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Abstract. To solve the neutron transport equation at general 2-D geometries the cell-level code 

CONDOR v. 2.7.01 (E.A. Villarino 2002) uses a method which couples spatial elements using neutron 

currents, which had been previously calculated by the Collision Probabilities method. Such 

methodology, usually known as Heterogeneous Response Method (HRM) has been shown as a 

powerful method to solve complex geometries with high reduction of the computational resources, 

where the most relevant effort was carried out in past decades to obtain a well-optimized and stable 

ray-tracing method to perform the CP calculations on each spatial element (E. A. Villarino, R. 

Stamm´ler, A. Ferri & J. Casal 1992). 

Nevertheless, the current development of Fuel Assemblies, in-core and ex-core devices (mainly 

for Research Reactors) with high axial heterogeneity is demanding a 3-D extension of current methods 

available. Unfortunately, develop a general 3-D HRM method, leads to the development of a complete 

new ray-tracing scheme and implies a big implementation and validation effort. Furthermore, most 

calculations at cell level do not need high complex 3-D geometries.  

The present work, developed in the framework of the Upgrade of INVAP´s proprietary 

calculation line developed with the contribution of the Argentine National Agency of Technological 

and Scientific Promotion  (Agencia Nacional de Promoción Científica y Tecnológica -ANPCyT),  

through the funds of the Argentine Technological Funds (Fondo Tecnológico Argentino, FONTAR), 

presents the basics of an alternative solution for the 3-D problem extension, that considers only an 

axial extension of the HRM method, in order to be included in CONDOR code in the near future. 

Furthermore, this method is intended to allow the modeling of most of cases of interest at cell-level 

Accordingly, the theoretical basis for the HRM extension to simplified 3-D geometries is 

presented, where the coupling with already optimized 2-D ray-tracing is presented and several 

proposals for implementation are presented. 
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1 INTRODUCTION  

 

To model, design and optimize complex nuclear core reactors, INVAP uses its own-

proprietary developed CONDOR v. 2.7.01 cell-level code (E. Villarino 2002), included into 

the INVAP reactor calculation package (I. Mochi 2010). This cell code is used to perform 

neutronic calculations at cell level for fuel assemblies and devices included in the core of a 

nuclear reactor, in order to produce the required data (such as homogenized and condensed 

cross-sections) to be used in a reactor core-level code. 

To solve the neutron transport equation at cell level, CONDOR v. 2.7.01 includes several 

alternatives based in the Collision Probabilities Method (R. J. J. Stamm’ler and M. J Abbate, 

1983). Thus CONDOR v. 2.7.01 includes slab and cylindrical 1-D solver, a cylindrical 2-D 

solver and a general 2-D geometry solver. The last one, usually named as Heterogeneous 

Response Method (HRM) is based in the coupling via neutron currents of previously 

calculated spatial elements calculated by a traditional CP method. This method was firstly 

introduced in the Helios code (E. A. Villarino, Rudi J. J. Stamm’ler and Aldo A. Ferri 1992) 

and nowadays is used in several Collision Probabilities cell codes around the world.  

The HRM methodology has been shown as a powerful method to solve complex 

geometries with high reduction of the computational resources, where the most relevant effort 

was carried out in past decades to obtain a well-optimized and stable ray-tracing method to 

perform the CP calculations on each spatial element.  

Unfortunately, the current development of Fuel Assemblies, in-core and ex-core devices 

(mainly for Research Reactors) with high axial heterogeneity is demanding a 3-D extension of 

the methods available. 

When this problem is presented, several alternatives can be conceptually analyzed:  

a) Develop a general 3-D HRM method, where a general 3-D geometry is proposed 

for each spatial element and then a general coupling is performed. This option 

leads to a complete new ray-tracing development and a high increase of 

computational effort. Furthermore, most calculations at cell level do not need 

highly complex 3-D modeling geometries. 

b) Develop an axial extension of the well developed HRM 2-D method, where the 

already optimized 2-D ray tracing is extended to be used in extruded geometries 

and changes in axial compositions are allowed. Furthermore, this axial 

heterogeneity allows the modeling of most of cases of interest at cell-level.  

In the present work, the second option was chosen to be developed, looking for a near-

future implementation in CONDOR cell code. It should be noted that second option allows an 

easy adaptation to the actual CONDOR code (I.Mochi 2010) preserving its main capabilities 

such as Sub-Group Resonant Treatment,  Burnup calculations, user-oriented free format input, 

variational methods, etc. Reader should notice in this point that an axial macroband 

integration must be considered for this extension, together with an integration scheme to 

consider the polar angle numerical integration (not performed in 2-D cases). Accordingly, in 

this work,  the main theoretical basis is presented, together with some implementation aspects.    
  

2 AXIAL EXTENSION OF HRM METHOD 

2.1 HRM method basics: The local and global problem 

The Heterogeneous Response Method was developed to solve complex geometry 

problems in 2-D reducing the computational effort. The approach proposed in the HRM 
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consists of a first step where the whole geometry is divided in several simple elements to 

couple them in a second step using the neutron currents. Accordingly, in HRM the whole 

system is divided into heterogeneous space elements and each heterogeneous element is 

partitioned in homogeneous regions (namely regions indexed as i,j) where the flat flux 

approximation is applied (R. J. J. Stamm’ler and M. J Abbate, 1983). In addition, the external 

surface is also partitioned in segments (indexed with s or t), on which flat coupling currents 

are calculated, where each segment can be partitioned in azimuthal sectors. Finally, the 

neutron flux calculation of the system is performed coupling the response fluxes of each 

element, using the relation presented in matricial notation in Equation 1 (E.A.Villarino, 2002). 

 

 𝜙 = 𝑋𝑄 + 𝑌𝑗  (1) 

Where: 

: is the volume integrated flux array, where each position  i is the integrated flux in 

region i (for a given Energy group). 

X: is the matrix of source response fluxes, where the element Xij is the volume integrated 

flux in region i due to a unit uniform and isotropic source in region j. 

Q: is the volume integrated source array, where the element Qj is the source in region j. 

Y: is the matrix of in-current response fluxes, where the element Yis is the volume 

integrated flux in region i due to a unit in-current through sector s. 

𝑗 : is the in-current array, where the element 𝑗 s is the in-current through sector s. 

 

It should be noted here that X and Y are diagonal block matrices, where each block is the 

local matrix of a previously defined space element.  

In order to obtain the fluxes by group on each region defined for each element, the  

Equation 1 is to be solved and two levels of the whole problem emerge: 
a) Global problem: That consists of coupling the elements, i.e. to calculate the 

coupling or interfaces currents between previously defined space elements 𝑗 . 
b) Local problem: That consists of solve each element, i.e. to calculate the response 

fluxes X and Y and multiple collision probabilities of the all space elements. 
 It can be seen here that the extension to a 3-D geometry only implies an effort in the 
redefinition of the local problem. Afterwards the solution of the global problem should be 
quite straight forward, where the only apparent implication would be the increase in the 
computational effort. 

 

2.2 Theoretical Basis for the HRM 2-D case 

To obtain the collision probabilities for a 2-D element in CONDOR, a 2-D ray tracing is 

used (E. A. Villarino, Rudi J. J. Stamm’ler and Aldo A. Ferri 1992), which is based in the well 

known Carlvik method (Carlvik 1965), where a macroband algorithm is applied and a double 

numerical integration is performed. Afterwards, the program applies normalization schemes 

on integration chords in order to preserve region volumes and surfaces. 

 This ray-tracing is performed for a given element, where translation and rotations are 

performed to obtain the optical thicknesses necessary to calculate the surface to region, region 

to region and surface to surface probabilities. An example is shown in Figure 1, where the 

nomenclature identifies i and j as regions, k and s as surfaces and i and yi as integration 

parameters to be used in the double numerical integration.   
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Figure 1 Example of a chord for an integration angle i and position yi 

Afterwards, using the thicknesses for each angle and position, the final collision 

probabilities are obtained just using a weight scheme. For example, to calculate the region to 

region collision probability, the thicknesses from the left scheme in Figure 1 is used, as it is 

presented in Equation 2. 

𝑝𝑖𝑗  =   𝑤𝛼𝑖
𝑤𝑦𝑖

𝑝𝑖𝑗  (𝛼𝑖 ,𝑦𝑖)𝑡𝑖𝛼𝑖
    (2) 

Here, pij is the probability for a neutron born uniformly and isotropic in region i to suffer its 

first collision in region j, and wi and wyi represent the weight values for a given angular and 

position respectively. It should be noted that the same scheme is used to calculate the surface 

to region probability (middle scheme in Figure 1) and surface to surface probability (right  

scheme in Figure 1), where instead of pij(i,ti), the pis(i,ti) or pks(i,ti) are calculated.  

Finally, to calculate pij(i,ti), pis(i,ti) or pks(i,ti), the Equation 3 (R. J. J. Stamm’ler and 

M. J Abbate, 1983) which represents the probability density function of a neutron emitted in a 

isotropic line source that travels  mean free paths (mfp) without collision, should be 

integrated using the thicknesses from Figure 1.  

  

𝑝 𝜏,𝜑,𝜃 =
cos 𝜃  𝑑𝜃  𝑑𝜑  

4𝜋
𝑒(− 

𝜏

𝑐𝑜𝑠𝜃
)
    (3) 

Here  is the polar angle of the chord with the 2-D plane in Figure 1, and  it respective 

azimuthal angle. It should be noted that for a 2-D case, the integration in the angle  leads to 

the well known Bickey order 3 functions. 

Reader should notice in this point that the region to region collision probabilities will have 

to be integrated considering chords that sample correctly the volumes of the regions, while the 

surface to region and surface to surface collision probabilities will need chords that sample 

the element surfaces. Accordingly, the ray-tracing included in CONDOR v. 2.7.01 consist of 

two sets of chords constructed for several (i,yi), namely: 

a) Volume chords: These chords sample preferably the volumes of the regions for the 

element where the collision probabilities are to be defined (i.e. surfaces for a 2-D 

case). Additionally, the normalization is chosen as in equation 4. 

Voli =  Wj(αi , yi) thi
j

j       (4) 

i

j

i

j

i

j
s s

iji j i is s

y

yi

i

k
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Here, Voli is the volume of region i, j the total chord number, Wj the weight of each 

chord (combining i and yi) and thij the sampled thickness of region i in chord j. 

 

b) Surface chords: These chords sample preferably the external surface of the element 

where the collision probabilities are to be obtained (i.e. the perimeter for a 2-D case) 

Additionally, the normalization is chosen as in equation 5. 

  Ak =  
π

2
 Wj(αi , yi) δ(sectorj − sectork)j     (5) 

Here, Ak is the area of sector k (perimeter for a 2-D case), j the total number of 

chords, and Wj the weight of each chord (combining i and yi), where the sum is over 

the chords with k as incoming surface (represented as a Kroneker ).     

 

Finally, CONDOR uses the volume chords to calculate the region to region collision 

probabilities through a specific FORTRAN routine (called FREPIJ) and the surface chords 

to calculate the surface to region and surface to surface probabilities using another one (called 

TH1GAM). Afterwards the obtained results are normalized in order to satisfy the balances (E. 

A. Villarino, Rudi J. J. Stamm’ler and Aldo A. Ferri 1992). 

2.3 Theoretical Basis for axial extension of the 2-D case 

In order to extend the method discussed in Sections 2.1 and 2.2 to a 3-D case an axial 

expansion is proposed. Thus, the original 2-D scheme is extruded in the axial dimension, 

where only changes in axial composition are allowed, as it is shown in Figure 2. 

 

Figure 2 Example of an axial extension for a given geometry 

As it has been discussed in Section 2.1, the local problem has to be re-defined. To obtain 

the Collision Probabilities for each axial-extended element, the proposed methodology is to 

extend the original 2-D chords considering several axial positions and polar angles, as it is 

shown in Figure 3, where an axial expansion for a given 2-D chord is presented. It can be seen 

that a new set of regions and surfaces appear when this extension is proposed, where top and 

bottom surfaces are now considered. Additionally, the integration over the polar angle is not 

implicit (i.e. Bickley functions are not obtained), thus for each chord, the polar variable must 

be considered.  

z

2-D Case

Axial extended 2-D Case
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Figure 3 Example of a chord for an integration angle i and yi extended in axial dimension 

2.3.1 Region to Region Collision probabilities for axial extended chords 

Using the axial extended 2-D chord, the region to region collision probabilities can be 

obtained from the integration of Equation 6 (E. A. Villarino, Rudi J. J. Stamm’ler and Aldo A. 

Ferri 1992). 

𝑝𝑖𝑗 =
1

2𝜋ViΣ𝑖
      𝑒

− 
Σ𝑖 𝑡𝑖−𝑡 +𝜏𝑖𝑗

cos 𝜃
 
− 𝑒

− 
Σ𝑖 𝑡𝑖−𝑡 +𝜏𝑖𝑗 +𝜏𝑗

cos 𝜃
 
 

𝑡𝑖
0

𝜋/2

−𝜋/2

𝑧𝑚𝑎𝑥
𝑧𝑚𝑖𝑛

𝑦𝑚𝑎𝑥
𝑦𝑚𝑖𝑛

2𝜋

0
cos𝜃 𝑑𝜃𝑑𝑡𝑑𝑧𝑑𝑦𝑑𝛼   (6) 

  When the integration over the chord thickness is performed, we obtain the expression we 

are looking for, presented in Equation 7. 

𝑝𝑗𝑖 =
1

2𝜋ViΣ𝑖
     𝑒− 

𝜏𝑖𝑗

cos 𝜃
 − 𝑒

− 
𝜏𝑖𝑗 +𝜏𝑗

cos 𝜃
 

+ 𝑒
− 

𝜏𝑖+𝜏𝑖𝑗 +𝜏𝑗

cos 𝜃
 
− 𝑒

− 
𝜏𝑖𝑗 +𝜏𝑗

cos 𝜃
 
 

𝜋/2

−𝜋/2
cos2θ𝑑𝜃𝑑𝑧𝑑𝑦𝑑𝛼

𝑧𝑚𝑎𝑥
𝑧𝑚𝑖𝑛

𝑦𝑚𝑎 𝑥
𝑦𝑚𝑖𝑛

2𝜋

0
        (7) 

Besides, to obtain the self-collision probability (i.e. from region i to region i), we can 

perform the simplification over Equation 6 to obtain Equation 8. 

𝑝𝑖𝑖 = 1 −
1

2𝜋ViΣ𝑖
     1 − 𝑒− 

𝜏𝑖
cos 𝜃

  
𝜋/2

−𝜋/2
cos2θ𝑑𝜃𝑑𝑧𝑑𝑦𝑑𝛼

𝑧𝑚𝑎𝑥
𝑧𝑚𝑖𝑛

𝑦𝑚𝑎𝑥
𝑦𝑚𝑖𝑛

2𝜋

0
    (8) 

2.3.2 Surface to Region Collision probabilities for axial extended chords 

Using the axial extended 2-D chord, the surface to region collision probabilities can be 

obtained from an integration similar to Equation 6 (E. A. Villarino, Rudi J. J. Stamm’ler and 

Aldo A. Ferri 1992). Now the incoming surfaces segments (named as sk) are considered. The 

obtained result is presented in Equation 9, where reader should note that only one azimuthal 

angle is considered (i.e. no dependence in ), which will lead to couple segments with the 

white current approximation. 

𝑝𝑠𝑘 ,𝑖 =
   cos  𝜃 2±𝜋  

0
 𝑒

−
𝜏𝑖𝑠

cos  𝜃 −𝑒
−
𝜏𝑖𝑠+𝜏𝑖
cos  𝜃  𝑑𝜃  

𝐴𝑠
0

𝜋
0

𝑑𝑦𝑑𝜑

𝜋𝐴𝑠2
      (9) 

 

2.3.3 Surface to Surface Collision probabilities for axial extended chords 

Analogous to Section 2.3.2, using the axial extended 2-D chord, the surface to surface 

collision probabilities can be obtained from an integration similar to Equation 6 (E. A. 

Villarino, Rudi J. J. Stamm’ler and Aldo A. Ferri 1992). For this case the incoming and out 

coming surfaces segments (named as sk and tl respectively) are considered. The obtained 

result is presented in Equation 10, where reader should note that only one azimuthal angle is 

considered (i.e. no dependence in ), which will lead to couple segments with the white 

current approximation. 

i

j

y

yi

i

k s

k s
i

j

z

Axial  
expansion 
for 2-D 

chord


Top surfaces of extension

Bottom surfaces of extension
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𝑝𝑠𝑘 ,𝑡𝑙 =
   cos  𝜃 2±𝜋  

0  𝑒
−

𝜏𝑠
cos  𝜃  𝑑𝜃  

𝐴𝑠
0

𝜋
0 𝑑𝑦𝑑𝜑

𝜋𝐴𝑠2
     (10) 

3 IMPLEMENTATION 

3.1 Main Implementation 

Equations 7, 8, 9 and 10 are intended to be solved with the available data in CONDOR, 

without extensive modifications to the main code. Thus, the following scheme was proposed:  

a) To calculate the region to region probabilities, the original optimized FORTRAN 

routine FREPIJ (that uses the Bickey functions) was extended to the FREPIJ_3D 

routine, which includes the extension of the set of 2-D volume chords.  

b) To calculate the surface to region and surface to surface probabilities for neutrons from 

the lateral surfaces, the original optimized routine TH1GAM (that uses the Bickey 

functions) was extended to the TH1GAM_3D routine, which includes the extension of 

the set of 2-D surface chords. 

c) To calculate the surface to region and surface to surface probabilities for neutrons from 

the top and bottom surfaces, the same extended TH1GAM_3D routine was used, but 

special extended chords were considered, where the original 2-D volume chords where 

used. 

For these three cases, the original Bickey functions are replaced by the  cos2𝜃𝑒− 
τ

cos 𝜃
 
 

term in equations 7, 8, 9 and 10. Besides a numerical integration over the polar  angle and 

axial position appears, thus the scheme presented in Equation 2 has to be extended to 

Equation 11. 

𝑝𝑖𝑗  =     𝑤𝜃𝑖
𝑤𝑧𝑖

𝑤𝛼𝑖
𝑤𝑡𝑖

𝑝𝑖𝑗  (𝛼𝑖 ,𝑦𝑖 ,𝜃𝑖 ,𝑧𝑖)𝑡𝑖𝛼𝑖𝑧𝑖𝜃𝑖
   (11) 

3.2 Chord Extension  

The chord extension process was performed considering the original numbering in 

CONDOR. Thus when an axial extension is proposed, a new set of surfaces and regions 

appear. The criteria used for the expansion was to number the regions and surfaces as:  

a) For the regions, the axial region added is numbered just adding the total number of 

regions (Nregions_2D) in the element to the region in the bottom axial position.  

b) For the lateral segments, to each sector added in axial dimension the total number of 

sectors (NsectorsET) is added 

c) For the top segments the number is built considering the total number of axial zones 

added (NRegionsaxial) as:  

𝑆𝑒𝑐𝑡𝑜𝑟 = 𝑅𝑒𝑔𝑖𝑜𝑛2𝐷 + 𝑁𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑎𝑥𝑖𝑎𝑙 ∗  𝑁𝑠𝑒𝑐𝑡𝑜𝑟𝑠𝐸𝑇 + 𝑁𝑟𝑒𝑔𝑖𝑜𝑛𝑠_2𝐷     (12) 

d) For the bottom segments the number is built as 

𝑆𝑒𝑐𝑡𝑜𝑟 = 𝑅𝑒𝑔𝑖𝑜𝑛2𝐷 + 𝑁𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑎𝑥𝑖𝑎𝑙 ∗  𝑁𝑠𝑒𝑐𝑡𝑜𝑟𝑠𝐸𝑇    (13) 
 

As an example, the Figure 4 presents an axial extension, where one chord is selected and 

the extended numeration for three axial zones is presented. 
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a) 

 
b) 

Figure 4 Example of an extension for a 2-D case. a) 2-D plot, where the segments (red) and regions (black) 

numbering is presented and the chord is identified. b) Extended numeration for segments and regions.  

3.2.1 Chord Extension for region to region collision probabilities 

To obtain the region to region probabilities, each chord must be extended considering 

several axial positions and polar angles in order to sample correctly the thicknesses. To 

perform this extension, the original 2-D volume chords are chosen. Such chords ensure the 

correct sampling of 2-D surfaces (i.e. volumes in 3-D extension). Then each 2-D chord is 

extended considering an angle and axial position, as it is shown in Figure 5, using an ad-hoc 

developed FORTRAN subroutine (namely EXT_REGION). The axial position includes the 

axial material zones and integration macrobands for each zone, in order to be able to correctly 

sample slender cases. Finally, this subroutine is called into a loop that considers all the 

volume chords for several axial positions and polar angles. 

 

Figure 5 Example of an extension for a 2-D chord, for a given axial position and polar angle. 

 

3.2.1 Chord Extension for surface to region and surface to surface collision 

probabilities for lateral surfaces 

The same extension subroutine (EXT_REGION) developed to obtain the region to region 

collision probabilities can be used to obtain the extended chord for surface to region and 
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surface to surface collision probabilities. Nevertheless it should be noted that: 

a) To obtain accurate sampling of incoming surfaces, the original 2-D surface chords 

should be used (i.e. perimeter in 2-D) instead of volume chords used for region to 

region collision probabilities calculation.  

b) This subroutine does not sample the neutron incoming from bottom or top surfaces. 

3.2.1 Chord Extension for surface to region and surface to surface collision 

probabilities for top and bottom surfaces 

To obtain an extension for an original chord that correctly samples the incoming surfaces 

for the top or bottom surfaces (i.e. from the regions in a 2-D case), a different approach 

should be performed. For this case, the polar angle is measured from the original 2-D chord, 

in order to sample the incoming neutron current. 

The extended chords should correctly sample the incoming surfaces, but those surfaces are 

the respective 2-D regions volumes, thus the original 2-D volume chords are used. Afterwards 

these chords are extended depending on the polar angle in another ad-hoc developed 

FORTRAN subroutine (namely EXT_CHORD_CAP_TOP), considering in two steps:  

a) For a polar angle lower than /2 the chord is extended considering the middle point for 

each original thickness for the bottom surface and the same angle with negative sign 

for the top surface. 

b) For a polar angle higher than /2 the chord is reflected and then extended considering 

the middle point for each original thickness for the bottom surface and the same angle 

with negative sign for the top surface. 

This subroutine is called into a loop that considers all the volume chords for polar angles, 

as it can be shown in Figure 6, where the original chord is the same as the previous sections. 

For this case, several chords are generated for each original 2-D volume chord. 

Figure 6 Example of an extension for a 2-D chord, for several polar angles. 

3.3 Weight normalization of Chord Extension  

The weight normalization for the chord extension is constructed in order to preserve the 

relations set in Equations 4 and 5. Besides, as far as the CONDOR uses an optimized 

normalization subroutine in order to preserve the balances (E. A. Villarino, Rudi J. J. 
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Stamm’ler and Aldo A. Ferri 1992) and this scheme is intended to be kept, a weight scheme 

was developed for each chord extension. 

3.3.1 Chord Extension for region to region collision probabilities 

To preserve the 2-D weight and normalization scheme and proposing that for a slender 

geometry the pij calculated in 2-D and extended 2-D should be the same, we can consider the 

relationship from Equation 14. 

p ij
2D

Vol 2_d
=

p ij
3D

Vol 3_d
                  (14) 

It should be noted here that the volumes in 2-D are the respective areas of the regions, 

obtained through the relationship from Equation 4. Analyzing then Equation 14, each 

extended chord should be multiplied by the axial dimension considered (z). 

3.3.2 Chord Extension for surface to region and surface to surface collision 

probabilities for lateral surfaces 

To preserve the 2-D weight and normalization scheme and proposing that for a slender 

geometry the pski calculated in 2-D and extended 2-D should be the same, we can consider the 

relationship from Equation 15. 
pski

2D

Area 2d
=

pski
3D

Area 3d
      and      

psktl
2D

Area 2d
=

psktl
3D

Area 3d
                     (15) 

It should be noted here that the Areas in 2-D are the respective perimeters of the sectors, 

obtained through the relationship from Equation 5. Analyzing Equation 15 each extended 

chord should be multiplied by the axial dimension considered (z). 

3.3.3 Chord Extension for surface to region and surface to surface collision 

probabilities for top and bottom surfaces 

For the surface to region and surface to surface chords from bottom and top surfaces the 

relationship from Equation 15 should be satisfied, but those chords had been obtained through 

the volume chords (Section 2.2), thus another scheme should be applied.  

Equation 5 must be satisfied in order to apply the pski and psktl calculations subroutines, but 

the value to be obtained for area is the same as the volumes for 2-D integrations (i.e. volume 

regions for 2-D are the areas for top and bottom surfaces in 3-D). Thus, combining this with 

the relationship from Equation 4, we can obtain the additional weight, presented in Equation 

16. As it can be seen the additional weight is just the thickness of the incoming segment in the 

chord (see Figure 6) and this weight is incorporated directly in the FORTRAN subroutine 
EXT_CHORD_CAP_BOT. 

Wj = Wj αi , yi  thj      (16) 

Regarding Equation 16, it can be seen that when Equation 5 is applied over those chords 

we obtain again the relationship from Equation 4, i.e. the volumes for 2-D case, which 

represent the top and bottom surfaces we are looking for. 

3.4 Collision Probabilities integration 

The collision probabilities pij, pski and psktl are then calculated using only 2 subroutines 

(TH1GAM_3D and FREPIJ_3D)  that have the same optimization scheme as the original 

2D ones (E. A. Villarino, Rudi J. J. Stamm’ler and Aldo A. Ferri 1992). The calculation 
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includes an integration in the polar angle (), which is solved using a Gauss integration 

scheme of variable number of angles (W. Press, S. A. Teukolsky, W. T. Vetterling and B. P. 

Flannery). Here it has to be noted that the main idea of such implementation is the near future 

inclusion in CONDOR code, thus all calculation scheme is intended to be preserved.  

4 EXAMPLES  

4.1 Chord extension  

As an example, for a 2-D pin cell case a chord is obtained for a given position (yi) and 

angle (i). Despite this chord may be a surface or volume chord, for understanding purposes, 

the EXT_REGION and EXT_CHORD_CAP_BOT FORTRAN subroutines were applied 

considering 3 axial zones (1.1 cm,1.2 m and 1.3 cm) with 12 axial macrobands and 6 angles 

between -/2 and /2. The obtained results are presented in Figure 7, together with the 2-D 

plot of the original chord.  

 
 

a) 

 
b) 

 
c) 

Figure 7 Example of an extension for a 2-D chord. Blue lines represent extended chords and red lines the 

geometry limits. a) Original chord in the element b) EXT_REGION result for several height and angles c) 

EXT_CHORD_CAP_BOT results for several polar angles. 

 

As it can be seen, the number of chords and complexity for a given 2-D chord raises 

dramatically. The impact over the calculation time will have to be analyzed as a function of 

axial macrobands polar angle discretization. 
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4.2 Pij calculation  

In order to conceptually analyze the impact of the extension, a set of volume chords from 

the same element as Section 4.1 was used to obtain pij considering several axial dimensions. 

The cross sections were chosen arbitrary in order to evaluate the impact over the Collision 

Probabilities of diverse axial thicknesses, axial macrobands and angular integration. Results, 

only for p1j, are presented in Table 1. 

Case P11 P12 P13 P14 P15 P16 
Axial thickness/ Polar 

angles /Axial Macrobands 

Max 

Difference 

to 2-D [%] 

2-D nominal 0.629 0.0052 0.0139 0.0175 0.0715 0.0398 - - 

3-D a 0.626 0.0052 0.0139 0.0175 0.0716 0.0399 100 -120 -130 / 22 / 150 0.3 

3-D b 0.629 0.0051 0.0136 0.0171 0.0702 0.0398 100 -120 -130 / 4 / 150 2 

3-D c 0.614 0.0049 0.0135 0.0168 0.0702 0.0394 10-20-30 /22 /150 6 

3-D d 0.613 0.0048 0.0135 0.0167 0.0702 0.0394 10-20-30 / 22 / 30 7 

Table 1 Schematic example for a pij calculation for different axial thicknesses. 

As it can be seen for slender cases the differences with 2-D case are negligible, while the 

differences emerge with the reduction of the axial dimension (i.e. probabilities to escape from 

the axial zone rise). Besides, for this simplified analysis it can be seen that the results are 

dependent with the axial macroband and polar angle discretization. 

 

5 FUTURE WORKS 

The methodology presented here is intended to be consolidated, rough tested and then 

implemented in CONDOR code in order to study the impact in real-calculation cases. As it 

has been seen in Section 4.1, several sensitivity analyses regarding the axial macroband 

discretization, together with the angular integration scheme should be performed. Special 

attention has to be paid for the polar angle integration, as far as the optimization will be 

compulsory to obtain unbiased results. 

A balance between computational effort and precision will be compulsory in order to avoid 

excessive penalization of calculation time for this extended scheme and keep all the 

advantages of the well proven HRM method implemented in CONDOR code. 

6 CONCLUSIONS  

The main aspects of a simplified geometrical extension of the well known 2-D HRM 

method are proposed, intended to be included in CONDOR code in the near future. 

Theoretical basis are discussed and the main implementation aspects are proposed. Further 

work is compulsory in order to deeply test the methodology proposed and the compatibility 

with the actual calculation scheme in CONDOR code.  
 

REFERENCES 

E. A. Villarino, CONDOR Calculation Package in Physor 2002, “International Conference on 

the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance 

Computing”. 

E. A. Villarino, Rudi J. J. Stamm’ler and Aldo A. Ferri in Nuclear Science and Engineering 

1992, Vol 112 “HELIOS: Angularly Dependent Collision Probabilities” 

I. Mochi. in Science and Technology of Nuclear Installations - Nuclear Activities in 

Argentina 2010, “ INVAP’s Nuclear Calculation System” 

D. FERRARO, E. VILLARINO3014

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



R. J. J. Stamm’ler and M. J Abbate, 1983 Academic Press Inc., “Methods of Steady State 

Reactor Physics in Nuclear Design” 

I. Carlvik, 1965 “A method for calculating Collision Probabilities in General Cylindrical 

Geometries and Applicattions to Flux Distributions and Dancoff Factors” in Proc. 3
rd

 Int. 

Conf. Peaceful Uses of Atomic Energy. 

W. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes In 

Fortran 77 & 90 - The Art Of Scientific Computing, 2Ed, Vol. 1 & 2 (Cambridge UP) 

Mecánica Computacional Vol XXXIII, págs. 3003-3015 (2014) 3015

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.abebooks.co.uk/servlet/SearchResults?an=+Abbate%2C+M.+J.&sortby=3

