
NEW FORMULATION FOR CHAOTIC INTERMITTENCY WITH
NOISE

Sergio Elaskara,b,d, Ezequiel del Ríoc and Gustavo Krausea,b

aDepartamento de Aeronáutica, Universidad Nacional de Córdoba, Av. Velez Sarfield 1611, 5000
Córdoba, Argentina

bCONICET

cDepartmento de Física Aplicada, ETSIA, Universidad Politécnica de Madrid, Plaza Cardenal
Cisneros 3, Madrid, Spain

dsergio.elaskar@gmail.com

Keywords: Intermittency, Chaos.

Abstract. The proper description of turbulent flows presents difficulty for researchers in fluid mechan-
ics. One feature of some of these flows is intermittency. The intermittency phenomenon in Chaotic
Dynamics theory is understood as a specific route to the deterministic chaos when spontaneous transi-
tions between laminar and chaotic dynamics occur. A correct characterization of the intermittency is
very important, principally, to study those problems having partially unknown governing equations or
there are experimental or numerical data series. In this paper a new methodology to investigate systems
showing chaotic intermittency phenomenon with noise is presented. The methodology used for system
without noise is extended to evaluate the noisy reinjection probability density (NRPD), the noisy proba-
bility of the laminar length and the noisy characteristic relation. The approach also provides information
to accurately describe the noiseless system. It also was found that, for type-II and type-III intermitten-
cies, for large values of the instability parameter the characteristic relations approach the associated ones
to the noiseless intermittency. However, for low values of the instability parameter, the characteristic
relations reach a saturation level that depends on the NRPD. Also, this new methodology does not need
to satisfy noise strength lower that the control parameter, it allows to analyze the noise effect on the
intermittency statistical properties for large noise strengths. However, in few cases for type-I intermit-
tency, the description of the noiseless system using the noisy data can be inaccurate. In addition, it is
shown that occasionally the presence of noise could be not detected due to the results behave as they
would be corresponding to a noiseless system. This aspect may have important consequences especially
when working with experimental data.To validate the new theoretical formulation, the analytical results
are tested by several numerical computations, showing an excellent agreement between the analytical
models and the numerical results.
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1 INTRODUCTION

Intermittency is a particular route to chaos, where a transition between regular or laminar
and chaotic phases occurs. In the intermittency phenomenon, when a control parameter ex-
ceeds a threshold value, the system behaviour changes abruptly to a larger attractor by means
an explosive bifurcation (Nayfeh and Balachandran, 1995). Then, the periodic orbit becames
chaotic. The concept of intermittency was introduced by Maneville and Pomeau in (Manneville
and Pomeau, 1979; Manneville, 1980), and it has been observed in several fluid dynamics top-
ics such as plasma physics and derivative non-linear Schrodinger equation (Sanmartín et al.,
2004; Sanchez-Arriaga et al., 2007); Lorenz system (Manneville and Pomeau, 1979; Man-
neville, 1980); Rayleigh-Bénard convection and turbulence (Manneville, 2004), etc. Also, in-
termittency has applications in other physical topics, such forced nonlinear oscillators; and in
economical and medical sciences.

Clasically, intermittency is calssified into three differents types called I, II and III (Schus-
ter and Wolfram, 2005; Nayfeh and Balachandran, 1995) according to the Floquet multipliers
or eigenvalue in the local Poincaré map. In intermittency type-I one of the Floquet multipli-
ers leaves the unit circle through +1, there is a tangent bifurcation (Nayfeh and Balachandran,
1995). Intermittency type-II begins in a subcritical Hopf bifurcation or Naimark-Sacker bifur-
cation (Wiggins, 1990), therefore, two complex-conjugate Floquet multipliers or two complex-
conjugate eigenvalues of the local Poincaré map exit the unit circle. Type-III intermittency is
related to a subcritical period-doubling or flip bifurcation when one Floquet multiplier leaves
the unit circle through -1.

By means of Poincaré sections it is possible to study the intermittency mechanism using
maps. The local Poincaré maps for type-I, type-II and type-III intermittencies are respectively
given by: xn+1 = ε+xn+a x2n, xn+1 = (1+ε)xn+a x3n and xn+1 = −(1+ε) xn−a x3n, where
ε and a must be higher than 0. A fixed point of the local Poincaré map becomes unstable for
positive values of a control parameter ε. Also, to generate intermittency it is necessary to have
a reinjection mechanism that maps back from the chaotic zone into the local regular or laminar
one. This mechanism is described by the reinjection probability density function (RPD), which
is determined by the non linear dynamics of the system it self. Therefore, the accurate evaluation
of the RPD function is extremely important to correctly analize and describe the intermittency
phenomenon. There was not an efficient method to obtain the RPD function. However, recently
a more general RPD had been introduced (del Río and Elaskar, 2010; Elaskar et al., 2011; del
Río et al., 2012; Elaskar and del Río, 2012; del Río et al., 2013, 2014; Krause et al., 2014a,b).

It is clear that noise affects all system dynamic, therefore it will be affect the RPD func-
tion. We note that in the previos studies about of the local noise effect is usually assumed that
the noise strength σ is much smaller than ε. Here, we consider a general process where this
hypothesis is not necessary and we define the noisy RPD function (NRPD).

2 FORMULATION FOR THE RPD FUNCTION

We consider a general one-dimensional map: xn+1 = F (xn). The RPD function, called
here by φ(x), gives the statistical behavior of the reinjection trajectories, and it depends on the
specific form of F (x). The main concept to reach a more general formulation is given by the
following integral (del Río et al., 2012):

M(x) =

{ ∫ x
x̂ τ φ(τ) dτ∫ x
x̂ φ(τ) dτ

if
∫ x
x̂
φ(τ)dτ 6= 0

0 otherwise
(1)
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Where x̂ and c are the lower boundary of reinjection and the end of the laminar zone around of
the unstable fixed point x0 respectivelly. x̂ can be lower, iqual or higher than zero. However, c
is a constant verifying c > 0; and always the inequality x̂ ≤ x ≤ c must be verify. Then, the
laminar interval is defined by [x̂;x0 + c]. In the previous work (del Río and Elaskar, 2010) we
used x̂ = x0; however, a more general approach considering x̂ different to x0 was established
in (Elaskar et al., 2011). Note that the integral M(x) smooths the experimental o numerical
data series, and its numerical estimation is more robust than the direct evaluation of the RPD
function, φ(x). Also, the practical evaluation of the function M(x) is very simple, we can
calculate it as:

M(x) ≈ 1

n

n∑
j=1

xj, xn−1 < x ≤ xn (2)

where the reinjection points {xj}Nj=1 must be sorted from lowest to highest, i.e. xj ≤ xj+1. We
found that for a wide class of maps exhibiting intermittency, the functionM(x) satisfies a linear
approximation:

M(x) =

{
m(x− x̂) + x̂ if x ≥ x̂
0 otherwise (3)

where the slope m ∈ (0, 1) is a free parameter. Then, using Eqs.(1 and 3) we can obtain the
corresponding RPD:

φ(x) = λ(x− x̂)α, with α =
2m− 1

1−m (4)

where λ is a normalization constant and α > −1 becuase 0 < m ≤ 1. Note that for m = 1/2
we recover the uniform RPD, φ(x) = cte. Therefore, the new formulation is more general, and
it includes the uniform reinjection as a particular case.

3 NOISE INFLUENCE
In this section we study the noise influence on the statistical properties of intermittency, and

we follow the research published in (del Río et al., 2012). For instance, for type-II intermittency
we use the following noisy map:

x′n+1 =

{
F (xn) + σξn xn ≤ xr
(F (xn)− 1)γ + σξn xn > xr,

(5)

ξn is a uniform distributed noise verifying that < ξm, ξn >= δ(m− n) and < ξn >= 0. Where
σ is the noise intensity. To keep x′n+1 in the unit interval we modifies the the map as follows:

xn+1 =

{
|x′n+1| x′n+1 ≤ 1
|x′n+1| − 2 mod(|x′n+1|, 1) x′n+1 > 1.

(6)

We can note that when σ = 0, we recover the previously used map (Elaskar et al., 2014).
Fig.(1) shows the reinjection mapping into the laminar region. The dashed arrow represents
the noiseless trajectory. However, the trajectory for the system (5-6), due to the noise, may
spread over a region enclosed by the solid lines. To analyze the noise influence in type-III
intermittency, we use the following map:

xn+1 = −(1 + ε) xn − a x3n + d x6n sin(xn) + σξn, (7)

As fist step we calculate the function M(x) for the map (5-6) considering two cases: with and
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Figure 1: Map of Eqs.(5-6).
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Figure 2: Numerical simulations of M(x) for the map (5-6). The dashed line has slope 1/2. The lines above the
dashed one correspond to γ = 0.65. The same values of noise strength is used for the two lines below the dashed
one, that correspond to γ = 2. For all the cases ε = 0.001 is fixed and c = 0.1.

without noise. The results are indicated in Fig.(2). The functions M(x) for noise and noiseles
tests are smooth becuase the definition ofM(x) smoothed the data. For the noisy testsM(x) has
different bahavior on each side of xc and it can be approximated by a piecewise linear function
with two slopes. And the value xc depends on the noise intensity, σ. For x < xc the slope of
M(x) approaches 1/2, as we expect for the uniform reinjection. However, for xc < x, the slope
of M(x) reaches a very similar value to the corresponding noiseless slope. For γ = 0.65 in
the noisy test the slope is m ≈ 0.61 and to the noiseless case m ≈ 0.60. Then, in the region
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xc < x the noisy RPD (NRPD) must have a similar form that the RPD function. This is a very
important property of M(x) because by means of the noisy data analysis we can obtain the
RPD function for the noiseless case. We note that noise acts on the complete system. However,
it does not afects the function M(x) in the region x > xc. Then, on the right side of xc, the
RPD function is robust against the noise but in the region x < xc the noise modifies the RPD.
The noise influence, for x < xc, produces that the RPD aproaches to the uniform reinjection,
at least locally around x = 0. For type-III intermittency, we find a similar behavior. The main
difference happens in the value of xc, that in this case it is bigger. We start with a numerical
calculation of the function M(x). The results are ploted in Fig.(3). We note that for values
close to the origin (on the left of the arrows), the function M(x) approaches M(x) ≈ 0.5x,
but for points on the right hand side of the arrows we have M(x) ≈ mx where the slope m is
similar as to in the noiseless map. For the map with type-III intermittency the effect of noise on
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Figure 3: Function M(x) for the map Eq.(7). The parameters are: c = 0.8, a = 1.1, d = 1.35, ε = 10−4. Arrows
show when M(x) change the 1/2 slope.

the function M(x) is stronger than for the map with type-II intermittency because the transition
from the 0.5 slope to a slope close to the noiseless test takes place for bigger values of xc than
for the type-II map.

3.1 Analytical NRPD in type II intermittency
To obtain an analytical expression for the NRPD, denoted by Φ(x), we analyse the effect of

noise on the reinjection trajectories, as it is described in Fig.(1). A trajectory withouth noise is
indicated by a dashed line, when this trajectory is perturbed by noise the reinjection point can
be palced inside of the interval l0. That is, the noiseless density φ′(x) should be transformed
into a new density Φ(x) according to the convolution:

Φ(x) =

∫
φ′(y)G(x− y, σ)dy (8)

Where G(x, σ) is the probability density of the noise term σξn in Eq.(5). For x > xc, the slope
of the noisy M(x) approaches the corresponding slope without noise, and we can calculate the
function φ(x) without noise. These developments suggest that φ′(x) ≈ φ(x), where φ(x) =
λ|x|α is the noiseless RPD. We note that the parameters λ and α are the values for the noiseless
map. We introduce φ′(x) = λ|x|α in the convolution integral to prove this assumption. As
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noise source we used a random variable ξ in the interval [-1,1], hence its probability density G
in Eq.(5) and (7) is given by

G(x, σ) =
Θ(x+ σ)−Θ(x− σ)

2σ
(9)

Where Θ(x) is the Heaviside step function. After solving the integral, we can writte the
NRPD function as:

Φ(x) =
1

c1+α
(|x|+ σ)1+α − Sg(|x| − σ)||x| − σ|1+α

2σ
, (10)

Sg(x) is the sign function. In Fig.(4) we compare the results calculated by Eq.(10) with the
numerical simulations for different noise levels. We consider the same values of m and α
obtained from Fig.(2). We observe a good agreement between the numerical simulations and
the analytical evaluations. However, when the intensity of the noise is higher we find differences
of about 10 percent between the noiseles slopes m obtained with and without noise data. But,
the power law exponential form of the RPD, φ′(x) = λ|x|α, remains robust (del Río et al.,
2012).
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Figure 4: NRPD for the map Eq. (5-6). a) c = 0.1, γ = 0.65, σ = 0.03 and b) c = 0.1, γ = 2 and σ = 0.01. Dots
correspond to numerical data, Eq.(10) is plotted as a solid line.

3.2 Analytical NRPD in type III intermittency
We show in the previous section that the noiseless RPD for type-III intermittency follows a

power law. This law depends on the neighboring points of the map maximum and minimum
values, Eq.(7), (Elaskar et al., 2011). In Fig.(5) we indicate using a dashed line the noiseless
trajectory of a point starting near the maximum value of the map. When the noise affects the
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system, this trajectory may spread over a region of some width, denoted here by l0. We can
observe that l0 will be stretched on the graph of the map by a suitable factor K, l1 = Kl0. The
factor K depends of the particular form of the map. To reach an analytical equation for Φ(x),
we consider that the map Eq.(7) can be represented by a composition of the two maps: one of
them corresponds to a noiseless map x′n = −(1 + ε) xn− a x3n + d x6n sin(xn), and the another
is a new map xn+1 = x′n + σξn We use here a similar argument that for type-II intermittency,
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0

0−1

−1
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Figure 5: Map of Eq.(7). Dashed line indicates the effect of the map on a point near the maximum. Solid lines
represent the noise effect on the same point.

and we consider that ρ′(x) is the invariant density in a region close to the maximum of the
map without noise. Then, the noise influence on this density can be obtained by means of the
convolution ρ(x) =

∫
ρ′(τ)G(τ − x, σ)dτ , where ρ(x) is the invariant density in the interval

l0. Unlike to the analized type-II intermittency test, for this type-III intermittency map, points
placed on l0 are not directly mapped on the laminar region. Therefore to obtain the NRPD, we
must follow the evolution of the density ρ(x) produced by the map (7) (del Río et al., 2012):

Φ(x) =
1

c1+α
(|x|+K σ)1+α − Sg(|x| −K σ)||x|

2K σ
− K σ|1+α

(2K σ)c1+α
(11)

This expression is plotted in Fig.(6) showing agreement with the numerical results.

3.3 Analytical NRPD in type-I Intermittency

We use to represent the local map for type-I intermittency a quadratic map:

xn+1 = f(x) = ax2n + xn + ε, (12)

where ε is the control parameter and it is the distance between the local Poincaré map and the
bisectrix. The parameter a specifies the position of the point with zero-derivative. In the last
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Figure 6: NRPD for two values of the noise strength σ of the Eq.(7): a) σ = 0.02 and b) σ = 0.03. Dots
are numerical data whereas solid lines are given by Eq.(11). The noiseless RPD is also plotted. The parameters
are:c = 0.6, a = 1.1, d = 1.35, ε = 10−4.

equation, for ε < 0 there are two fixed point, one of them stable and other one unstable. For
ε = 0 the two fixed points coalesce in one fixed point xf = 0; and for ε > 0 there are not
fixed points. Furthermore, to have type-I intermittency must exist a reinjection mechanims that
return the trajectories from the chaotic zone into the local one. In this paper the non-linear map
implmented by (del Río et al., 2013) is used:

g(x) = x̂+ h (x− xm)γ . (13)

where x̂ is the lower boundary of reinjection (LBR). The LBR is here considered to be
placed inside of the laminar interval [−c, c]. The coefficient h is obtained from g(xm) = x̂
and g (f(xm)) = f(xm). Then, the global map can be written as:

F (x) =
f(x) = ax2 + x+ ε, if x < xm,

g(x) = x̂+
f(xm)− x̂

(f(xm)− xm)γ
(x− xm)γ + σξn if x > xm

. (14)

The exponent γ permits to obtain differents RPD functions. For γ > 1 the trajectories are
concentrated around the x̂ point, therefore the RPD has a decreasing structure. However, for
0 < γ < 1 the trajectories move away from the x̂ point, then the RPD function has an increasing
form. For γ = 1, the RPD is approximatelly uniform.

The last term, σξn, represents the noise effect on the system. Where σ is the noise intensity,
and ξn is a random variable which has an uniform probabilty distribution.

In this paper is studied the noise effect on the global reinjection mechanism map excluding
the local noise effect, which would reenter to the laminar region the orbits just leave it.
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Figure 7 shows the map (14) for three different values of the exponent γ. Also, the noise
effect and the LBR are indicated in this figure.

    

          

          

          

          

−c x0 = 0 c xr

x̂−σ
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x0 + ε

1

x

γ = 1/2

γ = 2

Figure 7: Eq. (14) for three values of γ. The new LBR produced by the noise effect is x̂− σ.

The noise presence not only produces changes in the RPD due to the redistribution of rein-
jection points, but also it generates the displacement of the LBR point which is located in the
new position x̂− σ (see Figure 7). This displacement results in a modification of the associated
φl(l) function with respect to the noiseless results. In addition, if this displacement is such that
x̂− σ < −c, a discontinuity in the RPD function appears and consequently the M(x) function
will not be linear, therefore it is necessary to perform an adaptation of the previously presented
methodology.

Although the noise is applied to the complete map, the associated power law to the RPD
observed in the noiseless map, appears to be robust against noise, hence the noiseless φ(x)
should be transformed into a new Φ(x) according to the convolution, see (del Río et al., 2012):

Φ(x) =

∫
φ(z)G(x− z, σ)dz, (15)

where G(x− z, σ) is the probability density of the noise term σξn in Eq. (14).
We use a random variable ξ in the interval [−1, 1] as noise source, hence the probability

density G in Eq. (15) results:

G(x, σ) =
Θ(x+ σ)−Θ(x− σ)

2σ
, (16)

where Θ is the well known Heaviside function, which is equal to 1 for a greater than zero
argument and otherwise cancels.

Initially assuming that x̂− σ > −c and considering Eqs. (15) and (16) we obtain

Φ(x) =
b

2σ (α + 1)

[
(x− x̂+ σ)α+1 −Θ (x− x̂− σ) (x− x̂− σ)α+1] (17)
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The calculation of the exponent α can be made using the results of M(x) function for noise-
less reinjection points, i.e., the results of map (14) with σ = 0. Although the noiseless points
are not available, the nonlinear noisy M(x) function can still be used to calculate α. In Figure 8
noiseless and noisy results for M(x) are shown.

We can observe that, as happened in types II and III intermittencies, in the region x > x̂+ σ
the noisyM(x) is approximately linear with a slope similar to the noiseless case. This behaviour
is independent of the parameter values, ε, x̂ and γ. Thus, it is possible to obtain the exponent α
when the noiseless data is not available in the same way that in type II and III cases.

Note however, that in here, for x < x̂ + σ the Heaviside function in Eq. 17 is zero and by
changing the exponent α by α + 1, we recover for Φ(x) the same power law than for φ(x).
This is because the function M(x) has two different slopes, that corresponds to exponents α+1
near x̂ and α far form x̂. In this case, contrary to the type II and III cases, we can predict the
behaviour of the noisy and noiseless system from the slope of the fuction M(x) near the point
x̂.
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Figure 8: Comparison between the noisy and noiseless M(x) function with ε = 10−4, c = 0.05 and the indicated
values. Note that for largest values of x the slopes are quite similar.

Eq. (17) models the noise effect on the reinjection points distribution for x̂− σ > −c. When
the displacement of the LBR goes beyond of the laminar interval left end, x̂− σ < −c, a jump
discontinuity appears in the NRPD, which is located in the point F (−c). This occurs because
the displacement x̂− σ, below −c, generates that the trajectories going through points x < −c
always reinject in the region x < F (−c), which produces a concentration of the reinjected
points in the sub-interval [xz, F (x)), where the point xz is the lowest reinjection point, which
depends on the noise level: for F (x̂− σ) < −c, xz ≡ −c, on the contrary for F (x̂− σ) > −c,
xz ≡ F (x̂− σ).

Considering only points xz ≤ x < F (−c), we always observed that the noisyM(x) function
is approximately linear in that region. Hence, we can assume a solution of the form:

φ2(x) = bk (x− xz)α2 , (18)

where b is the normalization parameter and the exponent α is calculated using the slope of
points xz ≤ x < F (−c). The coefficient k weighs the difference of proportion between the
reinjection points coming from x < −c and those coming from g(x).
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The function φ2(x) is defined in the sub-interval [xz, F (−c)). It is added to the solution (17)
in that region in order to incorporate both effects on the NRPD, namely, the effect of re-
distribution of the reinjection points due to noise and the effect of concentration in the left
end of the laminar interval. For x̂− σ > −c there is no concetration, therefore k = 0 and then
φ2(x) = 0.

Then, the NRPD function Φ(x) can be written as:

Φ(x) =


b

2σ (α+ 1)

[
(x− x̂+ σ)α+1 −Θ (x− x̂− σ) (x− x̂− σ)α+1

]
+

b k (x− xz)α2 ,
if xz ≤ x < F (−c),

b

2σ (α+ 1)

[
(x− x̂+ σ)α+1 −Θ (x− x̂− σ) (x− x̂− σ)α+1

]
, otherwise,

(19)

Where b is a normalization parameter. The calculation of the coefficient k is performed using
the definition of function M(x) as described below. For points x > F (−c) the function M(x)
gives:

M(x) =

1

2σ (α+ 1) (α+ 2) (α+ 3)

{
(x− x̂+ σ)α+2 [x (α+ 2) + x̂− σ] +

− (−x̂+ σ)α+2 [xjmin (α+ 2) + x̂− σ] +

−Θ (x− x̂− σ) (x− x̂− σ)α+2 [x (α+ 2) + x̂+ σ]
}

+ k (F (−c)− xz)α2+1 F (−c) (α2 + 1) + xz
(α2 + 1) (α2 + 2)

1

2σ (α+ 1) (α+ 2)

[
(x− x̂+ σ)α+2 − (xjmin − x̂+ σ)α+2 +

−Θ (x− x̂− σ) (x− x̂− σ)α+2
]

+ k
(F (−c)− xz)α2+1

(α2 + 1)
(20)

being xjmin the lowest reinjection point given by the greater of x̂− σ and −c.
The numerical values of M(x) are known, therefore the k coefficient can be evaluated at any

point x > F (−c) in terms of the other parameters, which are also known:

k =

(x− x̂+ σ)α+2

[
M(x)− x (α + 2) + x̂− σ

(α + 3)

]
+ (xjmin − x̂+ σ)α+2

[
x̂ (α + 3)− σ

(α + 3)

]
+

Θ (x− x̂− σ) (x− x̂− σ)α+2

[
x (α + 2) + x̂+ σ

(α + 3)
−M(x)

]
(F (−c)− xz)α2+1

(α2 + 1)

[
F (−c) (α2 + 1) + xz

(α2 + 2)
−M(x)

]
2σ (α + 1) (α + 2)

(21)
Finally the normalization parameter is obtained to complete all required values.

b =

[
k (F (−c)− xz)α2+1

α2 + 1
+

(c− x̂+ σ)α+2 − (xjmin − x̂+ σ)α+2 −Θ (c− x̂− σ) (c− x̂− σ)α+2

2σ (α + 1) (α + 2)

]−1
.

(22)
In Figures 9 and 10 we show results for different values of ε, x̂, γ and σ, with c = 0.05.

In these figures the numerical data (blue points) and the analytical approximation (red lines)
are compared. We also show the corresponding noiseless results in order to clearly observe the
effect of noise.

Figures 9 and 10 show a good agreement between the numerical data and the analytical
approach for both, the NRPD and the probability density of the laminar lengths Φl(l). Note
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Figure 9: M(x), NRPD and probability density of laminar lengths for map (14) with ε = 10−4, x̂ = 0, γ = 2,
c = 0.05 and the indicated noise levels. The slopes arem = 0.320 (α = −0.529) for the noiseless case,m = 0.596
(α′ = 0.479) and m = 0.331 (α = −0.505) for noisy M(x) in each linear region.

the strong noise influence in the functions M(x), Φ(x) and Φl(l). In the case of Figure 9, the
feature φ(x̂) → ∞ is replaced by φ(x̂ − σ) → 0 due to the noise presence, which also affects
de density Φl that behaves as if would be α > 0 with x̂ < 0 in the noiseless case (del Río et al.,
2013).

In Figure 10 the functions Φ(x) and Φl(l) show the discontinuity described in the previously
because x̂ − σ < −c. The jump in the probability density of the laminar lengths occurs at
point corresponding to the maximum laminar length l(−c, c) since all trajectories going through
interval [−c, F (−c)] need the same number of iterations to leave the laminar region.

Another important result deduced from Figures 9 and 10 is given by the relation betwen the
slopes of both linear regions of M(x). From Figure 9, we can observe that the exponent α′

for the left region of the noisy M(x), verifies the expression α′ ≈ α + 1, which is the same
exponent of Eq. (19). This behaviour, which was verified by several simulations, implies that
the slope of the noisy region of M(x) does not depend on the noise strength, but is defined by
the form of the return function (exponent γ).
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Figure 10: As Figure 9 with ε = 10−3, x̂ = −0.05, γ = 1 and c = 0.05. In this case is α = −0.011 (approximately
uniform RPD for the noiseless case).

4 CONCLUSIONS

In this paper we have presented a review about of a new formulation for chaotic intermittency
considering noise effects. This formulation is general and we have applied to type I, II and III
intermittencies.

To evaluate the noisy reinjection probability distribution (NRPD) a function, called M(x), is
obtained previously. This function M(x) is easier to calculate than the reinjection probability
distribution; and the methodology implemented has been robust against noise.

Other studies have only considered that the control parameter is greater than the noise in-
tensity (ε > σ). However, the methodology presented in this paper can be applied successfully
when the noise intensity is greater than the control parameter (σ > ε).

Finally, we note that in all performed tests for type-I, II and III intermittencies, the numerical
results and the theoretical formulation have shown a very good agreement.
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