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Abstract. In this work we present the analytical model and experimental results of a vibration energy
harvesting device with a PZT piezoceramic sheet under vibration-based excitation. The voltage and
electric power generation is presented for the first two modes and compared. Also, the consideration
of a tip mass to improve the energy generation is discussed for the considered cases. Finally, some
conclusions remarks are drawn which show the benefits and possible disadvantages of generating power
for high frequencies.
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1 INTRODUCTION

Piezoelectricity is the property of certain materials to exhibit electric polarization propor-
tional to the applied strain (direct effect). It was first discovered in 1880 by French brothers
Jacques and Pierre Curie (1). The converse is also true, this means, these materials become
strained when they are subjected to an electric polarization (inverse effect). Several natural
materials such as quartz, topaz and Rochelle salt, for example, were observed to show the
piezoelectric effect. Most striking are the cases of biological matter such as DNA and the re-
cently discovered M13 bacteriophage virus (2) that can display piezoelectric properties. With
the progress of materials science in the second half of last century, the discover of new piezo-
electric ceramics permit to build materials with a large electromechanical coupling between
the mechanical and electrical behaviors. At the same time, small electronic components of
wireless sensors and wearable electronics require low electric power to work. Under these cir-
cumstances, the researchers have begun to develop vibration-based piezoelectric harvesters to
supply the energy, extend the life and reduce the volume of the electronics, obtaining electri-
cal energy from the ambient energy surrounding the device (3). From an ecological viewpoint
the possibility of replacing batteries using these energy harvesters entails a reduction of the
contaminated solid waste coming from the batteries.

Piezoelectric energy harvesting is only one possibility among others of harvesting energy
from various ambient sources, including solar power, thermal gradients, nuclear reactions and
so on (4). Its fundamental advantage lies in they have high electromechanical coupling which
means a large strain/voltage conversion, require no external voltage source and are adequate to
miniaturize (5), (6), (7).

The aim of the present work is to analyze the power generation of a vibration-based excited
system considering superior modes of vibration of a cantilever beam with an attached piezo-
electric ceramic layer.

After an introductory section, section 2 introduces the mathematical formulation of the prob-
lem. The following section 3, presents the results concerning the generation of voltage and
power of the piezoelectric beam as a function of the frequency of excitation. The consideration
of a mass added at the end of the beam to improve the generation, will also be studied and an-
alyzed for the whole range of considered frequencies. Concluding remarks are then presented
and discussed in section 4.

2 MATHEMATICAL DESCRIPTION AND MODELLING

The system under study comprises a PZT-5A piezoceramic layer (QP16N, Midé Corpora-
tion) attached to a beam as can be seen in Fig. 1 (a). The system undergoes base excitation
over the form of a deterministic function g(t) or electromagnetic excitation under an harmonic
force of the form f cos(ωt) at x = xf . Both ways of excitation try to mimic an environmental
excitation from which energy can be extracted.

Now, we wish to review the derivation of the relationships between the electric and me-
chanical variables as can be found in (8). The first law of thermodynamics (the principle of
conservation of energy) for a linear piezoelectric continuum leads to (9)

U̇ = TijṠij + EiḊi (1)

where U is the stored energy density of the piezoelectric continuum, Tij is the stress tensor,
Sij is the strain tensor, Ei is the electric field, Di is the electric displacement and the overdot
represent differentiation with respect to time, as usual. The electric enthalpy density H is given
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Figure 1: (a) Schematic illustration of a piezoelectric layer attached to a steel beam. (b) Cross sectional view of
the electromechanical system.

by
H = U − EiDi (2)

Substituting Eq. (1) into Eq. (2) results

Ḣ = TijṠij − DiĖi (3)

which means that enthalpy is a function of the stress tensor and the electric field in the form
of H = H(Sij, Ei) so that the components of the stress and the electric displacement tensors
can be derived from the electric enthalpy density as

Tij =
∂H

∂Sij

, Di = −
∂H

∂Ei

(4)

The form of the electric enthalpy density in the linearized theory of piezoelectricity is (8)

H =
1

2
cE
ijklSijSkl − ekijEkSij −

1

2
εS

ijEiEj (5)

where cE
ijkl, ekij , and εS

ij are the elastic, piezoelectric, and permittivity constants, respectively,
while the superscripts E and S denote that the respective constants are evaluated at constant
electric field and constant strain, respectively. Now, we use Eqs. (4) and (5) along with the
relation ∂Sij/∂Sji = δij due to the symmetry of the stress tensor (where δij is the Kronecker
delta ) to obtain and expression for the stress tensor

Tij = cE
ijklSkl − ekijEk (6)

and for the electric displacement vector

Di = eiklSkl + εS
ikEk (7)

which represent the linear constitutive equations for the unbounded piezoelectric continuum
and are the relations which will be used in the following derivations.

To derive the equations for the displacement field of the system and the voltage output of
the piezoelectric layer, we use a Lagrangian approach. As can be seen in Fig. 1 (a) the system
comprises a piezoceramic layer (hereafter piezo) bonded over a steel beam (hereafter beam).
The kinetic energy for the piezo is then:

Tp =
1

2
ρpAp

∫ Lp

0

(ẇ(x, t) + ġ(t))2dx (8)
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and for the beam

Tb =
1

2
ρbAb

∫ Lb

0

(ẇ(x, t) + ġ(t))2dx (9)

where Lp is the length of the electrically active piezoceramic material, Lb is the length of the
steel beam, w(x, t) is the spatio-temporal transverse deflection, g(t) is the base displacement
ρp and ρb are the piezo and beam material density, and Ap and As are the cross-sectional area
of the piezo and beam respectively. Additionally the kinetic energy of the end mass or tip mass
mT can be computed as

Tm =
1

2
mT (ẇ(x, t) + ġ(t))2 (10)

where the rotational inertia of the tip mass has been neglected. To compute the potential energy
the beam only store energy in the form of elastic linear potential energy. We employ Euler-
Bernoulli theory to this end which states that the linear inextensible strain through the beam is
a result of bending motion only (first term in right hand member of Eq. (3) and proportional to
the second spatial derivative of the bending coordinate, i.e. S11 = Sx = −zw′′(x, t) where ()′

means ∂/∂x. Finally the integral expression of the elastic linear potential energy of the beam,
after integrating over the y− and z− directions gives

Ub =
1

2
EbIb

∫ Lb

0

(ẇ(x, t))2dx (11)

where Eb is Young’s modulus for the beam and Ib = bh3
b/12 its mass moment of inertia. For

the piezo, the expression for the enthalpy has been calculated in Eq. (5) and comes from the
mechanical bending of the laminate and from the electric field due to the applied strain. Finally,
the integral expression for the bending enthalpy is:

Hp =
1

2

∫

Vp

[z2Ep(w
′′(x, t))2 + 2zezxEz(t)(w(x, t)′′ − εS

zzEz(t)
2]dVp (12)

where Vp is the volume of the piezo layer, cE
1111 = Ep is the Young’s modulus for the piezo-

electric material and Ez is the electric field in the z direction. In order to continue with the
derivation of the equations, the electric field in the piezo layer is assumed to be uniform through
the thickness of the laminate similar to a capacitor. In the electrical field a common choice is
to select the voltage output as the generalized or independent coordinate (10). In this case, fol-
lowing Stanton et.al. (11) we choose the flux linkage (canonical conjugate of the charge q(t))
as the generalized coordinate. Then, the electric field in the piezo may be written as:

Ez(t) = −λ̇(t)/2hp (13)

where hp is the laminate thickness and the time derivative of flux linkage λ has units of Weber
per second or Volts. An schematic view of the cross-sectional area of the electromechanical
system is plotted in Fig. 1 (b). Inserting Eq.(13) into Eq.(11) and integrating in the y− and z−
directions gives

Hp = EpIp

∫ Lp

0

(w′′(x, t))2dx −
1

2
ezxb(hp + hb)λ̇(t)w′(Lp, t) −

1

4
Cpλ̇(t)2 (14)

where the piezo moment of inertia is given by Ip = bhp(4h
2
p+6hphb+3h2

b)/12 (see appendix
),the capacitance is Cp = bεS

zzLp/hp and ezx = d31c
E
11 where d31 is the piezoelectric constant
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and cE
11 is the Young modulus of the piezoceramic layer. The Lagrangian functional for the

electromechanical system is then given by:

L(w, λ̇) = Tb + Tp + TmT
− Ub − Hp (15)

Then, the equations of motion are obtained by using Hamilton’s principle. However, it is possi-
ble to obtain the equations of motion in a more direct way. By using a modal expansion of the
displacement field w(x, t), it is possible to write a Lagrangian in some group of time-dependent
generalized modal coordinates. Then, after applying Euler-Lagrange equations, a set of ordi-
nary differential equations may be obtained.

2.1 Modal expansion

We assume that the displacement field of the system can be written as a sum of N time-
dependent generalized modal coordinates and orthogonal modes of the form

w(x, t) =
N

∑

j=1

ηj(t)φj(x). (16)

Considering the case under study, the system can be viewed as two separate Euler-Bernoulli
beams one after the other. In this sense, the modes of the system have to take into account the
effect of this union. For the sake of brevity, we refer the reader to the appendix for a better
explanation of the mathematical procedure to obtain φj(x).

2.2 Final expressions for the electromechanical system

Now, using the φj(x) Eq. (15) can be calculated. Finally, it is

L(η, η̇, λ̇) =
N

∑

j=1

1

2
[η̇j(t)

2 +mġ2(t)]−
1

2
ω2

j ηj(t)
2 +θjλ̇(t)ηj(t)+

1

4
Cpλ̇

2(t)+Γj η̇j(t)ġ(t) (17)

where m = ρsAsLb + 2ρpApLp is the total mass of the system (without the tip mass) and ωj are
the total beam natural frequencies, the electromechanical coupling term is:

θj =
ezx

2
bp

(ahp +
h2

p

2
)

hp

φ′

j(L1) (18)

and Γj is the modal coupling given by:

Γj = ρ1A1

∫ L1

0

Φj,1dx + ρ2A2

∫ L1+L2

L1

Φj,2dx (19)

where Φj,k, k = 1, 2, L1 and L2 are given in the appendix.
From this moment, we only consider one mode. Now, we apply the Euler-Lagrange equa-

tions to Eq. (17)

d

dt

(

∂L

∂η̇

)

−
∂L

∂η
= Q(t) (20)

and

d

dt

(

∂L

∂λ̇

)

−
∂L

∂λ
= I(t) (21)
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where Q(t) represents a generalized force and I(t) is a generalized current. From the theory
of electric circuits it must be recall that the generalized current represents the rate of change in
flux linkage through the energy harvesting network, represented by an equivalent resistive load,
i. e. I(t) = −λ̇(t)/RL. Finally, by applying Eqs. (20) and (21) we have:

η̈j + 2ξjωj η̇j + ω2
j ηj − θλ̇ = Γj g̈ (22)

and

Cpλ̈ +
1

Rl

λ̇ + θjηj = 0 (23)

Now, introducing the voltage v(t) = −λ̇(t) and assuming an harmonic dependence of all vari-
ables (v(t) = veiΩt and η(t) = ηeiΩt) we arrive, after applying the harmonic balance method
(12) at the equations for the voltage

v =
ΓjθΩRl

√

(ω2
j − Ω2 − 2CpRlξjωjΩ2)2 + (2Ωξjωj + RΩ(θ2

j + Cpω2
j − CpΩ2))2

(24)

and for the modal coordinate

η =
Γj

√

1 + C2
pR

2
l Ω

√

(ω2
j − Ω2 − 2CpRlξjωjΩ2)2 + (2Ωξjωj + RΩ(θ2

j + Cpω2
j − CpΩ2))2

(25)

To obtain the displacement field for frequencies near mode j, we must evaluate w(x, t) =
∑2

k=1
φj,kηj eiΩt

3 EXPERIMENTS AND DISCUSSION

Shaker

Tip
mass

PZT-5A

+V

-V

Volt
meter

R

proximity sensor

Function
generator

Current
amplifier

Figure 2: Connection diagram of the experimental setup.

In this section we present the experimental results and its comparison between the numerical
calculations provided by the analytical model. In the experiments, the excitation is provided
by a shaker. Base displacement is measured by a displacement proximity sensor and then
converted into acceleration. The sinusoidal excitation is provided by a signal generator in a
frequency sweep over the frequencies of interest and its power adjusted by a power amplifier.
All measured signals are then recovered into the correct format for postprocessing using a data
acquisition system. An schematic view of the connection diagram of the experimental setup can
be observed in Fig. (2). The actual setup for the experiment is illustrated in Fig. (3).

S.P. MACHADO, M. FEBBO, S. BELLIZZI2190

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In Table (1) we present the physical and geometrical parameters of the steel beam and of the
piezoceramic layer (QP16N, Midé Corporation)

Table 1: Geometrical and physical parameters of the prototype device consisting in a steel beam and a piezoelectric
beam used for the experiments

Geometrical parameters beam piezoelectric layer Material parameters beam piezoelectric layer
(steel) (PZT)

Length, L (mm) 137 45.9 density ρ (kgm−3) 7800 7800
width, b (mm) 31.8 20.57 Young modulus, E (GPa) 210 67

thickness, b (mm) 0.9 0.25 piezo constant, d31 (pm V−1) — -190
mass Mt, (kg) – – permittivity εS

33 (pFm−1) — 1500 ε0

�

Figure 3: Experimental setup for the proposed system.

In the following, the experimental results are presented for the first two modes with the
addition or not of a point mass at the end of the vibrating system. The motivation of this is to
elucidate the effect of the addition of mass for the superior modes in the generation of energy
compared with the fundamental mode of vibration.

Now, we analyze the system which is excited by a base displacement through an electromag-
netic shaker. The results of the voltage frequency response function FRF is compared then with
Eq. (24).

It should also be added that the FRFs in Eq. (24) are multiplied by g = 9.81m/s2 which is the
preferable standard (see for example (10)). It is usual to present the results for different values
of the resistive load. This situation try to emulate different load conditions as it is common in
real applications. Additionally, the effective load resistance observed across the electrodes of
the harvester is the equivalent resistance of the resistive load used and R = 984kΩ, which is the
input resistance of the data acquisition system. The electrical connection imposes that they see
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each other in parallel so, the effective load resistance is: Re = 1/(1/Rl + 1/Rad) whose values
are presented in Table (2).

The voltage and power FRFs for the first mode are presented in Figs. (4) and (5) with mT = 0
(no addition of mass). The damping coefficient of the first mode was set to ξ1 = 0.02 to best fit
the voltage for the large resistive load.

Table 2: Effective load resistance which is the parallel between the used (measured) resistance and R = 986kΩ

(input resistance of the data acquisition system).

Rl(measured) Re(effective)

- 986 kΩ (986 × 103Ω)
326 kΩ 244 kΩ
98.3 kΩ 89.4 kΩ
32.7 kΩ 31.6 kΩ
9.92 kΩ 9.82 kΩ
0.984 kΩ 0.983 kΩ

Figure (4) shows the voltage generation in the nearness of the first mode of the system for
the whole set of considered resistances. There, it can be observed a perfect agreement between
the theoretical (numerical) and experimental results. The maximum value of V/g is ∼ 18.5V/g
and is for the maximum load resistance. The minimum, instead, is on the order of 1V/g and is
for the lowest resistance which is the case of the more current consuming.

Figure 4: FRFs for frequencies near the first mode of the piezoelectric beam for a given set of resistors. The
electromechanical beam has no addition of mass and the system is base-excited. Solid lines theoretical, circles
experimental.

In agreement with other previous results (10), the maximum generation (peak) moves slightly
to lower frequencies for lower resistances since the resistance Rl can be viewed as an effective
(although electrical) damping. At the same time, the electrical power generated can be observed
in Fig. (5). There, the different curves show the electrical power for the whole set of resistances.
The maximum generated power is for resistance Rl = 32.7kΩ and it is 5mW. The comparison
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with the other experimental results are not shown here, for a better presentation of the curves.
However, a similar agreement is observed.

Figure 5: Generated electrical power for frequencies near the first mode of the piezolectric beam of Fig. 4. Solid
lines theoretical, circles experimental.

Figure (6) shows the voltage generation with a small addition of mass, which was selected
to be of mT = 2.41gr. The first salient feature is that the overall generation of voltage increases
from ∼ 18.5V/g to ∼ 23V/g which represents almost a 25% of increment. Also, the addition
of mass causes the system to lower its resonant frequency for the whole considered cases.

Additionally, the generated power is shown in Fig.(7) and has maximum value of 6.8mW
for Rl = 32.7kΩ. This power represents an increment of 36% with respect with the case of no
addition of mass.

Now, we present the results for frequencies near the second mode of the beam system. The
generated voltage and power are shown in Fig. (8) and (9) with no addition of mass. It is first
noted that the voltage generation in these frequencies is reduced in magnitude. In this case, we
have a maximum generated voltage of ∼ 5.2V/g which is more than three times lower than the
voltage generated for frequencies near the first mode. As a consequence, a similar tendency is
followed by the generated electrical power. The results for the power in Fig. (9) reveals that
this value is more than four times lower than the case involving the first mode.

The addition of mass in this case is considered in Fig. (10). For a meaningful comparison,
we have added the same mass as for the case of frequencies near the first mode. The generated
output voltage for the maximum resistance is 7.5 V/g in this case. This represents an increment
of almost 45 % compared with the voltage generation in the absence of mass. Consequently, this
increment is reflected in the generated power shown in Fig. (11). In absolute terms, this power
is approximately 3.6 mW which, compared with 6.8mW with the same case for frequencies
near the first mode represents a decrement of only 50 %.

A comparison of the maximum voltage and maximum power generation as a function of
frequency is shown in Fig. (12). There, it is possible to observe the effect of the addition of mass
in the generation of voltage (or power) relative to the maximum voltage (or maximum power)
which happens for the first mode with added mass. If we analyze the power, it is possible to
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Figure 6: FRFs for frequencies near the first mode of the piezoelectric beam for a given set of resistors. A tip mass
is considered in this case and the system is base-excited. Solid lines theoretical, circles experimental.

observe a large separation for the second mode between the cases with mass and without mass,
compared with the same case for the first mode. Instead, this situation is reversed if we analyze
the voltage.

4 CONCLUSIONS

In this work we analyze the effect in the generation of energy of superior modes of vibration.
From the considered cases, it is possible to draw the following conclusions

• Voltage generation presents a maximum for frequencies in the nearness of the first mode
of vibration.

• It is possible to improve the voltage and power generation with an addition of mass at the
end of the piezoelectric beam.

• The maximum power generation is for a value of load resistance which is not the same
which maximizes the voltage

• The difference between the maximum generated power with or without the consideration
of mass is more pronounced for high frequencies. The opposite occurs for the maximum
voltage generation.

• In absolute terms, the generated power for the second mode with the addition of mass is
only 30 % lower compared with the first mode without the addition of mass.
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Figure 7: Generated electrical power for frequencies near the first mode of the piezolectric beam of Fig. (6). Solid
lines theoretical, circles experimental.

APPENDIX. DERIVATION OF NON-UNIFORM MODES FOR THE COMPOSE SYS-
TEM

The system under analysis comprises a piezoelectric layer bonded over the top of a beam.
In this sense, the system can be treated as a compose system. In this section we concentrate
on calculating the non-uniform mode that result from this compose system. Allowing for an
artificial break at x = Lp, the total beam is assumed to be as two separate Euler-Bernoulli
beams satisfying continuity and compatibility conditions at its junction.
Thus, the mode shapes for the beam can be written as:

φj(x) =
2

∑

k=1

Φj,k(x)Hk(x) (26)

where k is the number of sections and Hk(x) is the Heaviside function to denote the break
at x = Lp. Here, 1 stands for first the section A − B and 2 for the second section B − C (for
clearness refer to Fig. 1)) Therefore L1 = Lp and L2 = Lb−Lp. Then, Φj,1 results, considering
the piezoelectric laminate:

Φj,1(x) = C1 sin(βj,1x) + C2 cos(βj,1x) + C3 sinh(βj,1x) + C4 cosh(βj,1x) (27)

where Ci represent constants determined by the boundary conditions and βj,1 are the eigen-
values given by β4

j,1 = ω2ρ1A1/(E1I1). The (A − B) beam sectional properties are given by
integrating 1/2

∫

S
z2Edydz over the cross sectional area S. This gives:

E1I1 =
1

12
bsEsh

3
s + 2bpEp

(

h3
p

3
+

h2
phs

2
+

hph
2
s

4

)

(28)

ρ1A1 = 2bphpρp + bshsρs (29)

For the second section B − C the solution is:

Φj,2(x) = C5 sin(βj,2x) + C6 cos(βj,2x) + C7 sinh(βj,2x) + C8 cosh(βj,2x) (30)
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Figure 8: FRFs for frequencies near the second mode of the piezoelectric beam for a given set of resistors. The
electromechanical beam has no addition of mass and the system is base-excited. Solid lines theoretical, circles
experimental.

and C5−8 are determined by boundary conditions. In this case, the eigenvalues are β4
j,2 =

ω2ρ2A2/(E2I2). Similarly, the sectional properties are given by

E2I2 =
1

12
bsEsh

3
s (31)

ρ2A2 = bshsρs (32)
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Solid lines theoretical, circles experimental.
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Figure 10: FRFs for frequencies near the second mode of the piezoelectric beam for a given set of resistors. The
electromechanical beam has no addition of mass and the system is base-excited. Solid lines theoretical, circles
experimental.

Figure 11: Generated electrical power frequencies near the second mode of the piezoelectric beam of Fig. 10.
Solid lines theoretical, circles experimental.

S.P. MACHADO, M. FEBBO, S. BELLIZZI2198

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
or

m
al

iz
ed

 P
ow

er
, V

ol
ta

ge

 

 

voltage
powerwith mass

without  mass

Figure 12: Normalized maximum power and maximum voltage generation comparison as a function of frequency.
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