of the operator from the

images of finite set of wavelets functions trough the operator. The approximate eigenfunctions

are defined for the operator and a given wavelet basis. The advantage of the proposed scheme is

that the coefficients of the decomposition of the solution on the approximate eigenfunctions can

be easily be computed from the coefficients of the data on the wavelet basis. The error depends

on the dimension of Wj(K).
The perspective of this line of research leads us to extend this technique to operators whose

kernel ĥ(x, ω) depends both in x and ω, leading to a broad class of problems.

Mecánica Computacional Vol XXXIII, págs. 2051-2057 (2014) 2055

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



−40 −20 0 20 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−40 −20 0 20 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 1: (a) ψ
−1,0(x), (b) v

−1,0(x)
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Figure 2: (a) θ
(5)
−1,4(x), (b) θ

(9)
−1,4(x)
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