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Abstract. In previous works (Battaglia et al, Mecánica Computacional, vol. XXIV, pp. 105-116,
Buenos Aires, Argentina, Nov. 2005), the free surface movement of a fluid flow of an incompressible
and viscous fluid was followed by a mesh-movement technique, where the update of the free surface
location was smoothed in order to prevent numerical instability due to a fully explicit discretization of
the differential equation that describes the free surface kinematics. Unlike fluid flows in closed domains,
in cases where the movement of the free surface coexists with inflow and outflow sections with fixed
parameters, the volume of the fluid could grow or decrease in an unexpected way, i.e., the initial pa-
rameters for incoming velocity and discharge pressure could not be appropriate for keeping bounded
the volume of the fluid, leading to somewhat artificial free surface displacements. Then, a control tech-
nique is shown for modifying some parameters in order to balance the flow between successive steps
during the time marching simulation, interacting with the multi-physics finite element code PETSc-FEM
(http://www.cimec.org.ar/petscfem/). This control is achieved with an extension of the hooks technol-
ogy presented in Battaglia et al. (Mecánica Computacional, vol. XXIII, pp. 3119-3132, Bariloche,
Argentina, Nov. 2004). As a numerical example, the development of the free surface of an axisymmetric
vertical vortex is simulated with this volume control strategy and a finite element (FE) computation.
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1 INTRODUCTION

In previous presentations, e.g. seeBattaglia et al.(2004, 2005, 2006), a Lagrangian method
was used for solving free surface flows of viscous and incompressible fluids. Unlike these cases,
where the fluid domains were chosen as closed, a numerical simulation of free surface flows
with inflow and outflow sections presents an additional difficulty given by a proper selection
of parameters to be imposed as boundary conditions, such as the flow rate or the pressure. For
example, in the case of a draining tank, the following boundary conditions can be chosen: there
is not fluid entrance and the pressure is known at the exit, giving a right free surface position.
But if there is also an incoming flow rate, it can be not trivial to determinate its value for a
flow regime in equilibrium, because its balance with the outgoing flow rate and net volume in
the fluid domain is not knowna priori, due to the effects of the free surface shape and vertical
position (which can be raising or lowering) over the remaining flow field.

In the present work it is assumed that the pressure at outflow section is given, and the
unknown parameter is the amount of fluid which must be admitted in the flow system to ar-
rive at some equilibrium position for the free surface, that implies the same outgoing flow
rate. Then, it is proposed to handle this situation through a control strategy which demands
information from the CFD solver in a dynamic fashion, in such a way that the flow rate is
automatically modified at each time step in order to achieve some target objective, such as
the net volume in the instantaneous flow domain which, in turn, fix the position of the free
surface. This mechanism of control is implemented under the scope of the finite element
code PETSc-FEM, seeSonzogni et al.(2002), oriented to multiphysics, and it is based on the
Message Passing Interface (MPI,http://www.mpi-forum.org/docs/docs.html )
and the Portable Extensible Toolkit for Scientific Computations (PETSc,Balay et al.(2005),
http://www-fp.mcs.anl.gov/petsc/ ).

2 IMPLEMENTATION

2.1 General Description

Free surface problems are solved by using separate modules of PETSc-FEM, which were
programmed for rather specific applications, such as the Navier-Stokes (NS) solver or the mov-
ing mesh (MMV) one. They are used for solving the flow-fluid problem and the mesh-update
one, respectively. In addition to the main modules, there are also C++ programs or scripts,
calledhooks, that control the exchange of information among the other ones. For the free sur-
face process, there are so far the following C++hooksof interest:

• From NS solver to MMV, that sends the free surface nodal displacements through a FIFO
(First Input First Output);

• From MMV to NS solver, which returns the new nodal positions of the mesh nodes, also
through a FIFO;

• Surface Smoothing, that performs a free surface stabilization with the objective of mini-
mize numerical instabilities caused by the explicit formulation of the kinematic free sur-
face condition between the NS and MMV solvers;

• Control, for cases which require the control over one or more parameters, such as bound-
ary condition values. In this case, it is proposed a target volume for the domain, being
controlled through the flow rate of fluid incoming to the domain.
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Figure1 shows a sketch of the computational interaction among the procedures involved in
this proposal for treating fluid flows with a free surface.

PETSc-FEM
Navier-Stokes

(NS)

PETSc-FEM
Mesh Update

(MMV)

Surface
Smoothing

Control

NS to MMV
MMV to NS

Figure 1: Computational interaction among modules in PETSc-FEM code for solving fluid flows with a free
surface.

2.2 Fluid Problem

As described previously, the fluid part of the problem is solved by a NS module for the flow
of a viscous and incompressible fluid, i.e. the partial differential equations on the flow domain
Ωt = Ω(t) are written as

ρ (∂tv + v · ∇v − f)−∇ · σ = 0 ;

∇ · v = 0 ;
(1)

at timet, with t ∈ [0, T ], beingT some final time of simulation,v the fluid velocity,f the body
force,ρ the fluid density, and the fluid stress tensorσ given by

σ = −pI + T ; (2)

as the sum of an isotropic−pI part due to the hydrostatic pressurep, I is the identity tensor and
the deviatoric term

T = 2µε ; ε =
1

2

[
∇v + (∇v)T

]
; (3)

which involves the dynamic and kinematic fluid viscositiesµ andν = µ/ρ, respectively, with
(...)T indicating transposition. The boundary conditions at the flow boundariesΓ are split as

v = 0 atΓwall;

p = Patm atΓFS;

τ · n = 0 atΓFS;

(4)

whereΓwall is the solid walls andΓFS is the free surface. The last expression indicate that free
surface is allowed to move in its instantaneous normal direction, represented by the unit normal
n.

Nodal velocities over the free surface are updated from one time steptn to the following one
tn+1 through the approximation

vn+1
j ≈

xn+1
j − xn

j

∆t
. (5)
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Figure 2: Directions and magnitudes for free surface nodes displacement.

The displacements of these nodes are restricted to a fixed direction, or “spine”, represented by
ŝj, which in the scope of this study is chosen as vertical. The nodal positions are then calculated
by means of

xj(t) = x0,j + ηj(t) ŝj ; (6)

and the scalarηj is the magnitude of the displacement for the node whose initial position isx0,j,
see Fig.2. Considering Eq. (5), such displacement is

∆ηn+1
j = ηn+1

j − ηn
j = ∆t

vn+1
j · n̂n

j

ŝj · n̂n
j

. (7)

For each node, the normaln̂n
j is computed each time step integrating over neighbor elements

the approximate functionNj(x).
In the vicinity of free surface, special boundary conditions on solid walls are proposed. This

resource is applied because of large gradients generated in these zones by the non-slip condition,
which is not only non-physical but also detrimental for the mesh update process. Then, either a
perfect slip condition or the Navier slip condition are used, seeBattaglia et al.(2004).

2.3 Mesh Update

After solving each time step of the NS problem, the updated free surface position can be
determined either calculating explicitly the nodal displacements∆ηn+1

j , see Eq. (7), or through
a surface smoothing process, once the velocity field is known.

In the PETSc-FEM code there are currently implemented two main strategies for computing
the updated positions of the internal nodes keeping the topology unchanged: a pseudo-elastic
update and a mesh motion strategy by a mesh-quality optimization, as reported inBattaglia
et al.(2005).

2.3.1 Pseudo-elastic update

In this strategy, the new positions for the internal nodes, i.e., those which are not over the free
surface, are determined by solving a pseudo-elastic problem over the domainΩ0 with Dirichlet
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boundary conditions. The standard formulation is

σij,j = 0 ;

σij = 2µ̃εij + λ̃δijεkk ;

εij =
1

2
(ui,j + uj,i) ;

(8)

beingµ̃ andλ̃ Lamé elastic constants adopted arbitrarily for the pseudo-material, withδij as the
Kronecker tensor. In practical situations, these parameters are replaced by the pseudo Poisson
ratio ν̃ and the pseudo elasticity modulus̃E, that are usually about0.3 and1.0, respectively.
Notice that as the b.c.’s for the pseudo-elastic problem are all of Dirichlet type, the node dis-
placements are independent of a multiplicative constant inẼ. In some cases,̃E can be made
artificially variable over the domain, increasing it near to critical points, like reentrant corners,
in order to reduce mesh distortion in such places.

The free surface nodal displacements computed byuj = xn+1
j − x0

j , the slip (u · n̂ = 0)
and non-slip (u = 0) over the rest of the frontiers, usually solid contours, are the boundary
conditions that complete the set of needed data for solving the problem.

Briefly, following Xu and Accorsi(2004), the element stiffness matrixKe for a pseudo-
elastic problem can be calculated as follows,

Ke =

∫
Ωe

t

BTDB |J|eτ e dΩe
t ; (9)

beingB the derivative matrix of shape functions,D the constitutive matrix,|J|e the elemental
Jacobian andτ e a factor for controlling stiffening, given byTezduyar et al.(1993) andStein
et al.(2004) as

τ e =

(
|J|0

|J|e

)s

; (10)

where thestiffness exponents is a user-chosen parameter and|J|0 a scaling coefficient for
consistency.

For linear pseudo elastic updates = 0 is the usual value, while for the non-linear alternative
s > 0 is chosen, beings < 0 meaningless, regarding thats ≥ 0 makes the smaller elements
become more stiffened than the larger ones.

2.3.2 Mesh motion strategy by a mesh-quality optimization

This was designed for moving boundary problems, such as those with free surfaces, see
López et al.(2006). The aim of this strategy is to get the best possible mesh at each time step
under a selected quality criteria. The problem to be solved is an optimization one, where the
functional to minimize could be written as

F = F ({xα
j }); (11)

wherexα
j is theα-coordinate ofj-nodexj and the set of mesh coordinates is{xα

j }. This func-
tional must fulfill some requirements in order to be appropriate for the minimization process,
and it is proposed as a sum of the element contributions

F =
∑

e

Fe; Fe = Cv

(
Ve

Vref

− 1

)m

+ CQ Qn ; (12)
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beingVe the element volume,Vref the target volume,Cv andCQ weight coefficients where is
allowed the user intervention,m, n norms to apply to size and shape measures, with certain
restriction over its values, andQ a quality indicator for each element with the form of a quotient
between the elemental volumeVe and the sum of its edge lengthsli weighted to a the powerp,
coincident with the space dimension, that is,

Q =
C Ve∑

i l
p
i

; (13)

being the constantC chosen to get0 < Q ≤ 1, whereQ = 1 represents the equilateral element,
i.e., in the case of the “simplices”,C = 4

√
3 for triangles andC = 36

√
2 for tetrahedral

elements. Other element shapes, like quadrangles or hexahedrals, can be taken into account
by decomposing them in simplices and defining its quality as the quality of the worst simplex
in that decomposition. The functionalF given by Eq. (11) is computed from its element
contributions, as a standard FE assembly process and it is submitted to an optimization process
to get its minimum at each time step. The optimization process is performed with a global
Newton-Raphson algorithm.

2.4 Control

The mechanism implemented so far consists of a volume control, which calculates the in-
coming flow rateq to impose by

q̇ = −Cvol (V − Vtarget); (14)

whereV is the volume of the fluid domain,Vtarget the objective volume,Cvol is a non-negative
user chosen coefficient which allows the regulation of the variable term, andq̇ = dq/dt. Then,
the flow rate decreases when(V −Vtarget) > 0, and it increases in the other case, in a proportion
given byCvol.

As well as the mentioned parameters, there are some restrictions over the incoming flow
rateq, such as minimum and maximum values, the first to avoid the velocity turning outgoing
instead ingoing in the inlet, and the second in order to keep bounded its growth.

Onceq is calculated, as the inlet size can vary because of the mesh update process, the inlet
radial velocityvr is determined after reading thez-coordinate of the node which defines the
height of the entrance, inside the same hook.

This control proposal counts on some disadvantages, the firs of them related to the fact that
takes information from only one time step to determine the updated parameters for the following
one. Besides, it requires some tests in order to reach an appropriate coefficientCvol and it is
sensible to the size of the time step. Other key subjects could be initial values for the variables
considered, such as the initial flow rate or the target value, but these can be proposed from
similar analysis developed without any control.

The fluid volume can be controlled through other parameters like gravity acceleration, atmo-
spheric pressure or outlet pressure, but in practice the control of the incoming flow rate gave the
best controlling characteristics, and was conceptually simpler.

In practical applications it was noticed that the proposed methodology could be improved in
order to reach the objectives faster, leading to a lower computational cost. This could be made
by including higher order terms in Eq. (14).
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2.5 Free Surface Stabilization

It is a fact that explicit formulations of transport equations such as Eq. (7) lead to instabilities
for high frequency, gravity waves or velocities relatively high in directions which are parallel to
the interface. There are different studies made and treatments proposed for this subject, see for
exampleGarćıa Espinosa(1999) or Güler et al.(1999). At this moment, PETSc-FEM is able
to perform a smoothing step which avoid this problem, that consist on applying an operatorS
based on solving the heat equation over the free surface elevation by replacing Eq. (7) with

∆ηn+1
j = S(∆η̃n+1

j ) ; (15)

being∆η̃n+1
j the result of

∆η̃n+1
j =

vn+1
j · n̂n

j

ŝj · n̂n
j

. (16)

ForS, the corresponding diffusivity is adjusted in order to get a spreading length ofγh, with h
the global mesh size andγ a parameter imposed by the user.

3 NUMERICAL EXAMPLE

Different authors proposed analytical and numerical solutions for problems as the classic
bath plugor containers with an inferior drainage, seeForbes and Hocking(1995), where the free
surface of the flow suffers the effects of the circumferential velocity, increasing to the vertical
axis, showing the formation of the typical vortex, although the singularity over the vertical axis
makes it a problem difficult to solve numerically speaking. Regarding that, a more convenient
domain for studying is a portion of a reservoir for a suction duct, like the chosen one. As the
inlet velocity is imposed with a predominant circumferential component, a vortex is generated
in the fluid domain, leading to free surface deformation similar to those mentioned before. In
the inviscid case without a radial velocity, in cylindrical coordinatesr, φ, z, any circumferential
velocityvφ(r) is a solution for this problem. But when there is a small radial velocityvr(r), the
circumferential fluid layers must keep its angular momentum and, as a result, the circumferential
velocityvφ(r) grows forr → 0. The analytic solution shown in Sec.3.1corresponds to the limit
for viscosity and radial velocity tending to zero. For the numerical experiment with a viscous
fluid, it is necesary to impose some non-null radial velocity, because otherwise the fluid would
decay to rest. Unfortunately, the solution for the inviscid case with circumferential and radial
velocities was not found by the authors, but as an approximation to the null radial velocity case,
a radial velocity componentvr small with respect to the circumferential onevφ was adopted.

Thus, the example consists of a numerical simulation of an axisymmetrical vertical vortex
with a free surface of a viscous and incompressible fluid under the action of a gravity field,
with fixed pressure at the outlet and unknown incoming flow for a constant volume in the fluid
domain. This problem was solved by the presented methodology and the simulated free surface
profile is compared with the theoretical one in the inviscid limit.

3.1 Vertical potential vortex with a free surface under a gravity field

A vertical potential vortex with a free surface and under the action of the gravity field is
considered, see sketch in Fig.3. The vertical positionh = h(r) of its free surface respects to
the hydrostatic equilibrium planez = 0 is given by (e.g. see Appendix)

h(r) =
v2

0

2g

r2
0

r2
; (17)
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Figure 3: Sketch of a vertical potential vortex with a free surface.

wherev0 is the circumferential velocity at some radial distancer0 from the vertical axisymmet-
ric z-axis andg is the gravity acceleration.

3.2 FEM Simulation

3.2.1 Initial data

The numerical example consist of an axisymmetrical simulation of a vortex, with continuous
fluid entrance given by the velocity in circumferential and radial directions, and mainly charac-
terized by the rotation of fluid around the vertical axis, with a discharge proposed over a section
of the inner cylindrical surface, see Fig.4.

z

Rint

H

r

Rext

Inlet

Outlet

h

Free Surface

Bottom

ω

Figure 4: Geometry of the flow domain: a portion of a cylinder of annular section, limited by a free surface, a
bottom and a rigid wall.

The geometry of this example is described with the help of Fig.5. The flow domain is a
cylinder of annular section, whose internal and external radius areRint = 1.0 m andRext =
6.0 m respectively, an initial heightH = 1.40 m, the same as the inlet section over the right,
and outlet sectionh = 0.20 m height in the internal cylindrical surface. Over this outlet, there
are conditions simulating the rigid wall which is assumed as part of the discharge system.

The fluid is adopted as viscous and incompressible, with kinematic viscosityν = 0.001 m2/s
and densityρ = 1 kg/m3. The gravity acceleration isg = 0.16 m/s2 in the−z direction.
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Figure 5: Sector of annular cylinder modeled for the example.

3.2.2 Model and boundary conditions

The axial symmetry of the example allowed the construction of the FE model, which consists
of one layer of elements extruded from a two-dimensional rectangular mesh of quadrangles, see
Fig. 6, around thez-axis, giving a sector of annular cylinder characterized byθ = 5

◦
of angular

amplitude and 8-node hexahedral elements for the fluid model, although tetrahedral elements
were used for the moving mesh instance through the mesh-quality optimization procedure, with
Cv = 0, CQ = 1 andn = −1 in Eq. (12).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1  2  3  4  5  6

Figure 6: Two-dimensional mesh for generating the three-dimensional fluid model; scale in meters.

As the horizontal velocities were important in comparison with the free surface one, it was
necessary to apply the smoothing operator given in Sec.2.5but with a low value for the influ-
ence coefficient, in this caseγ = 0.1.

As said before, there are two main instances for the execution of a fluid flow with a free
surface. The first of them is the NS one, where conditions are, following Fig.7,

p = Patm over the free surface, CIJD;

p = pout in the outlet, AGHB;

vr = vt = 0 over the inner surface, BHIC;

v · n = 0 in the bottom, AFLG;

v · n = 0 for the right slip section, KEDJ;

v = vi in the inlet, LFEK;

(18)

Mecánica Computacional Vol XXV, pp. 169-183 (2006) 177

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



A

B

C

D
E

F

G

H

I

J

K

L

Figure 7: References for boundary conditions of the example.

beingpout the fixed pressure proposed for the outlet andvi the incoming velocity, given by
its magnitude in radial direction|vr| and the ratio between this and the tangential velocity
magnitude|vt|, i.e., the incidence angle, in this case of100

◦
measured from ther axis. The

axisymmetry is imposed by periodic conditions among nodes of ACDF and LJIG faces, taking
in account the angleθ between their planes. These restrictions imply that the radial, tangential
and vertical components ofv in each node of ACDF are the same as the corresponding ones in
LJIG, as well as the pressure.

For the mesh movement procedure, the boundary conditions are null displacements in the
outlet section (AGHB), null horizontal displacements for BHIC, LFDJ, ACDF and LJIG, al-
lowing vertical movement for these nodes, and the free surface displaced by the NS solver
through the corresponding hook. Notice that in this case not only the nodes over the free sur-
face but all those over faces near it are moved in the direction given by the spines, which in this
case is the vertical one.

The initial condition was the hydrostatic state for the free surface placed at thez = 1.40 m
plane, at rest, giving an initial volume ofV = 2.14 m3, the time step was∆t = 0.2 s, atmo-
spheric pressurePatm = 0 and for the outletpout = −0.045 Pa.

The control applied to this example, described in Sec.2.4, is characterized by a target volume
of Vtarget = 2.60 m3, with Cvol = 1.0× 10−3 1/s2, initial flow rateqinit = 1.0× 10−2 m3/s, and
qmax = 3.0× 10−2 m3/s andqmin = 1.0× 10−4 m3/s for upper and lower bounds, respectively.
Initial values forq andVtarget were obtained from previous tests made with the same model.

3.2.3 Results

The present results were obtained by using the mesh update process based on a mesh-quality
optimization of Sec.2.3.2, because it was the only available able to tolerate free surface dis-
placements near the inner radius, circumstance that is illustrated through Fig.8. The other
alternative using the pseudo-elastic update of Sec.2.3.1, was not able to solve the displace-
ments registered in that region, in particular during the first time steps, when oscillations in the
fluid level had higher amplitudes.

The volume and flow rate evolution during the first10000 time steps of the analysis, plotted
in Fig. 9, show how the control mechanism operates over these parameters. In this case, the
initial volume was lower thanVtarget, which made the flow rateq keep growing untilqmax was
reached; then, the flow rateq kept its value untilV > Vtarget, when the system begun to diminish
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Figure 8: Deformed mesh for timet = 40 s; notice high displacements of free surface near the inner radius.

it. This behavior was repeated with lower amplitude of oscillation during the rest of the time,
verifying that the task given to the control was accomplished. Notice that upper and lower
values proposed forq were effective at the beginning of the study, saving important analysis
time.
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Figure 9: Curves of volume and flow rate variation for the example solved for the first10000 time steps of analysis.

The displacements of the free surface were higher at the beginning of the study, according to
the volume variations already shown. In Fig.10, there are several free surface profiles for the
times indicated, most of them coincident with maximum or minimum volume values. Then, it
is possible to see how these displacements affected the mesh update process.

After 20000 time steps, the volume variation keeps under1% of difference from the target
volume, and the free surface exhibits a steady profile, shown in Fig.11along with the theoretical
potential curve of the potential infinite vortex, from Sec.3.1, being the incoming circumferential
velocity determined at the inletv0 = 0.0125 m/s. The error between the curves compared are
e = 13% at r = 1 m, but descends under1% for r > 2 m. The high difference in the
neighborhood ofr = 1 m is attributed to the fact that the reference profile chosen is calculated
for an inviscid flow with no rigid walls at the inner radius and null radial velocity.
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Figure 10: Free surface profiles calculated at several times.

Figure12shows the magnitude ofv for an intermediate time step, where it is possible to see
that the velocity increases in sectors closer toRint because of the growth of the circumferential
component and the small size of the outlet. The exception is given by the low values appreciated
over the wall placed in the inner radius because of the boundary condition established there.

4 CONCLUSIONS

The control was able to lead the flow rate to a value that establishes the inflow/outflow
balance for the given target volume, but its effectiveness could be higher by improving the
mechanism, especially pointing to shorten the time of analysis. Furthermore, this proposal or
a similar one is needed in order to assure that there are tools appropriate to solve this kind of
problems, where inner and outer flows are not balanced from the beginning.

Besides, it was confirmed that there are some difficulties with the mesh update, especially
in the case of large free surface displacements: in the presented example, only the mesh update
based on mesh-quality optimization was able to solve the large displacements near the inner
radius of the free surface, in particular during the first time steps, when oscillations in the fluid
level had higher amplitudes.

5 APPENDIX

5.1 Analytical solution in the inviscid limit

The vertical positionh = h(r) of the free surface of a vertical potential vortex under the
action of the gravity acceleration can be determined as follows, e.g. seeSpurk(1997). The
velocity potential in cylindrical coordinatesr, φ, z is given byΦ = v0 r0 φ, wherev0 is the
circumferential velocity at some radial distancer0 from the vertical axisymmetric axis, named
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Figure 11: Final free surface profile from FE analysis, superimposed with the potential vortex solution.

z, see Fig.3. Beingv = (vr, vφ, vz) the velocity field, with

vr =
∂Φ

∂r
= 0 ; vφ =

1

r

∂Φ

∂φ
= v0

r0

r
; vz =

∂Φ

∂z
= 0 ; (19)

from where|v| = vφ. As the fluid is incompressible, the divergence of the velocity field∇ · v
is null, the fluid densityρ is constant and, then, it is applicable the Bernoulli equation, which is
imposed between two points over the free surface, the first one atr = r0, far away enough from
the origin, withz = 0 andp = p0, and the other one at a generic positionr with z = −h(r) and
the same pressurep = p0. Then

p0 +
ρ

2
v2(r0) = p0 +

ρ

2
v2(r)− ρ g h(r); (20)

beingg the gravity acceleration in the−z direction, so

h(r) =
v2(r)

2g
=

v2
0

2g

r2
0

r2
; (21)

which allows the calculation of free surface position as a function ofr when the other parameters
are fixed.
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Figure 12: Magnitude of the velocityv in the domain analyzed for an intermediate time step.
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