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Abstract. The proper description of turbulent flows presents difficulty for researchers in fluid mechan-
ics. One feature of some of these flows is intermittency. The intermittency phenomenon in Chaotic
Dynamics theory is understood as a specific route to the deterministic chaos when spontaneous transi-
tions between laminar and chaotic dynamics occur. A correct characterization of the intermittency is
important, principally, to study those problems having partially unknown governing equations or there
are experimental or numerical data series. This paper presents a review of a new methodology to inves-
tigate systems showing chaotic intermittency phenomenon without noise is presented. To evaluate the
statistical properties of the chaotic intermittency a theoretical RPD is obtained. This function depends on
two parameters, the lower bound of reinjection and an exponent which describes the non-linear reinjec-
tion processes. Once evaluated the RPD function, other properties such as the probability of the laminar
length and the characteristic relation are obtained. The key of the new formulation is the introduction
of a new function, called M(x), which is utilized to calculate the RPD function in place to consider the
huge number of numerical or experimental data. The function M(x) depends on two integrals, this char-
acteristic reduces the influence on the statistical fluctuations in the data series. Also, the function M(x)
is easy to evaluate. With this new approach, more accurate analytical expressions for the intermittency
statistical properties are obtained. And, it is shown that the behavior of the intermittency phenomena is
more rich and complex that those given by the classical theory used until now. On the other hand, the new
analytical RPD function is more general than the previous ones; and the classical uniform reinjection is
only a particular case.
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1 INTRODUCTION

Intermittency is a particular route to chaos, where a transition between regular or laminar
and chaotic phases occur. Pomeau and Maneville introduced the concept of intermittency
in (Manneville and Pomeau, 1979) and it has been observed in several fluid dynamics top-
ics such as plasma physics and derivative non-linear Schrodinger equation (Sanmartín et al.,
2004; Sanchez-Arriaga et al., 2007); Lorenz system (Manneville and Pomeau, 1979); Rayleigh-
Bénard convection (Dubois et al., 1983) and turbulence (Manneville, 2004), etc. Therefore, it
is very important to properly characterise the intermittency phenomenon.

Traditionally, intermittency is calssified into three differents types called I, II and III (Schus-
ter and Wolfram, 2005; Nayfeh and Balachandran, 1995) according to the Floquet multipliers
or eigenvalue in the local Poincaré map. In intermittency type-I one of the Floquet multipli-
ers leaves the unit circle through +1, there is a tangent bifurcation (Nayfeh and Balachandran,
1995). Intermittency type-II begins in a subcritical Hopf bifurcation or Naimark-Sacker bifur-
cation (Wiggins, 1990), therefore, two complex-conjugate Floquet multipliers or two complex-
conjugate eigenvalues of the local Poincaré map exit the unit circle. Type-III intermittency is
related to a subcritical period-doubling or flip bifurcation when one Floquet multiplier leaves
the unit circle through -1. In the intermittency phenomenon, when a control parameter ex-
ceeds a threshold value, the system behaviour changes abruptly to a larger attractor by means
an explosive bifurcation (Nayfeh and Balachandran, 1995). Then, the periodic orbit becames
chaotic.

By means of Poincaré sections it is possible to study the intermittency mechanism using
maps. In all the cases, a fixed point of the local Poincaré map becomes unstable for positive
values of a control parameter ε. The local Poincaré maps for type-I, type-II and type-III inter-
mittencies are respectively given by: xn+1 = ε + xn + a x2n, xn+1 = (1 + ε)xn + a x3n and
xn+1 = −(1 + ε) xn − a x3n, where ε and a must be higher than 0. However, to generate inter-
mittency it is necessary to have a reinjection mechanism that maps back from the chaotic zone
into the local regular or laminar one. This mechanism is described by the reinjection probability
density function (RPD), which is determined by the non linear dynamics of the system itself.
Therefore, the accurate evaluation of the RPD function is extremely important to correctly anal-
ize and describe the intermittency phenomenon. It is important to note that in only a few cases it
is possible to obtain an analytical expression for the RPD function. Also, it is not a simple task
to experimentally or numerically obtain the RPD due to the huge amount of data needed; and
the statistical fluctuations induced in the numerical computations and the experimental mea-
surements are difficult to be estimated. For theses reasons several different approaches have
been used to describe the RPD for the intermittent systems. The most implemented approach
considers the RPD as a constant; therefore, there is uniform reinjection. However, specific ap-
proaches have been utilized, which are built using a characteristic of the particular non-linear
proccesses. Nevertheless, these RPD functions can not be applied for other systems. An exam-
ple is given by (Kye and Kim, 2000) to investigate the effect of noise in type-I intermittency.
They assumes that the reinjection is concentrated in a fixed point.

There was not an efficient method to obtain the RPD function. However, recently a more
general RPD that includes the uniform reinjection as a particular case had been introduced (del
Río and Elaskar, 2010; Elaskar et al., 2011; del Río et al., 2012; Elaskar and del Río, 2012; del
Río et al., 2013, 2014; Krause et al., 2014a,b). In this paper we present a complete description
of the new formulation for type-I, II and III intermittencies. The formulation includes the lower
bound of the reinjection (LBR), and permits the other statistical variables calculation, such as
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the probability of the laminar length and the characteristic relations.

2 FORMULATION FOR THE RPD FUNCTION

We consider a general one-dimensional map: xn+1 = F (xn). The RPD function, called
here by φ(x), gives the statistical behavior of the reinjection trajectories, and it depends on the
specific form of F (x). The main concept to reach a more general formulation is given by the
following integral (del Río et al., 2012):

M(x) =

{ ∫ x
x̂ τ φ(τ) dτ∫ x
x̂ φ(τ) dτ

if
∫ x
x̂
φ(τ)dτ 6= 0

0 otherwise
(1)

Where x̂ and c are the lower boundary of reinjection and the end of the laminar zone around of
the unstable fixed point x0 respectivelly. x̂ can be lower, iqual or higher than zero. However, c
is a constant verifying c > 0; and always the inequality x̂ ≤ x ≤ c must be verify. Then, the
laminar interval is defined by [x̂;x0 + c]. In the previous work (del Río and Elaskar, 2010) we
used x̂ = x0; however, a more general approach considering x̂ different to x0 was established
in (Elaskar et al., 2011). Note that the integral M(x) smooths the experimental o numerical
data series, and its numerical estimation is more robust than the direct evaluation of the RPD
function, φ(x). Also, the practical evaluation of the function M(x) is very simple, we can
calculate it as:

M(x) ≈ 1

n

n∑
j=1

xj, xn−1 < x ≤ xn (2)

where the reinjection points {xj}Nj=1 must be sorted from lowest to highest, i.e. xj ≤ xj+1. We
found that for a wide class of maps exhibiting intermittency, the functionM(x) satisfies a linear
approximation:

M(x) =

{
m(x− x̂) + x̂ if x ≥ x̂
0 otherwise (3)

where the slope m ∈ (0, 1) is a free parameter. Then, using Eqs.(1 and 3) we can obtain the
corresponding RPD:

φ(x) = λ(x− x̂)α, with α =
2m− 1

1−m (4)

where λ is a normalization constant and α > −1 becuase 0 < m ≤ 1. Note that for m = 1/2
we recover the uniform RPD, φ(x) = cte. Therefore, the new formulation is more general, and
it includes the uniform reinjection as a particular case.

3 TYPE-I INTERMITTENCY

We use a quadratic map to represent the local map for type-I intermittency:

xn+1 = f(x) = ax2n + xn + ε, (5)

where ε is the control parameter and it represents the channel width in the laminar region, i.e.
the distance between the local Poincaré map and the bisectrix. The parameter a specifies the
position of the point with zero-derivative. In the last equation, for ε < 0 there are two fixed
point, one of them stable and other one unstable. For ε = 0 the two fixed points coalesce in one
fixed point x0 = 0; and for ε > 0 there are not fixed points. Furthermore, if there is a reinjection
mechanims mapped back from the chaotic zone into the local one, type-I intermittency can exist.
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The map implmented by (del Río et al., 2013) is used. For that map the non-linear reinjection
mechanims is given by: g(x) = x̂ + h(x− xr)γ . The coefficient h is obtained from g(xr) = x̂
and g(1) = 1. We consider that the LBR is placed inside of the laminar intervalm then |x̂| ≤ c.

The global map can be written as:

F (x) = f(x) = ax2 + x+ ε, x < xr,

F (x) = g(x) = x̂+ f(xr)−x̂
(f(xr)−x̂)γ (x− x̂)γ x > xr

. (6)

The exponent γ permits to obtain differents RPD functions. For γ > 1 the trajectories are
concentrated around the LBR point, therefore the RPD has a decreasing structure. However,
for 0 < γ < 1 the trajectories move away from the LBR point, then the RPD function has an
increasing form. For γ = 1, the RPD is approximatelly uniform.

Figure 1 shows the map (6) for three different values of the exponent γ.

    

          

          

          

          

−c x0 = 0 c xr

x̂−σ

x̂

x0 + ε

1

x

γ = 1/2

γ = 2

Figure 1: Map F (x) given by Eq. (6) for different values of the exponent γ. The LBR produced bay the noise
effect is indicated too.

In this work, to obtain the RPD, the theoretical methodology developed by (del Río and
Elaskar, 2010; Elaskar et al., 2011; del Río et al., 2014) is extended. The RPD function is
evaluated from the function M(x) which is obtained from numerical or experimental data. The
function M(x) is defined inside of the laminar interval [−c, c] using Eq.(2). Note that M(x) is
an average over the reinjection points in the laminar interval, and its evaluation is easier than
the direct RPD calculation.

For a wide class of maps exhibiting type-I intermittency without considering noise, the func-
tion M(x) satisfies a linear approximation if the LBR is placed inside of the laminar interval
(−c < x̂ < c) (Krause et al., 2014a). Therefore, the RPD function is given by Eq.(4).

The laminar length counts the number of iterations spent by the trajectory inside of the
laminar interval, and it depends only on the local map. However, the probability of the laminar
length function, φl(l) takes in consideration the reinjection mechanims. φl(l) determines the
probability to find an specific laminar length.
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The local Poincaré map given by Eq.(5) is used to evaluate the laminar length. If we consider
ε → 0, the difference xn+1 − xn can be approximated by the following differential equation
(Schuster and Wolfram, 2005):

dx

dl
= ax2 + ε, (7)

The solution of the last equation inside of the interval [−c, c] results:

l(x, c) =

∫
1

ax2 + ε
dx =

1√
aε

[tan−1(

√
a

ε
c)− tan−1(

√
a

ε
x)]. (8)

Then, for type-I intermittency, the probability to find a laminar length between l and l + dl
is (Schuster and Wolfram, 2005):

φl(l) = φ[X(l, c)]

∣∣∣∣dX(l, c)

dl
| = φ[X(l, c)]|a[X(l, c)

]2
+ ε|, (9)

where X(l, c) is the inverse function of l(x, c) given by Eq.(8):

X(l, c) =

√
ε

a
tan[tan−1(

√
a

ε
c)−√aεl]. (10)

Note that the characteristics of the function φl(l) depend on the LBR and α. Figure 2 shows
the different form for the probability of the laminar length in type-I intermittency (del Río et al.,
2014)

l

φ
l
(l
)

l

φ
l
(l
)

l

φ
l
(l
)

(a) x̂ > 0, α > 0 (b) x̂ < 0, α > 0 (c) x̂ = 0, α < 0

l

φ
l
(l
)

l

φ
l
(l
)

l

φ
l
(l
)

(d) x̂ < 0, x̂ < 0 (d) x̂ < 0, α = 0 (f) x̂ > 0, α = 0

Figure 2: Probability of the laminar length, φl(l), for several LBR and α
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4 TYPE-II INTERMITTENCY

In this section we applied the new formulation to an illustrating one-dimensional map pre-
senting type-II intermittency (del Río and Elaskar, 2010):

xn+1 =

{
F (xn) xn ≤ xr
(F (xn)− 1)γ xn > xr

(11)

where F (x) = (1+ε)xn+(1−ε)xpn, xr is defined by F (xr) = 1, and ε is the control parameter.
The origin of the map x = 0 is always a fixed point, however it is only stable for −2 < ε < 0.
For ε > 0 the fixed point is unstable. The iterated points xn of an inicial point, close to the
origin, increases due to a process governed by parameters ε and p. A chaotic burst happens if
xn becomes larger than xr; this chaotic process will be finished when xn is reinjected into the
laminar zone. From this reinjected point, a new iterative process again governed by ε and p will
cause an increase of the iterative points. Note that γ drives the reinjection mechanism, whereas
p and ε influence the laminar phase duration. If we consider γ = 1 and p = 2 in Eq.(11), we
recover the map used by Manneville in his pioneer paper (Manneville and Pomeau, 1979). If we
use p = 3, the local form of the map represents the local Poincaré map of type-II intermittency.

We have numerically evaluated the functionM(x) obtaining, in approximation, the following
linear form M(x) = mx. Figure 3 shows numerical evaluations of M(x) for different values of
parameter γ together with the corresponding least squares straight line fitting. Always we find
that |m| < 1. We have used the following parameters: in the upper line γ = 2 and ε = 10−3,
and for the lower line γ = 0.65 and ε = 10−4. According to previous results, we consider
that the function M is linear, M(x) = mx. Then the RPD can be expressed by Eq.(4) with
λ = α+1

cα+1 . Note that φ(x) is determined only by the parameter m, which is easier to measure
than the complete function φ(x). Note that the shape of φ(x) can be very different from the flat
line (uniform reinjection), for instance limx→0 φ(x) is infinity when 0 < m < 1/2 and zero if
1/2 < m < 1. In Figure 4 points indicate the numerical RPD functions, and the theoretical
functions for φ(x) given by Eq.(4) are represented by continuous lines. We are considering the
same two cases shown in Fig.(3). We can observe that the numerical data and theoretical results
have a very good agreement. Note that the continuous curve reduces the statistical fluctations
of the numerical data. We observe that the slope m determines the value of the exponent α in
the reinjection function (4), hence it rules the reinjection mechanism and it has direct influence
in the the length probability density, the average laminar length and the characteristic relation.
The density of the laminar lengths probability φl(l) is a global property and it is related to φ(l, c)

φl(l, c) = λ

(
ε(

a+ ε
c(p−1)

)
e(p−1)εl − a

) p+α
p−1

×

×
(
a+

ε

c(p−1)

)
e(p−1)εl

(12)

We can note that φl(l, c) depends on the global parameter α. Hence, the probability of the
laminar length is determined by the slopem of the functionM(x). Fig.(5) shows a comparisson
between the analytical results calculated using Eq.(12) with the numerical results for the map
(11). We can observe a good agreement between numerical data and the theoretical results.
Another important property of the intermittent behaviour is the average laminar length l̄, that if
m does not depend on ε, can be written as del Río and Elaskar (2010):

l̄ ≈ 1

acα+1

(a
ε

) p−α−2
p−1 π

p− 1
sin−1

(
π(1 + α)

p− 1

)
(13)
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Figure 3: Function M(x) for the map (11) with p = 3. Continuous lines show the linear fit of the numerical data.
The slope of the dashed line is 0.5. In the upper line γ = 2 and ε = 10−3 whereas for the lower case γ = 0.65 and
ε = 10−4

so the characteristic relation can be writte as:

l̄ ∝ ε
α+2−p
p−1 (14)

The characteristic relation depends on both: the behavior of the local map around the fixed
point, and on the global dynamic of the map represented by the parameters α or m. The map
(11), in the region where the chaotic dynamic occurs, depends on the exponent γ, so we expect
that the RPD also will depend on γ. Then, we expect that α and m will be strongly dependent
on γ and weakly on parameters ε.

5 TYPE-III INTERMITTENCY

Dubios and co-authors found type-III intermittency in the Bénard convection in a rectangular
cell; and they presented a Poincaré map without reinjection around the neighborhood of the
unstable fixed point (Dubois et al., 1983). This behavior suggests that exists a lower bound
of the reinjection. In this section, we will extend the results obtained in the previous sections
to type-III intermittency to reach a complete description of the laminar length statistic and the
effect of the LBR. To do this we will use the function M(x) following (Elaskar et al., 2011).

We introduce an illustrating map:

xn+1 = F (xn) = −(1 + ε) xn − a x3n+

+ b x6n sin(xn) with a > 0
(15)

where x = 0 is a fixed point of the map. This fixed point is asymptotically stable when ε satisfies
−2 < ε < 0, and it is unstable for ε > 0 and the Schwartzian derivative SF(x) is positive. The
last term in Eq.(15) provides an efficient mechanism for reinjection. The non-linear behavior of
the Eq.(15) is completely different from the non-linear behavior of the maps used for type-I and
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Figure 4: RPD for map (11). Upper and lower pictures correspond with the upper and lower lines of Fig.(3)
respectively. Dots indicate numerical evaluations and continuous lines show the analytival results.

II intermittencies. Therefore, with the map (15) we not only study type-III intermittency, but
we also extend the new formulation to another wide set of maps. The reinjection mechanism
depends on the value of F (xr) at extreme points xr. As n increases, any point xn close to the
origin evolves in a process govern by the parameters ε and a. For enough large n, the RHS
third term effect in Eq.(15) increases and xn approaches a xr point giving rise the reinjection
mechanism into the laminar zone. We note thta there is no reinjection around the unstable fixed
point for b > bc ' 1.07 (Elaskar et al., 2011). However, there is not LBR if b < bc for the same
values of a and ε. The map is shown in Figure 6.

Figure 7 plots the function M(x) of Eq.(15) for a = 1 and ε = 0.01. There are two functions
M(x) calculated using two different values of the parameter b which can be approximated by
straight lines, hence according with Eq.(3) we get m and by setting M(x̂) = x̂ we can obtain
the LBR value x̂. Hence by reinjection probability density function can be described by Eq.(4),
where λ = 1

2
α+1

(c−x̂)α+1 .
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Figure 5: φl for map (11) using the same parametres that as Fig.(3).

For Fig.(7), we found that m = 0.36 and m = 0.37 for the lower and upper line respectively.
Fig.(8) shows the RPD functions for the same tests indicated in Fig.(7). The continuous curve
represents the analytical expression given by Eq.(3). Note that the agreement between theoreti-
cal results and numerical data is very good. A LBR different from zero produces a gap around
the unstable point in the Poincaré map (x̂ 6= 0). The LBR appears in the function φ(x) = λxα

as a positive shift on the variable x. Also, negative values of x̂ can also be possible for Eq.(4).
Therefore, if x̂ < 0, the RPD function can be described by two overlapping functions, each one
having the form given by Eq.(4):

φ(x) =
λ[(|x̂|+ x)α + (|x̂| − x)α] if |x| − |x̂|
λ(|x̂|+ x)α if |x̂| < x− c
λ(|x̂| − x)α if − c < x− |x̂|

(16)
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Figure 6: Map for diffrent values of b.

Figure 7: Numerical function M(x) for the map (15). For the lower line b = 1.05 and for upper one b = 1.1. After
numerical fitting, we obtain m ≈ 0.36, x̂ ≈ 0 and m ≈ 0.37, x̂ ≈ 0.053, respectively. The rest of the parameters
used are a = 1 and ε = 0.01.

where λ > 0 is again a normalization parameter

λ =
1

2

α + 1

(c+ |x̂|)α+1
(17)
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Figure 8: RPD for the same parameters used for Fig.(7). Dots are numerical data and continuous lines represent
the Eq.(4).

The RPD given by Eq.(16) is also specified by the two parameters α and x̂, as in the previous
case. However, the function M(x) is not linear in x because the reinjection mechanism is
produced by superimposing two simultaneous processes (see Fig.9). The RPD given by Eq.(16)
is non-continuous for x = |x̂|, then M(x) has no derivative at this point. Therefore, the point x̂
is a singular point for both M(x) and φ(x). To obtain the expression for M(x) we use Eqs.(3)
and (16):

M(x) =
(1 + α)x− |x̂|

(2 + α)[
|x̂| (|x̂| − x)1+α − |x̂|2+α

(|x̂| − x)1+α − (|x̂|+ x)1+α

]
2

(2 + α)

(18)

To calculate α we evaluate the Eq.(18) for x = |x̂|. To verify the assumptions made in obtaining
the RPD in Eq.(16), we compare numerical data for M(x) with Eq.(18). In Fig.(9) we plot both
analytical and numerical M . In Fig.(10) we compare the RPD function, Eq.(16), with the
numerical data. The values of x̂ and α have been calculated from the function M(x) for the
same parameters used in Fig.(9). The overlapping of the function φ(x) is clearly exhibited in
the figures. Once the RPD function is calculated, it is possible to evaluate the laminar length,
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Figure 9: Numerical evaluation of M(x). Singular point is |x̂| ≈ 0.157. The continuous line represents Eq.(18)
for x < |x̂| and the dashed one is the straight line with slope 1/2. The parameters are a = 1.035, b = 1.05 and
ε = 0.001.

Figure 10: RPD for the same parameters used in Fig.(9). Dots are numerical data and continuous lines are referred
Eq.(16).

and their probability density

φl(l) = 2λ (X(l, c)− x̂)α
[
aX(l, c)3 + εX(l, c)

]
(19)

where X(l, c) =
√

ε
(a+ε/c2)e2ε l−a .
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Figure 11: φl for the same test of Fig.(9). Eq.(19) is represented by lines.

Fig.(11) shows the comparison between numerical data for the probability density of laminar
length and the results calculated with Eq.(19). To obtain this figure we have used the same
parameters x̂ and m corresponding to lower and upper line respectively of Fig.(7). Note that in
Fig.(11.a) the probability of laminar phase length values can be arbitrarily very large because
of x̂ ≈ 0. On the contrary, for b = 1.1, we have x̂ > 0 and this fact gives rise the existence of
an upper cut-off value, l̂, as shown in Fig.(11.b). For x̂ < 0, by ussing Eqs.(16) and (19), the
probability density of the laminar length can be written as:

φl(l) = 2λ [(|x̂|+X(l, c))α + +k (|x̂| −X(l, c))α][
aX(l, c)3 + εX(l, c)

] (20)

where k = 0 for |l| ≤
∣∣∣l̂∣∣∣ and k = 1 for |l| >

∣∣∣l̂∣∣∣.
Fig.(12) shows the comparison between the numerical values and the Eq.(20). The parame-

ters x̂, α and λ used in this figure are the same that we used in Figs.(9 and 10). When x̂ > 0 we
find that l̂ is a cut-off value, whereas for x̂ < 0 the function φl does not have a cut-off and this
function continues to infinite.
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Figure 12: φl for the same test of Fig.(10). Eq.(20) is represented by lines.

6 CONCLUSIONS

In this paper we have presented a review about of a new formulation for chaotic intermittency.
This formulation is general and we have applied to type I, II and III intermittencies with and
without LBR. The methodology is based on a new function, calledM(x), and with this function
we can calculate the RPD function for a broad class of systems.

The function M(x) is easy to calculate; and it has a linear form for several maps. Also,
by means of a numerical evaluation of the function M(x), we have obtained the values of the
parameters m and x̂. With only theses two parameters, we provide a whole description of
the RPD function. Once we have obtained the RPD function, we can establish new analytical
relations for the probability density of the laminar length.

When x̂ > 0, the system has a LBR and there is a cut-off value for the probability of the
laminar lengths. For x̂ < 0 the system has a more complex RPD which is a linear combination
of RPD describing the case of x̂ > 0. This behavior modified the linearity of the functionM(x).
However, even in these tests, the function M(x) provides us enough information to completely
determine the function φ(x).

We have found more complex RPD functions that those generated by uniform reinjection;
and the uniform reinjection is only an specific case in the new theory. The same applies for
the probability of the laminar lengths. For example, for type I intermittency we have obtained
several probabilities of the laminar length as function of the LBR and the exponent α

Finally, we highlight that in all performed tests, the numerical data and theoretical results
have shown a very good agreement.
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