
ON THE DESIGN BASIS OF A NEW CORE-LEVEL NEUTRONIC
CODE WRITTEN FROM SCRATCH

Germán Theler

TECNA Estudios y Proyectos de Ingeniería S.A.

Encarnación Ezcurra 365, C1107CLA Buenos Aires, Argentina

Instituto Balseiro, CNEA-Universidad Nacional de Cuyo

Av. Bustillo Km 9.5, R8400 Bariloche, Argentina

Keywords: Nuclear Reactor, Neutron Diffusion, Core-level neutronic code

Abstract. In the study, analysis and design of nuclear reactors there exist a wide variety of mathemat-

ical models that describe the different phenomena that take place in a nuclear facility. As in many other

engineering fields, the corresponding equations are rather complex and require a considerable amount

of both user expertise and computational effort to be successfully solved. Traditionally, there appeared

some computer codes that specialized in solving a certain aspect of fission nuclear reactors such as neu-

tronic codes, thermal-hydraulic codes, control system codes, plant codes, etc. Moreover, each discipline

may be taxonomically split into further particular categories . For example neutronic codes can be aimed

at lattice-level or core-level calculations, can use transport or diffusion formulations, etc. Since the dawn

of the nuclear industry, a variety of codes have populated the universe of available tools we nuclear en-

gineers have available to study, analyze and design nuclear reactors. In this article, the lessons learned

in both the academia and in the nuclear industry during some years of experience are taken into consid-

eration when defining the design basis of a new core-level neutronic code written from scratch, namely

the free nuclear reactor core analysis code milonga. Some of the paradigm shifts both the hardware and

software industries have had during the last years are considered into the way a modern engineering com-

puter code should behave. The discussion includes the kind of problems that should be solved and the

way the inputs are read and outputs are written. Also, implementation-related design decisions such as

formats, languages and architectures are discussed. Illustrative problems are solved using the proposed

project to serve as examples of desired features in modern and useful nuclear engineering codes.

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (artículo completo)
Graciela Bertolino, Mariano Cantero, Mario Storti y Federico Teruel (Eds.)

San Carlos de Bariloche, 23-26 Setiembre 2014

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/

1 INTRODUCTION

More often than not, when an engineer stumbles upon a new computational code designed to

aid her to solve a certain problem, she starts to wonder why the program behaves as it does and

not in another way. If she can contact the actual developer, usually the questions are translated

into requests of changes and new features. Most of these questions can be rationally answered,

even though some may have sound technical justifications and some may just inherit past design

flaws that cannot be easily solved or improved—especially when dealing with legacy computa-

tional codes designed many years ago. This article discusses and explains the design basis of

a new core-level computational code written from scratch. According to the experience gained

by the author in the nuclear industry, in which he has worked both as a user and as a developer,

it is very important to discuss, justify and clearly state the design basis over which such code is

to be written.

The core-level neutronic code under study is named milonga, which even though it is usable

in its current condition, should be considered still under development and not completely ma-

ture. The set of features that either are already included or are expected to be included into the

code, and the details of the actual implementation are thoroughly discussed in the present work.

The code is freely available under the terms of the GNU General Public License (following a

decision that belongs to the design basis itself, as explained in section 2.1), so even if any of the

features hereby discussed does not fulfill the reader’s expectation, the actual design basis—and

thus the code—can be modified at will following the spirit of free software, especially taking

into account that most users of nuclear engineering codes are also hackers which are capable of

reading, understanding and modifying source code.

The decision whether or not to include a particular feature into a computational code, or even

the details about its implementation is not about performing the same calculation in a different

way. It is about defining how the user works. For example, when performance is radically

boosted say because the main computations are performed in GPUs instead of CPUs, not only

does the code solve a problem faster but also the user starts to employ a different work flow,

which hopefully supersedes the previous one. The design basis is therefore a very important

subject that has to be discussed early in the development of a nuclear engineering computer

code as it impacts on the actual projects that employ it even after the code is considered finished.

2 THE DESIGN BASIS

In the nuclear industry the term design basis is used when referring to ideas as design-

basis accidents. Nevertheless, the term as used in this work is an approach usually employed

by process engineers when conceptually designing industrial facilities, and refers to the set of

conditions, needs, and requirements taken into account in designing a facility or product.

It is both illustrative and amusing to picture the design basis of a certain product (a com-

putational code in this case) in the mathematical sense of a set of vectors which span a vector

space of a certain dimension. Each vector may be thought of as a feature of the product having

a certain magnitude and pointing in a certain direction. Usually, these basis vectors will form

clusters pointing at similar directions. In particular, for milonga, four clusters are identified and

separately discussed, namely

• the types of problem the code ought to be able to cope with

• how the input data is to be prepared by the user

• how the output results are to be written by the code

• details of the code’s actual computational implementation

G. THELER3170

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnu.org/copyleft/gpl.html
http://www.talador.com.ar/jeremy/wasora/milonga/

They all are addressed in the following four sections. There are, still, some vectors that

will point at intermediate directions between such clusters. That is to say, some features may

correspond to more than one of the four categories and some subjects may reference another

feature that may no be already reviewed. Hopefully, by the end of the article all cross references

should be consistently closed.

p
ro
b
le
m
s

input

im
p
le
m
en
ta
ti
on

output

Figure 1: The design basis of a neutronic code amusingly depicted as a mathematical basis

that spans a fictional n-dimensional vector space of features. Many vectors of the basis form

clusters at some particular locations, while a few may point to a not-so-well-defined direction.

We analyze the kind of problems the code solves, how the input is expected, how the output is

written and details about its computational implementation.

2.1 Problems

First of all, it should be stated that the problems which should be tackled by milonga in-

volve the core-level neutronics of a fission reactor (see Theler (2013c) for a brief description

of the different kind of calculations involved in reactor analysis). That is to say, both power

plants and research reactors should be taken into account. In principle, at least the steady-state

multi-group neutron diffusion equation is to be solved. However, it is expected that a code

such as milonga should be able to cope with either neutron diffusion or transport, under either

the presence or absence of a neutron source within either multiplicative or non-multiplicative

media. In addition, the ability to solve spatial kinetics may be desirable. Moreover, experience

shows that more often than not, multi-point kinetic equations are enough to accurately model

the spatial-temporal behavior of nuclear reactor cores. Therefore, the possibility to compute

the coupling coefficients of multi-point models from steady-state results may be needed before

implementing full three-dimensional kinetics equations.

The enumeration and the description of the kind of problems that are the objective of a

computational code is a subject of taxonomy, which almost always leads to incompleteness and

or incorrectness. Nevertheless, it is useful to state the type of problems that ought to be able to

be solved by milonga, in order of increasing complexity, as follows:

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3171

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/

a) academic cases

i. problems with analytical solution, i.e. bare homogeneous geometries with one neu-

tron energy group

ii. problems without analytical solution but simple enough to illustrate the physics, i.e

one-dimensional reflected semi-homogeneous slabs with two energy groups

b) benchmark tests

i. two and three-dimensional few-group problems with different materials (each one

with uniform cross sections) and mixed boundary conditions

ii. sensitivity studies using different meshes and numerical schemes

c) industrial problems

i. full three-dimensional reflected geometry with an arbitrary number of energy groups

using homogenized macroscopic cross sections that depend on the distribution of

other properties (temperatures and densities, boron, xenon, control rods, etc.)

ii. fuel management optimization

iii. coupled transient operational and safety calculations

The ability to solve the problems listed in point b) is a suitable mechanism to verify and

validate the code (ANSI, 2011), so it is a must. These problems require, on the one hand, the

possibility to define several materials, each one with different cross sections; and on the other

one, the flexibility to include one type of boundary condition over one part of the domain (such

as null flux on external surfaces) and one over type over other part (null current on symmetry

surfaces). See for example references ANS (1977); Mosteller (1997); Bernal et al. (2014). Any-

way, these features may be better discussed in section 2.2 regarding the input of the code. As

(a) Structured grid as in Theler et al. (2011) (b) Unstructured grid as in Theler (2013d)

Figure 2: Thermal flux of the 2D PWR IAEA Benchmark computed by milonga using finite

volumes over (a) structured and (b) unstructured grids. In both cases the characteristic length

of the mesh is ℓc = 5 cm.

G. THELER3172

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/

these benchmark problems are often designed to test different solution schemes, it is desirable

for a code to be able to choose between different types of meshes (either structured or unstruc-

tured grids), basic geometries (triangles, quadrangles, etc), numerical schemes (finite volumes

or finite elements) as illustrated in figure 2.

The third type of problems constitute the main objective of the code and, presumably, would

span the majority of milonga’s applications. In order for users to be able to build their own

models and express them as input files for the code to understand and process (related to sec-

tion 2.2 about input), a well-written and complete documentation set is mandatory. However,

years of experience with industrial software packages show that good manuals—which, by the

way, are hard to be found—are not enough, and thus access to the source code is needed. This

requirement is purely based on a technical background, that comes from the necessity the final

user—which is likely to be categorized as a hacker as defined by Richard Stallman (Vadén and

Stallman, 2002)—has to fully understand the mathematical equations that the code is solving,

to be able to debug, to control the computational implementation (section 2.4) and to even cor-

rect eventual programming bugs, which most computational codes have. Even if the user is

not technically able to solve the problems she may encounter, a source-aware bug report is far

more useful for the original developers than a simple statement saying “your code fails.” These

technical reasons are in the direction of Raymond’s quotation “given enough eyeballs, all bugs

are shallow,” implying that if one wants to write a core-level neutronic code from scratch able to

put up with current nuclear-industry scenarios, it should be open source as defined by the Open

Source Initiative (1998). Besides, an open-source code may reach a great share of potential

users due to the elimination of distribution fees and royalties.

Now, analyzing the type of problems in point a) it is evident that students need to interact

with the code in a different way an expert with many years of experience in the nuclear industry

does. A student that is learning not only neutron physics and reactor analysis but also advanced

calculus and numerical methods, needs first to be able to run the code and then to understand

it. Figure 3 shows an illustration of the effect known as “thermal shoulder” in a reflected slab.

A student would completely grasp the physical background of such effect—and many others—

by playing not only with the parameters in the input file (section 2.2, input) but also studying

and even modifying the code’s source to fully understand the mathematics behind it. Finally,

based on an ethical background, she would also need to be able to share her findings with

other classmates. It turns out, these four steps are exactly the four essential freedoms that free

software provide. In words of the Free Software Foundation (2001),

A program is free software if the program’s users have the four essential freedoms:

0. The freedom to run the program, for any purpose

1. The freedom to study how the program works, and change it so it does your

computing as you wish

2. The freedom to redistribute copies so you can help your neighbor

3. The freedom to distribute copies of your modified versions to others

Therefore, to successfully solve the type of problems listed in points a) and c) of the taxo-

nomic list above, milonga should be distributed under a free-software compatible license. As

a matter of fact, it was the lack of availability of free core-level neutronic codes back in the

times when the author was an undergraduate student—that was later reinforced when working

in the industry—that encouraged him to start a new code from scratch. Even freedom zero is not

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3173

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/

0 25 50 75 100

x

0

0.25

0.5

0.75

1

1.25

φ

flujo rápido 100 elementos

flujo térmico 100 elementos

Figure 3: Illustration of the thermal shoulder effect on a reflected slab with two energy groups,

as solved by milonga using finite elements. A student with access to such a code can play with

the input to better understand the physics and to grasp the mathematical consequences of the

non-separability of the flux near interfaces. Figure taken from Theler (2013a).

provided for many nuclear codes, still less the other three. Therefore, with the expectation of

contributing with a grain of sand to the diffusion of scientific knowledge is that it was decided

to release milonga under the terms of the GNU General Public License version 3.

Besides solving a problem and obtaining a single set of results, nuclear engineers usually

need to study how these results change with respect to certain parameters. For instance, the

computation of the reactivity worth of a control rod involves several calculations of almost

identical cases which differ in a single parameter, i.e. the insertion of the control rod. The

possibility of performing such parametric computations is certainly a desired feature. Indeed,

milonga is able to sweep a certain portion of the parameter space and provide one or more

results as a function of such parameters, efficiently performing sensitivity studies (figure 4) and

building design maps (Theler and Bonetto, 2010).

0
10

20
30

40 0

10

20

30

40

1.07

1.075

1.08

1.085

1.09

k
e
ff

b

c

k
e
ff

Figure 4: Effective multiplication factor keff of a slab of active width a with a left reflector of

width b and a right reflector of width c, as a function of b and c (figure 5.40 of Theler (2013a)).

G. THELER3174

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnu.org/copyleft/gpl.html
http://www.talador.com.ar/jeremy/wasora/milonga/

-20

 0

 20

-20 0 20

y

x

fish #1
fish #2

fish #3 initial position
fish #3 intermediate steps

fish #3 simplex optimal position
-3400

-3200

-3000

-2800

-2600

-2400

-2200

re
a
c
ti

v
it

y
 [

P
C

M
]

Figure 5: Milonga’s solution of the “three-fish problem” in which two absorbing fish are fixed

in a circular reactor and the location of the third one has to be found in order to maximize the

negative reactivity insertion with the Nelder & Mead simplex algorithm. (Theler, 2013b).

Finally, it should be noted that optimization problems are a particular case of parametric

studies in which, instead of varying the parameters in a certain pre-defined way—for example

using quasi-random number sequences—a special algorithm tries to improve a certain energy

function E(p) by iteratively proposing a suitable sequence of vector of parameters p. Figure 5

shows how milonga obtained the optimal location of a fixed-size absorber such that the overall

reactor multiplication factor is minimum, i.e. where the absorber should be located in order to

produce the maximum negative reactivity insertion (Theler, 2013b). By providing the ability

to perform this type of calculations, a number of complicated issues related to nuclear reactor

design and operation can be tackled. For example, non-linear optimization techniques such as

simulated annealing or genetic algorithms can be applied to improve the efficiency of the fuel

extraction burn-up in PHWRs reactors by studying and optimizing the refueling instructions

given to the operators.

2.2 Input

In order for milonga to solve one of the problems discussed in section 2.1, all the needed

data—including the reactor geometry, macroscopic cross sections, choice of numerical schemes,

kind of computation the user wants and even the selected output (section 2.3)—should be com-

pletely defined in one or more input files, that are to be read by the executable binary program.

That is to say, except for very technical cases of extensibility by means of dynamic shared ob-

jects (see section 2.4), it should not be necessary to re-compile the code to solve one problem

or another, or to ask for a certain particular result with a given precision.

It was decided that such input file (or files) must be plain text containing keywords that take

zero or more arguments, trying to maximize the self-description of the definitions and instruc-

tions contained in it. First, it is important to choose plain ASCII instead of binary data because

of readability, scriptability, traceability and durability reasons (section 2.4 implementation).

There is no technical background to prefer binary inputs for core-level calculations, especially

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3175

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/

when working in an open and free operating system. Besides, control version systems such as

Git or Bazaar may be used when preparing inputs for complex problems, simplifying at least the

engineering coordination and management. Secondly, in the case of milonga, self-describing

keywords were preferred to XML-based definitions because the following vector of the space

basis should be kept in mind: simple problems ought to need simple inputs.

In effect, let us consider the canonical case of solving an homogeneous bare slab with one

group of energy groups using a structured grid. To obtain both the effective multiplication

factor keff and the flux distribution, the following input can be used:

NUMBER n c e l l s _ x = 10

NUMBER l e n g t h _ x = 100

MESH STRUCTURED DIMENSIONS 1 DEGREES 1

MATERIAL f u e l D 1 nuSigmaF 2e−3 SigmaA 1e−3

PHYSICAL_ENTITY MATERIAL f u e l X_MIN 0 X_MAX l e n g t h _ x

MILONGA_STEP

PRINT TEXT " \ # k e f f = " k e f f

PRINT TEXT " \ # x \ t \ t p h i "

PRINT_FUNCTION ph i_1

When executing milonga with such input as an argument, the expected results are obtained

in the standard output (see section 2.3)

$ milonga slab-structured.was

keff = 1.010678e+00

x phi

5.000000e+00 2.447174e-01

1.500000e+01 7.101976e-01

2.500000e+01 1.106159e+00

3.500000e+01 1.393841e+00

4.500000e+01 1.545085e+00

5.500000e+01 1.545085e+00

6.500000e+01 1.393841e+00

7.500000e+01 1.106159e+00

8.500000e+01 7.101976e-01

9.500000e+01 2.447174e-01

$

which can be easily plotted using any free tool such as gnuplot or Pyxplot, that are tools that

follow the rule of composition (section 2.4, implementation) themselves and as such, know that

hashed lines are comments for human experts and are to be ignored by plotting programs.

Besides illustrating the “simple problem ⇐⇒ simple input” feature, the example above

shows that keyword-based text files are prone to syntax highlighting which improves the qual-

ity of the associated documentation (LATEX) and eases file editing (milonga provides syntax

highlighting for Kate and Geany). Also, plain-text output enhances scriptability and interac-

tion with other tools, following the principles of UNIX philosophy (Raymond, 2003), which

is further discussed in section 2.4 regarding milonga’s implementation. In addition, plain-text

files provide further flexibility for complicated problems by allowing complex inputs to be built

using macro languages such as M4.

In general, a computational code provides many parameters and options that control the

calculation—such as tolerances, numerical schemes, boundary conditions, etc.—which may be

tweaked by the user in order to have full control of the results. To be able to solve simple

problems with simple inputs, the code should have good default values for all the parameters

and options, so the size of the actual input file is kept to a minimum. For example, the bare slab

input above does not define any boundary conditions, so milonga assumes null flux at both ends

G. THELER3176

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://git-scm.com/
http://bazaar.canonical.com/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnuplot.info/
http://pyxplot.org.uk/
http://www.latex-project.org/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://kate-editor.org/
http://www.º.org/
http://www.talador.com.ar/jeremy/wasora/milonga/
https://www.gnu.org/software/m4/m4.html
http://www.talador.com.ar/jeremy/wasora/milonga/

of the slab. Neither a convergence tolerance nor a spatial discretization scheme are specified,

therefore default suitable values are used. Every parameter and option should default to an

educated guess, yet the possibility of changing it has to be provided should the problem need it.

The keyword-argument approach to define the input file helps to follow the rules of clarity

and least suprise (section 2.4). In effect, let us consider now the following two lines which may

be found in an input file:

FUNCTION f (x) FILE_PATH f . d a t INTERPOLATION akima

PHYSICAL_ENTITY NAME e x t e r n a l BC r o b i n −0.4692

From a programming point of view, it is far more simple to make a correspondence be-

tween the available function interpolation methods and the types of supported boundary condi-

tions with integer values. However, the usage of explicit strings such as “akima” and “robin”

should—in most cases—avoid forcing the user to recur to the documentation to find out what

a certain integer flag means. In the same direction, position-dependent parameters should be

avoided and self-describing keywords should be used instead. For example, in milonga, an

auxiliary matrix named A may be defined by entering the line

MATRIX A ROWS 3 COLS 4

which may be compared to a fictitious (but not extraneous) code that uses numerical cards

instead of keywords and position-dependent parameters:

20500100 3 4

In the latter case, the user has to refer to the manual to find out first what the numerical

card 20500100 means and then, to see which of the two arguments is the number of rows

and which one is the number of columns. The milonga approach is based on the concept of

syntactic sugar (Raymond, 2003, chapter 8), in which the syntax of a definition may seem to

contain redundant information from a computational point of view but eases the analysis from

the human’s perspective. Moreover, if the user does not need to keep going back and forth to

the documentation in order to write a reasonable simple problem, then it is said that the design

is compact (Raymond, 2003, chapter 4)—which is a desirable feature for a code like milonga.

Another feature that is really helpful for a computational code as a neutronic tool to have is

the ability to parse and evaluate algebraic expressions whenever a numerical data is needed. For

example, the following is a valid input for milonga:

d e l t a x = l / 4 0

VECTOR p s i SIZE 3∗40

Even better, named constants may be used to give more insight about what 3 and 40 refer to:

NUMBER ngroups 3

NUMBER n c e l l s 40

d e l t a x = l / n c e l l s

VECTOR p s i SIZE ngroups∗ndim

Adding support for useful functions (log, exp, cos, steps, ramps, etc.) and functionals (inte-

gration, derivation, root and minima finding, etc.) is straightforward, and heavily enhances not

only input flexibility but also in the manipulation of computed results (section 2.3, output).

It was stated above that the problem may be formulated in one or more input files. The

reason is that some data—typically the definition of the materials and cross sections—may be

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3177

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/

shared amongst several cases and thus it is a good idea to allow inclusion of other files from the

main input. Even more, the mechanism should allow conditional and recursive inclusion. For

example, either one or another set of cross sections may be used, depending of a certain flag:

b o l = $1

IF b o l =1

INCLUDE xs−f r e s h . was

ELSE

INCLUDE xs−e q u i l i b r i u m . was

ENDIF

This particular example also illustrates another key feature that is highly desirable. Besides

reading the problem definition from a plain-text input file, some particular parameters or options

may be given at run-time in the command line. In the above example, the flag bol—which

stands for beginning of life—shall be provided as an argument when executing milonga:

$ milonga problem.was 1

In the same way that solving a problem by reading an input file instead of hard-coding data

into the executable avoids re-compilation, the ability to read some data from the command line

allows to perform many similar computations without needing to prepare one input file for each

case. For example, in reference Theler (2013d), the 2D IAEA PWR Benchmark problem is

solved for eighty combinations of symmetry conditions, meshing algorithms, basic grid shapes,

numerical schemes, and characteristic mesh sizes with a single input, by calling milonga from

a Bash script with different arguments. Figure 6 illustrates case #048.

In general, it is better to avoid referring to generic numerical data as “tables” because this

meaning changes with the context. The code should encourage to use well-defined mathemat-

ical entities such as functions of one or more variables, vectors, or matrices, according to the

proper usage. For instance, the following input

f i s s i o n XS t a b l e as a f u n c t i o n o f burnup f o r t e m p e r a t u r e T0

burnup i n MW−day / tonU and XS i n 1 / cm

FUNCTION nus igmaf0 (q) INTERPOLATION akima DATA {

0 0 .205

1200 0 .214

5000 0 .183

8000 0 .155

10000 0 .110

}

base f u e l t e m p e r a t u r e [K]

T0 = 700

c o e f f i c i e n t o f v a r i a t i o n w i t h t e m p e r a t u r e

c = 3 . 5 e−3

a b s o r p t i o n XS as a f u n c t i o n o f burnup and t e m p e r a t u r e

g i v e n i n a da t a f i l e

FUNCTION s igmaa (q , T) FILE s igmaa . d a t INTERPOLATION r e c t a n g l e

d e f i n i t i o n o f m a t e r i a l " f u e l " and i t s XS [1 / cm]

VECTOR vec_x SIZE n c e l l s

VECTOR burnup SIZE n c e l l s

VECTOR temp SIZE n c e l l s

FUNCTION burnup (x) VECTORS vec_x vec_bu

FUNCTION temp (x) VECTORS vec_x vec_temp

MATERIAL f u e l {

D_1 1 . 5

D_2 0 . 4

G. THELER3178

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnu.org/software/bash/

milonga’s 2D LWR IAEA Benchmark Problem case #048
eighth-symmetry core meshed using delaunay (triangs, ℓc =2) solved with finite elements

(a) Geometry and mesh: triangs with delaunay and ℓc = 2

largest eigenvalue keff 1.029617 (2876.48 pcm)
maxφ2(x, y)@core 11.12 @ (30.93, 30.93)
maxφ2(x, y)@reflector 12.71 @ (131.15, 51.41)
number of unknowns 8156
outer iterations 3
linear iterations 32
inner iterations 1019
residual norm 1.89× 10−12

relative error 9.313× 10−13

error estimate 7.639× 10−13

memory used 158440 kB
soft page faults 40771
hard page faults 0
total CPU time 3.132 seconds

k Pk φ1k φ2k k Pk φ1k φ2k

1 0.74 32.21 5.49 20 1.17 37.03 8.69
2 1.30 41.53 9.61 21 1.07 33.60 7.91
3 1.44 45.51 10.68 22 0.97 29.09 7.22
4 1.20 38.41 8.90 23 0.62 16.73 5.16
5 0.61 26.43 4.51 24 — 2.48 5.90
6 0.93 29.83 6.90 25 1.19 37.46 8.78
7 0.93 29.38 6.92 26 0.96 30.76 7.13
8 0.72 20.37 5.61 27 0.91 28.45 6.70
9 — 3.42 8.02 28 0.79 22.63 6.29

10 1.42 44.96 10.54 29 — 6.03 12.48
11 1.47 46.34 10.88 30 — 0.72 2.84
12 1.31 41.24 9.67 31 0.47 20.34 3.48
13 1.06 34.02 7.87 32 0.68 20.76 5.07
14 1.03 32.62 7.65 33 0.53 14.50 4.45
15 0.95 29.82 7.04 34 — 2.46 6.08
16 0.70 19.91 5.47 35 0.52 14.07 4.36
17 — 3.26 7.64 36 — 4.05 8.37
18 1.46 46.04 10.81 37 — 0.58 2.26
19 1.34 42.18 9.90 38 — 0.65 2.59

(b) Results with the finite elements method

(c) Fast flux distribution (d) Thermal flux distribution (e) Power distribution

0 40 80 120 160
0

15

30

45 φ1(x, 0)

φ2(x, 0)

(f) Flux distribution φ(x, 0) along the x axis

0 40 80 120 160
0

15

30

45 φ1(x, x)

φ2(x, x)

(g) Flux distribution φ(x, x) along the diagonal

Figure 6: One of the eighty solutions found with milonga of the 2D IAEA PWR Benchmark

over structured meshes Theler (2013d,a)

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3179

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/

SigmaS_1−>2 0 . 0 2

SigmaA_1 0 . 0 1

SigmaA_2 sigmaa (burnup (x) , temp (x))

nuSigmaF_2 nus igmaf0 (burnup (x)−c ∗ (s q r t (temp (x))−s q r t (T0))

}

illustrates how νΣf2(x) is defined as an algebraic expression of interpolated data, as a function

of a a certain temperature and burn-up distributions, which are functions of x. In turn, these

distributions are defined by vectors which may be read at run-time from other files, shared

memory segments or even from network sockets, allowing coupled calculations, that are being

more and more necessary nowadays (Mazzantini et al., 2011; Theler, 2013c; Pinem et al., 2014).

We will come back to this example later in section 2.3.

 0
 2500

 5000
 7500

 10000

 680
 720

 760
 800

 840
 880 0.1

 0.11

 0.12

 0.13

 0.14

X
S
 d

e
 a

b
s
o
rc

io
n
 t

e
rm

ic
a
 [

1
/c

m
]

quemado [MW dia/ton]

temperatura [K]

X
S
 d

e
 a

b
s
o
rc

io
n
 t

e
rm

ic
a
 [

1
/c

m
]

Figure 7: Fictitious macroscopic absorption cross section as a function of fuel burn-up and tem-

perature given as a two-dimensional interpolation of scatted data (figure 5.48 of reference Theler

(2013a)).

The last example also shows a great advantage of incorporating an algebraic parser into

core-level neutronic codes: the dependence of macroscopic cross sections with parameter dis-

tributions (fuel burn-up, thermal-hydraulic properties, neutronic poisons distributions, etc) can

be given in a rather flexible way. There is no need to pre-define that a certain cross sections

depends linearly o quadratically with the temperature of certain component. Besides, on which

temperatures and on which materials the cross sections depends can be completely different

for each set. Even more, the proposed dependence can be written independently of the spatial

discretization, allowing for even more flexibility. Multidimensional interpolation of scattered

data (figure 7) provides even more power and greatly simplifies the introduction of cross section

dependence through the spatial distribution of intermediate parameters.

It is important to note that by allowing to write cross sections as human-friendly algebraic

expressions as in the example above, not only can the actual dependence form be arbitrarily

chosen but also which parameters a certain cross sections actually depends on. Therefore,

it is not needed to fix the computational code to a certain reactor technology as is the case

where the fact that the moderator and the coolant is the same entity is hard-coded in software

aimed at PWRs, preventing the application of such code to PHWRs. The flexibility of how the

G. THELER3180

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

macroscopic cross sections depend on the spatial coordinates x, y and z is a key feature of the

code and affects many aspects of its usage and applications.

2.3 Output

Table 1 shows the cost and speed of some computers used in the 1960’s for reactor analy-

sis (Worlton and Voorhees, 1965). It is clear that since then, the costs of scientific and engineer-

ing projects have shifted from CPU time to human time, fact that is also known as the UNIX

rule of economy (section 2.4, implementation). It is thus important to reduce the time human

experts spend in performing simple and repetitive tasks, which by the way, are candidates to

introduce errors which may delay the project and further increase costs and time (Knuth, 2003).

Back in the days of table 1, having to re-run a calculation because a result was missing in

the code’s output was catastrophic from an economical point of view. However, nowadays the

aforementioned shift works the other way round: instead of writing as much results as possible

in the output and generating huge amounts of data that need to be filtered and parsed by a

cognizant human, it is better to just write what the user explicitly asks for—and nothing more.

Not only does this feature simplify the post-processing phase but also enhances scriptability and

follows the rule of composition (section 2.4, implementation).

The following example is taken from (Theler, 2013a, section 5.1.3.3) and compares the ther-

mal flux peak factor, defined as

fp =
maxx φ2(x)

1

a

∫ a

0

φ2(x) dx

(1)

of a two-group non-symmetrically reflected slab of active length a with two absorbers inside,

for different spatial discretization schemes and mesh refinements:

read t h e mesh f i l e from t h e command l i n e

MESH FILE_PATH $1 DIMENSIONS 1 DEGREES 2

SCHEME $2 # read a l s o t h e n u m e r i c a l scheme (vo lumes / e l e m e n t s)

INCLUDE m a t e r i a l s . was

MILONGA_STEP

Computer Monthly Rental Relative Speed First Delivery

CDC 3800 $ 50,000 1 Jan 66

CDC 6600 $ 80,000 6 Sep 64

CDC 6800 $ 85,000 20 Jul 67

GE 635 $ 55,000 1 Nov 64

IBM 360/62 $ 58,000 1 Nov 65

IBM 360/70 $ 80,000 2 Nov 65

IBM 360/92 $ 142,000 20 Nov 66

PHILCO 213 $ 78,000 2 Sep 65

UNIVAC 1108 $ 45,000 2 Aug 65

Table 1: The new high speed computers (table 3 of reference Worlton and Voorhees (1965)).

Costs are expressed in 1965 USD and may vary up to a factor of two. Relative speed is expressed

with reference to IBM 7030. Data for computers expected to appear after 1965 was estimated.

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3181

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0 25 50 75 100

x

0

0.5

1

φ

flujo rápido elementos malla fina

flujo rápido volúmenes malla refinada

flujo rápido elementos refinada

flujo térmico elementos malla fina

flujo térmico volúmenes malla refinada

flujo térmico elementos malla refinada

Figure 8: Flux distribution in a reflected slab with two absorbers inside. Comparison between a

reference solution computed with a fine mesh and two numerical schemes (finite volumes and

finite elements) using a coarse mesh refined at the absorbers. Figure taken from (Theler, 2013a,

section 5.1.3.3).

a = 100

f i r s t we l o o k f o r t h e l o c a t i o n o f t h e maximum t h e r m a l f l u x

(a c t u a l l y t h e minimum o f −ph i_2 (x)) i n t h e range [1 0 , 3 0]

xmax = func_min(−ph i_2 (x) , x , 10 , 30)

t h e peak f a c t o r

f_p = ph i_2 (xmax) / (1 / a ∗ i n t e g r a l (ph i_2 (x) , x , 0 , a))

show i n f o r m a t i o n i n t h e s t a n d a r d o u t p u t

PRINT " $1 " " $2 " %.1 f 1 e5 ∗ (k e f f −1) / k e f f %.2 f xmax %.3 f f_p

and w r i t e t h e f l u x d i s t r i b u t i o n i n a t e x t f i l e ready t o be p l o t t e d

OUTPUT_FILE f l u x $1−$2 . d a t

PRINT_FUNCTION ph i_1 ph i_2 FILE f l u x

A terminal mimic that illustrates how the problem can be solved follows:

$ echo mesh____________________method__________rho_____xmax____peak_factor > slab.txt

$ milonga slab.was slab-fino.msh volumes >> slab.txt

$ milonga slab.was slab-fino.msh elements >> slab.txt

$ milonga slab.was slab-sin-ref.msh volumes >> slab.txt

$ milonga slab.was slab-sin-ref.msh elements >> slab.txt

$ milonga slab.was slab-refinado.msh volumes >> slab.txt

$ milonga slab.was slab-refinado.msh elements >> slab.txt

$ cat slab.txt

mesh____________________method__________rho_____xmax____peak_factor

slab-fino.msh volumes -1163.3 19.72 1.239

slab-fino.msh elements -1163.5 19.74 1.239

slab-sin-ref.msh volumes -1032.0 18.00 1.270

slab-sin-ref.msh elements -1249.5 18.00 1.219

slab-refinado.msh volumes -1272.2 18.00 1.267

slab-refinado.msh elements -1115.7 21.00 1.224

$

G. THELER3182

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

This example illustrates many of the design basis features discussed so far, and some that

are yet to be introduced (see reference Theler (2013a, section 5.1.3.3) for details about the

example). Not only is the mesh computed by an specific tool (section 2.4, implementation), but

the actual name of the mesh file is defined at run-time in the command line. The cross sections

are included from another input file. The peak factor is explicitly computed by first finding the

location xmax where the maximum thermal flux occurs and then evaluating equation (1) using

explicit algebraic facilities provided by milonga. For each case, the actual output consists of a

single line that states which mesh file was used, which numerical scheme was employed, the

computed static reactivity in PCM, the location xmax of the maximum flux and the peak factor fp,

plus a separate text file containing both fluxes as a function of x written as a column-based

ASCII representation of the numerical data. As can be seen in the terminal mimic, by calling

the same input with different arguments, a chart that contains just the needed information—

and nothing more—is obtained. Figure 8 illustrates the flux distribution of the slab as plotted

by reading the separate text file with a proper tool (Pyxplot in this case). This economy of

output also translates into economy of computation, because if by design a code writes as much

information as it can, then it also has to compute as much results as it can. If a result is not

asked for, there is no need to compute it, saving further time and effort.

In section 2.1 (problems) we stated that a wide variety of calculations such as parametric

or optimization runs where a key feature of the code. This requirement can only be fulfilled

by allowing arbitrary output instructions to be completely defined by the user in the input, as

in parametric computations usually one or more results as a function of one or more arbitrary

parameters are needed. Therefore, the only way to comply with the design basis of section 2.1

is to also implement the output of the code as discussed in this section.

Besides choosing which data is written into which file, the output of a computation program

also involves how it interacts with other codes in coupled calculations (Mazzantini et al., 2011).

This exchange of information may be done by accessing files (ASCII or binary), by interacting

with network sockets or by means of the available IPC mechanisms. Amongst the last group,

shared-memory objects synchronized using shared semaphores are the most convenient from an

efficiency point of view (Theler, 2013c). Another approach that may be even more efficient in

some cases is to implement particular calculation codes as shared libraries—i.e. as plugins—

and then dynamically load as many codes as needed. This way, the user-space memory segment

is effectively shared between the plugins and data exchange can be easily performed. Actually,

milonga can be either compiled as a standalone binary or as a runtime-loadable plugin for

the general engineering code wasora. Even more, the standalone executable of milonga is a

particular case where both the basic wasora code and the milonga plugin are statically linked

into a single binary, which may in turn load further plugins. By writing other tools such as

thermal-hydraulic or control codes as wasora plugins, information exchange can be performed

almost transparently. In effect, let us consider again the example where absorption cross section

of a one-dimensional slab is given as a function of burn-up and temperature. In the input file

shown, the fuel’s Σa2 is entered as

SigmaA_2 sigmaa (burnup (x) , temp (x))

As can be seen, even without looking at the manual, that both burnup and temp are con-

tinuous functions of x. For academic or benchmark problems (section 3, input) these functions

may be given as algebraic expressions. However, for industrial applications, these functions

are not trivial and ought to be given as discrete (xi, f(xi)) pairs—or in general as n + 1-tuples

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3183

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://pyxplot.org.uk/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora

for n dimensions. One way of doing this is by entering the numerical data into the input file,

as shown for the function nusigmaf0(q) of the same example. But to be able to perform

transient computations, i.e. either by burning the fuel with the fission power the neutronic code

computes or by reading the temperature distribution from a thermal-hydraulic code, these n+1-

tuples have to be read dynamically. And, in turn, some data about the power distribution has to

be written somewhere somehow.

There are many ways to resolve the described situation. Without entering into details, here is

one solution where the burn-up is computed by milonga itself whilst the temperate distribution

is read from an external code after exporting the power distribution, exchanging information

using POSIX shared memory objects and synchronizing using shared semaphores:

VECTOR p o w e r _ d i s t SIZE n c e l l s

vec_x (i) = (i −0.5)∗wid th / n c e l l s

vec_bu (i) = 0 + i n t e g r a l _ d t (pow (vec_x (i))) / 0 . 2

SEM t h e r m a l _ r e a d y WAIT

READ SHM_OBJECT t e m p e r a t u r e s vec_temp

MILONGA_STEP

p o w e r _ d i s t (i) = pow (vec_x (i))

SEM n e u t r o n i c s _ r e a d y POST

If the hypothetical thermal-hydraulic code had been coded as a wasora plugin (as milonga)

that read the input data (power distribution) as one wasora vector (say power_dist) and wrote

the result (fuel temperature distribution) as another wasora vector (say temperature_dist),

then the last four lines would have had to be replaced by something like:

p o w e r _ d i s t (i) = pow (vec_x (i))

vec_temp (i) = t e m p e r a t u r e _ d i s t (i)

MILONGA_STEP

THERMAL_STEP

As discussed in reference Theler (2013c), this coupling scheme can be categorized as semi-

implicit and the order at which the instructions are executed—both in the shared-memory and

in the plugin cases—determines the convergence behavior. To sum up, as in section 2.2 (input),

flexibility when writing data into different computational resources is a highly desirable feature.

In general, the output of a core-level neutronic code consists of several scalar fields (group

fluxes, fission power, delayed power, etc.) over up to four dimensions (three spatial and one

temporal). It is important for the engineer to be able to correctly interpret, understand and post-

process this huge amount of information to analyze the obtained results, especially in the early

phases of the construction of the models where mistakes are more common. In this regard,

experience shows that the usage of three-dimensional graphical representations of results can

provide a great aid to detect errors in the discretized geometry, symmetries, input distributions,

etc. that may be otherwise difficult to find (and to even realize there was actually an error in the

model to begin with) by just looking at the numerical data.

For instance, when interfacing with other codes it is important to be consistent with the way

collections of numbers are interpreted. A common example is to give properties in a matrix-like

fashion with two-dimensional indexes such as (channel number, axial cell) dumped into files or

shared-memory objects. However, the matrix data may be interpreted either as row-major (as

in C) or as column-major (as in Fortran) orders. Asking the neutronic code to give a graphical

representation of the data it reads, quickly allows the user to detect inconsistencies, as illustrated

in figure 9 where the burn-up distribution is read from a file.

G. THELER3184

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora

(a) Wrong (b) Right

Figure 9: Axial cut view of the time-average fuel burn-up distribution as read from a file con-

taining matrix data interpreted as (a) column-major order (b) row-major order. The graphical

representation helps the cognizant engineer to quickly determine that the consistent interpreta-

tion for this case is figure (b).

(a) Gmsh (b) ParaView

Figure 10: Azimuthal cut view of the thermal flux distribution of a fictitious three-dimensional

reactor with a non-symmetrical vertical control rod as computed by milonga and interactively

represented by two three-dimensional free post-processing programs: (a) Gmsh (b) ParaView

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3185

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://geuz.org/gmsh/
http://www.paraview.org/

milonga’s 2D LWR IAEA Benchmark Problem case #018
quarter-symmetry core meshed using delaunay (quads, ℓc =2) solved with finite elements

(a) Mesh and thermal flux distribution

k Pk φ1k φ2k

1 0.74 32.20 5.49
2 1.30 41.52 9.61
3 1.44 45.51 10.68
4 1.20 38.43 8.90
5 0.61 26.48 4.52
6 0.94 29.96 6.93
7 0.94 29.59 6.96
8 0.72 20.61 5.69
9 — 3.58 8.62
10 1.42 44.95 10.54
11 1.47 46.34 10.88
12 1.31 41.27 9.68
13 1.07 34.09 7.89
14 1.04 32.75 7.68
15 0.96 30.03 7.08
16 0.71 20.14 5.54
17 — 3.42 8.20
18 1.46 46.06 10.81
19 1.34 42.22 9.91
20 1.18 37.11 8.71
21 1.07 33.75 7.94
22 0.98 29.29 7.27
23 0.62 16.92 5.22
24 — 2.58 6.32
25 1.19 37.52 8.80
26 0.96 30.84 7.15
27 0.91 28.58 6.73
28 0.80 22.80 6.33
29 — 6.11 12.77
30 — 0.80 3.18
31 0.47 20.43 3.50
32 0.69 20.88 5.10
33 0.54 14.63 4.50
34 — 2.55 6.48
35 0.51 14.18 4.39
36 — 4.10 8.54
37 — 0.64 2.52
38 — 0.71 2.85

(b) Power and fluxes

largest eigenvalue keff 1.029695 (2883.88 pcm)
maxφ2(x, y)@core 11.12 @ (30.76, 30.32)
maxφ2(x, y)@reflector 8.38 @ (50.00, 130.00)
number of unknowns 15922
outer iterations 3
linear iterations 32
inner iterations 1990
residual norm 1.056× 10−8

relative error 5.202× 10−9

error estimate 5.122× 10−9

memory used 109964 kB
soft page faults 30591
hard page faults 0
total CPU time 1.58 seconds

0 40 80 120 160
0

15

30

45 φ1(x, 0)

φ2(x, 0)

(c) Flux distribution φg(x, 0) along the x axis

0 40 80 120 160
0

15

30

45 φ1(x, x)

φ2(x, x)

(d) Flux distribution φg(x, x) along the diagonal

Figure 11: Processing milonga’s output with a Bash script that calls sed, awk, Gmsh, Inkscape

and LATEX can produce professional, accurate and aesthetically-pleasant results (figure 12 of

reference Theler (2013d,a)

G. THELER3186

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnu.org/software/bash/
http://www.gnu.org/software/sed/
http://www.gnu.org/software/gawk/
http://geuz.org/gmsh/
http://www.inkscape.org/en/
http://www.latex-project.org/

It should be noted that, as discussed in section 2.4 (implementation), the calculation code

should merely interact with graphical tools by being able to write information in the correspond-

ing format. It is a design flaw to try to incorporate graphical primitives into the code, because

besides breaking the rules of composition, separation, parsimony and extensibility (section 2.4,

implementation), chances are that any implementation of a graphical engine that a nuclear en-

gineer may be able to write would be far less powerful than those designed by professional

programmers. Figure 10 shows the same result computed by milonga—corresponding to a bare

three-dimensional reactor with a single non-symmetric vertical control rod—being interactively

post-processed by two different freely-available professionally-coded programs.

Other desired features that are better achieved by the fact that output is completely defined

by explicit instructions in the input file are ease of scriptability, interaction with other programs

and reducing the need of manual processing of the results (section 2.4). If, for example, a

normalized power distribution with respect to the instantaneous power is needed, it is best to

compute it within the neutronic code with something like

w r i t e bo t h t h e vec_power v e c t o r and each e l e m e n t vec_pow (i)

d i v i d e d by t h e t o t a l power (o u t p u t r e s u l t s i n two columns)

PRINT_VECTOR vec_pow vec_pow (i) / power

instead of importing the vec_pow vector into a spreadsheet and then applying some manual

operations to normalize it.1 The usage of such point-and-click intermediate steps is extremely

prone to introduce errors and is highly discouraged (rule of generation, section 2.4). Should

the output of a calculation code need further processing, automated and repeatable tools such

as sed or awk ought to be preferred (section 2.4, implementation). As an example, figure 6

is one of eighty similar figures that were created automatically out of milonga’s output by a

Bash script using tools such as sed, awk, Gmsh, Inkscape and LATEX. Figure 11 shows another

variation, which includes a transparent alpha channel and allows arbitrary zooming of plots, as

published in Theler (2013d). These two figures also illustrate that the output obtained using

already-existing tools with years of development on their back may attain publication-grade

quality, mainly because these programs were designed to achieve such goal, which may be very

difficult to obtain by trying to hard-code graphical output routines into the neutronic code.

2.4 Implementation

The cluster that points to the implementation direction contains the most numerous and com-

plicated basis vectors. These vector are related to almost any other feature discussed so far

belonging to the other three sections. The rationale of this section is based on the seventeen

rules of the UNIX philosophy compiled by Raymond (2003). Although a detailed description

of the relationship of each rule with the design of milonga is out of the scope of this article, it

is illustrative to quote them as described in chapter four of the original reference. Nevertheless,

the reader is encourage to mentally apply and link all of them to at least one nuclear engineering

computational code she had used in the past:

1. Rule of Modularity: Write simple parts connected by clean interfaces.

2. Rule of Clarity: Clarity is better than cleverness.

3. Rule of Composition: Design programs to be connected to other programs.

4. Rule of Separation: Separate policy from mechanism; separate interfaces from engines.

5. Rule of Simplicity: Design for simplicity; add complexity only where you must.

1Incidentally, I dare anyone to try to open such spreadsheet file twenty years from now.

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3187

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnu.org/software/sed/
http://www.gnu.org/software/gawk/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.gnu.org/software/bash/
http://www.gnu.org/software/sed/
http://www.gnu.org/software/gawk/
http://geuz.org/gmsh/
http://www.inkscape.org/en/
http://www.latex-project.org/
http://www.talador.com.ar/jeremy/wasora/milonga/

6. Rule of Parsimony: Write a big program only when it is clear by demonstration that

nothing else will do.

7. Rule of Transparency: Design for visibility to make inspection and debugging easier.

8. Rule of Robustness: Robustness is the child of transparency and simplicity.

9. Rule of Representation: Fold knowledge into data so code logic can be stupid and robust.

10. Rule of Least Surprise: In interface design, always do the least surprising thing.

11. Rule of Silence: When a program has nothing surprising to say, it should say nothing.

12. Rule of Repair: When you must fail, fail noisily and as soon as possible.

13. Rule of Economy: Programmer time is expensive; conserve it in preference to CPU time.

14. Rule of Generation: Avoid hand-hacking; write programs to write programs if possible.

15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.

16. Rule of Diversity: Distrust all claims for “one true way”.

17. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

The basic idea of this cluster is to avoid programming features that other people have al-

ready developed, usually better than us. The canonical case is that of numerical methods: using

available free and open general mathematical libraries which implement algorithms designed

by mathematicians, coded by professional programmers reviewed by the academic community

is by far a better decision than embedding tailor-made numerical recipes into our specific en-

gineering codes. In particular, in steady-state multi-group reactor analysis, the main objective

of calculation code is to build the fission and removal matrices from the data contained in the

input file (as discussed in section 2.2) and to write the appropriate output as requested by the

user (section 2.3). The actual solution of the generalized eigenvalue problem is best obtained by

using available libraries which are already, revised, verified, tested and optimized. Specifically,

milonga solves the eigenvalue problem using the free library SLEPc (Hernandez et al., 2005)

that works on top of the framework for handling big and sparse matrices provided by the library

PETSc (Balay et al., 2013). Not only are the rules of composition, separation and optimization

satisfied this way, but also—and more important—the extensibility rule is. On the one hand,

in the future—which may be here sooner than you think—mathematicians may come up with

new algorithms that need fewer iterations to solve a certain problem. On the other hand, pro-

grammers may come up with new implementations of existing algorithms that run faster than

today—for example by using GPUs instead of CPUs. These two features are easily attained by

using libraries instead of hard-coding numerical routines into the neutronic code.

Another example of composition, separation, simplicity and parsimony is that of the dis-

cretization of the problem geometry. The generation of suitable meshes is an ubiquitous prob-

lem itself. It is not necessary to tackle this problem from within our calculation code. As

with the already-discussed post-processing phase, the task of defining the geometry may result

complex and error-prone, even when dealing just with structured meshes. Therefore, using an

existing graphical geometry editor with mesh generator instead of programming an ad-hoc im-

plementation is a very convenient design decision. At the same, time and as already discussed in

section 2.3 (output), publication-grade quality figures such as 6 and 11 are almost impossible to

obtain without interfacing with existing high-quality post-processing, vector graphics and doc-

umentation software such as Gmsh, Inkscape, gnuplot and LATEX. Not only do these programs

incorporate many years of development which allow their developers to pay attention to details

that would escape to most of us (see for example Knuth (1984)), but they also follow the rules

G. THELER3188

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.grycap.upv.es/slepc/
http://www.mcs.anl.gov/petsc/
http://geuz.org/gmsh/
http://www.inkscape.org/en/
http://www.gnuplot.info/
http://www.latex-project.org/

of UNIX philosophy themselves, rely on further libraries and interface with other programs as

well.

The rule of optimization is one of the most difficult to follow, because we engineers are en-

tities that are constantly optimizing our environment and cannot stand inefficiencies. However,

experience shows that more often than not, optimized code does not work out of the box as

originally expected. Besides, the resulting source is usually so obfuscated that even the original

programmer cannot understand it as shortly as only a couple of months after the first coding.

Taking into account the rule of economy (cost shift from CPU time to expert time) and the

related rules of simplicity, transparency and extensibility, simple understandable slow code is

preferred to obscure complex fast code.

Also important for the case of milonga is the rule of representation, that recommends adding

complexity into the data structures (we humans perform better at abstraction) and removing

complexity from the logical algorithms (we humans perform worse at low-level computation).

On the one hand, this last rule states that the programming language of a calculation code such

as milonga should be one able to represent and handle complex data structures. On the other

hand, in the preceding paragraph a core-level neutronic code was defined as a “glue” layer

between the physical problem defined in the input file and the low-level numerical library that

solves the generalized eigenvalue problem. These two conditions intersect at being C the right

language for milonga (Raymond, 2003). Indeed, the standard hardware platform where core-

level neutronic codes are expected to run in the next few years has converged to what it is

called the classical architecture (Blaauw and Brooks, 1997). Namely: binary representation,

flat address space, a distinction between memory and working store (registers), general-purpose

registers, address resolution to fixed-length bytes, two-address instructions, big-endianness and

data types set consistent with sizes that are multiples of 4 bits. This is exactly the hypothetical

computer for which the C programming language was originally designed for by Kernighan and

Ritchie back in 1973, which in part explains its success.

Even though in the mid 1950’s the appearance of the FORTRAN-I language was a break-

through that allowed technical staff—i.e. scientists and engineers—that were not expert pro-

grammers to be able solve very complex problems with comparatively little effort (Knuth,

2003), it has nowadays become obsolete and is only used when dealing with legacy snippets

of code. In words of the PETSc developers (Balay et al., 2013)

C enables us to build data structures for storing sparse matrices, solver information,

etc. in ways that Fortran simply does not allow

Another choice would be C++, but its intrinsic complexity is not aimed at implementing the

already discussed “glue layer” (Raymond, 2003). Again, PETSc developers state that

Using C function pointers to provide data encapsulation and polymorphism allows

us to get many of the advantages of C++ without using such a large and more

complicated language.”

Indeed, milonga (and wasora) make extensive use of function pointers. Besides, in Ray-

mond’s words,

C++ is anti-compact—the language’s designer has admitted that he doesn’t expect

any one programmer to ever understand it all.

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3189

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.mcs.anl.gov/petsc/
http://www.mcs.anl.gov/petsc/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora

Finally, sticking to standards is a good recommendation, especially when they are well de-

signed and thoroughly thought. ANSI C is a complete standard that all modern C compilers sup-

port, and the language is identical on all machines. In particular, milonga makes extensive use of

dynamic memory allocation, pointers to structures, linked lists and hashed tables—all features

that either are embedded into the intrinsic design of the C Programming Language (Kernighan

and Ritchie, 1988) or that can be easily implemented. Moreover, any modern operating system

provides access to low-level system calls by means of a C-compatible API, which indicates that

the language will be at least under consideration at least for many years from now.

The issue of scriptability is related to several of the rules, and is the principal way of em-

bedding a computational code into a calculation environment that may include other calculation

codes (lattice-level neutronics, thermalhydraulics, control systems, etc.) or further general tools

(geometry editors, post-processors, plotting utilities). The two already-introduced figures 6

and 11 were produced by a script that called successively mesh generators, calculation codes,

plotting utilities and document preparation tools. But even more, the whole chapter four of

reference Theler (2013a) that spans one hundred and sixty one pages worth of inputs, results,

figures and discussions of eight types of problems was generated by a single script. That is to

say, should the chapter need to be re-generated (for example because a bug was found either

in the code or in one of the inputs), all it would take is a single command. This feature, that

amongst other benefits enhances repeatably, can be obtained by reading the input as proposed,

by understanding command-line arguments (section 2.2, input) and by being flexible in the way

results are written (section 2.3, output).

Milonga obeys the the extensibility rule by with a few number of characteristics. First, the

introduction of hard-coded numerical schemes is minimized and the code relies on freely avail-

able libraries as already discussed. If the flexibility the code provides (algebraic expressions,

function interpolation, conditional evaluation, etc.) is not enough to solve a certain problem, ar-

bitrary user-provided code can be executed provided it is compiled into a dynamically loadable

shared object. An open API is provided by the host code to be able to interface with wasora’s

objects (variables, vectors, matrices, functions, etc.). For example, user-provided eigenvalue

solver can be loaded from a shared object to replace the one provided in SLEPc and com-

pare its performance. Actually a Master’s Thesis in Engineering employed milonga with a

user-provided solver to study parallelization schemes of the solution of the steady-state neu-

tron diffusion equation (Rivero, 2011). Another way of extending the code’s capabilities is to

load another wasora plugin (just like milonga itself is a wasora plugin) that interfaces with the

Python libraries and provides the ability not only to execute Python instructions but also to map

wasora variables and vectors back and forth to the scripts. And if this type of scalability is not

enough, a new ad-hoc plugin can be written starting from the freely available template.

Experience has also shown how important the rule of repair is. From time to time, one or

another calculation gets some kind of ill-conditioning and causes numerical problems such as

overflows or divisions by zero. Even computational problems such as arrays out of bounds or

invalid pointer arithmetic may occur. The code should try to warn the user and give her as

much information as possible as where the problem occurred. Nevertheless, numerical issues

such as domain errors are to be expected in parametric or optimization computations if the

set of parameters are not physically consistent. Therefore, in some cases the appearance of a

not-a-number is not necessarily an error. Following the “simple problem simple input” rule,

milonga by defaults detects numerical errors and gives as much information as possible before

politely quitting flushing caches and closing file descriptors. But there are options to ignore

G. THELER3190

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.grycap.upv.es/slepc/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora/milonga/

Figure 12: Graphical interface of the Bazaar control version system showing the revision history

in the background and a side-by-side differential view of the changes introduced by a particular

commit.

NaNs and to even not issue warnings.

Nowadays, using any kind of distributed control version system is a must for any serious

software development project, especially for a free and open one as milonga where users are

potential contributors. First, this way each user has the ability to have her own branch con-

taining the full project history and can thus search and analyze for particular changes. And

second, the process of incorporating and tracking user-provided fixes can be better managed by

the original author by merging the corresponding branches. Distributed control version systems

also encourage the “bazaar” development model as opposed to the “cathedral” mode, as dis-

cussed by Raymond (2001). Figure 12 shows a screenshot of the graphical user interface of the

distributed version control system used by milonga—that coincidentally is called Bazaar—that

visualizes the differences introduced into the code by a particular commit.

Not every bug fix or new feature needs to imply a new release, especially when the code has

not been frozen yet—as is the case of milonga. However, control version systems—especially

distributed ones—provide many mechanisms that allow the user to track an executable back to

the actual source tree that was used to generate it, provided the hash signature of the tree is

reported by the binary. For example, if the milonga executable is called with the -v option, it

reports some useful information into the standard output:

$ milonga -v

milonga 0.2.21 trunk (2014-05-16 17:33:51 -0300 clean)

free nuclear reactor core analysis code

branch gtheler@tecna.com-20140516203351-kn8p518jmxcv1evi

last commit on 2014-05-16 17:33:51 -0300 (rev 21 clean)

last build on 2014-06-14 12:57:49 -0300

compiled on 2014-06-14 12:58:44 by jeremy@tom (linux-gnu x86_64)

with gcc (Debian 4.8.3-3) 4.8.3 using -O2 linked against

SLEPc Release Version 3.4.3, oct 14, 2013

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3191

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://bazaar.canonical.com/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://bazaar.canonical.com/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/

Petsc Release Version 3.4.3, Oct, 15, 2013 arch-linux2-c-debug

running on Linux 3.2.0-4-amd64 #1 SMP Debian 3.2.57-3+deb7u2 x86_64

8 Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz

milonga is copyright (c) 2010-2014 jeremy theler

licensed under GNU GPL version 3 or later.

milonga is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

----------- --------- ------- ------ -----

wasora 0.2.130 trunk (2014-06-11 16:51:23 -0300 dirty)

wasora’s an advanced suite for optimization & reactor analysis

branch gtheler@tecna.com-20140611195123-xc1cw5yzca7w0e0l

last commit on 2014-06-11 16:51:23 -0300 (rev 130 dirty)

last build on 2014-06-12 19:02:23 -0300

compiled on 2014-06-12 19:02:51 by jeremy@tom (linux-gnu x86_64)

with gcc (Debian 4.8.3-2) 4.8.3 using -O2 and linked against

GNU Scientific Library version 1.16

GNU Readline version 6.3

SUNDIALs Library version 2.5.0

wasora is copyright (C) 2009-2014 jeremy theler

licensed under GNU GPL version 3 or later.

wasora is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

This way, given a particular binary executable or shared object plugin—that may be dis-

tributed as such to avoid having the end-user to compile and link the required libraries—the

actual source tree can be found by branching from the central repository the revisions of mi-

longa and wasora that correspond to the reported hash checksums. Also, one can then refer

to the documentation of that actual revision—that in milonga is generated from particularly-

formatted comments in the source code, as can be seen in figure 12—and know which syntax

that particular version understands. This behavior is as much as the rule of clarity can be applied

to binary files.

3 CONCLUSIONS

Throughout the present work many features that are desirable in a core-level neutronic

code were discussed in detail, and particular examples of how they were included into the

milonga code were illustrated. These features were grouped into four clusters, namely prob-

lems, input, output and implementation. After analyzing the problems milonga should be able

to tackle, it was concluded that the code should be both open and free—terms that are not

equivalent. The main conclusion is that for the industry it is important for users to access to

source code so more eyes can make bugs shallower, whilst students and researchers benefit by

studying, modifying and sharing source code. From the second group related to preparation

of input, a basic rule that is expected to be followed by a code such as milonga is “simple

problems ought to need simple inputs.” This rule can only be obeyed by providing a compact

syntax for the input file and good defaults for the calculation parameters. Also, the main fea-

ture expected from a core-level neutronic code is flexibility to enter how the macroscopic cross

sections depend finally on the spatial coordinates x, y and z through intermediate distributions

of an arbitrary number of properties (burn-up, temperatures, poisons, etc.). Regarding output,

the basic conclusion is that the code should write only the results that the user explicitly asks

for—and nothing more. Flexibility in the way data is written is also desired in order to allow

interaction with other programs, whether they are other calculation codes or post-processing

tools. As for the implementation details, the basic idea is to avoid programming features that

G. THELER3192

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/
http://www.talador.com.ar/jeremy/wasora/milonga/

other people have already done, usually better than us. By following the principles of UNIX

philosophy many years of experience in good programming practices can be easily included into

scientific calculations, and particularly into neutronic codes to be used in nuclear engineering

analysis.

REFERENCES

ANS. Argonne Code Center: Benchmark problem book. Technical Report ANL-7416 Supple-

ment 2, Argonne National Laboratory, 1977.

ANSI. Steady-state neutronics methods for power reactor analysis. Technical Report ANS-

19.3-2011, American Nuclear Society, 2011.

Balay S., Brown J., Buschelman K., Eijkhout V., Gropp W.D., Kaushik D., Knepley M.G.,

Curfman McInnes L., Smith B.F., and Zhang H. PETSc users manual. Technical Report

ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

Bernal A., Miró R., Ginestar D., and Verdú G. Resolution of the generalized eigenvalue problem

in the neutron diffusion equation discretized by the finite volume method. Abstract and

Applied Analysis, 913043, 2014. Doi:10.1155/2014/913043.

Blaauw G.A. and Brooks F.P. Computer Architecture: Concepts and Evolution. Addison-

Wesley, 1997.

Free Software Foundation. What is free software. 2001. https://www.gnu.org/philosophy/

free-sw.html.

Hernandez V., Roman J.E., and Vidal V. SLEPc: A scalable and flexible toolkit for the solution

of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3):351–362, 2005.

Kernighan B.W. and Ritchie D.M. The C Programming Language. Prentice Hall, 2nd edition,

1988.

Knuth D.E. The TeXbook. Addison-Wesley, 1984.

Knuth D.E. Selected Papers on Computer Languages. Center for the Study of Language and

Information, 2003.

Mazzantini O., Schivo M., Di Cesare J., Garbero R., Rivero M., and Theler G. A coupled

calculation suite for Atucha II operational transients analysis. Science and Technology of

Nuclear Installations, 2011:785304, 2011.

Mosteller R. Static benchmarking of the NESTLE advanced nodal code. Proceedings of the

Joint International Conference on Mathematical Methods and Supercomputing for Nuclear

Applications, 2:1596–1605, 1997.

Open Source Initiative. The open source definition. 1998. http://opensource.org/docs/osd.

Pinem S., Sembiring T.M., and Liem P.H. The verification of coupled neutronics thermal-

hydraulics code NODAL3 in the PWR rod ejection benchmark. Science and Technology of

Nuclear Installations, 2014:845832, 2014.

Raymond E.S. The Cathedral and the Bazaar. O’Reilly, second edition, 2001.

Raymond E.S. The Art of UNIX Programming. Addison-Wesley, 2003.

Rivero M. Optimización computacional de la solución numérica de la ecuación de difusión de

neutrones. Tesis de la Maestría en Simulación Numérica y Control, Univesidad de Buenos

Aires, 2011.

Theler G. Difusión de neutrones en mallas no estructuradas: comparación entre volúmenes y

elementos finitos. Academic Monograph, Universidad de Buenos Aires, 2013a. In Spanish.

Theler G. Geometric optimization of nuclear reactor cores. Mecanica Computacional,

XXXII(32), 2013b.

Theler G. A shared-memory-based coupling scheme for modeling the behavior of a nuclear

Mecánica Computacional Vol XXXIII, págs. 3169-3194 (2014) 3193

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
http://opensource.org/docs/osd

power plant core. Mecanica Computacional, XXXII(18), 2013c.

Theler G. Unstructured grids and the multigroup neutron diffusion equation. Science and

Technology of Nuclear Installations, 2014:641863, 2013d. Doi:10.1155/2013/641863.

Theler G. and Bonetto F.J. On the stability of the point reactor kinetics equations. Nuclear

Engineering and Design, 240(6):1443–1449, 2010.

Theler G., Bonetto F.J., and Clausse A. Solution of the 2D IAEA PWR Benchmark with the

neutronic code milonga. Actas de la Reunión Anual de la Asociación Argentina de Tecnología

Nuclear, XXXVIII, 2011.

Vadén T. and Stallman R.M. The Hacker Community and Ethics: An Interview with Richard M.

Stallman. Tampere University Press, 2002.

Worlton W.J. and Voorhees E.A. Recent developments in computers and their implication for

reactor calculations. In Proceedings of the Conference on the Applications to Reactor Prob-

lems. American Nuclear Society, 1965.

G. THELER3194

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	Introduction
	The Design Basis
	Problems
	Input
	Output
	Implementation

	Conclusions

