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Abstract. Wood utility poles are simple structures used in power networks. Wind loads are one of the

main loads and can cause damage. Also, due to the construction procedure and the natural origin of the

material, the geometrical dimensions and the material properties usually exhibit variability. The fragility

curves are a useful tool to evaluate the failure probability of the poles for a defined failure mode. In this

study, displacements are evaluated such that a percentage of damage is found for each wind velocity, and

the dynamic behavior of Argentinean Eucalyptus grandis wood poles with uncertain material properties

is analyzed, giving place to the fragility curves. The stochastic wind velocity field is derived using the

Spectral Representation Method (SRM), considering temporal and spatial correlations. Then, the wind

load is obtained under the considerations of the Argentinean standard CIRSOC 102. Furthermore, the

lengthwise variability of the modulus of Elasticity is simulated through two probabilistic material mod-

els: as a random variable and as a random field through the Non Gaussian Karhunen-Loève Expansion

. Results are numerically approximated by the Finite Element Method (FEM). Statistics of the response

are obtained by means of Monte Carlo Simulations (MCS) with a previous convergence study to deter-

mine the acceptable number of realizations. Fragility curves for the probabilistic material models under

stochastic wind loads are obtained and compared to assess the uncertainty of the material properties in

the structural response.
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1 INTRODUCTION

Wood utility poles are simple structures used in power networks. Since they appear in large

numbers, their failure can make a significant impact on custom’s reliability as well as economic

consequences. Uncertainty is the lack of knowledge about a quantity. The probability of struc-

tural failure is a function of both uncertainty in the capacity and uncertainty in the demand. The

capacity of a structure to withstand a load is a function of its geometry and material properties.

Although these quantities can be considered fixed, sometimes and despite the quality process of

fabrication or due to the natural origin of materials, uncertainties in their values are unavoidable.

Among the existing tools, fragility curves can be useful to represent the probability of failure

given a failure mode and a range of loads. In particular, it is a mean to evaluate the behavior

of structural systems. A study on the action of wind on industrial steel structures is reported in

Palencia et al. (2008) which includes a wide inventory of usual typologies. Fragility curves of

the complete structure as well as its components are obtained. Eucalyptus grandis is a wood ex-

tensively used in Argentina for structural purposes, in particular for utility poles. Experimental

studies are usually done to assess its properties and behavior Piter et al. (2004) and more re-

cently, computational approaches are reported García et al. (2015). An experimental assessment

of Eucalyptus grandis wood poles is contained in Torrán et al. (2009). Wind loads are one of the

main causes of damage in this type of structures. The fluctuating wind component is obtained

through the Spectral Representation Method (SRM) starting from a given Power Spectral Den-

sity Function (PSDF). The temporal and spatial correlations are taken into account by finding

the cross-spectrum and introducing a coherence function (Shinozuka and Deodatis, 1991). The

method yields a temporal record of the fluctuating wind velocity for each point along the pole

height. Combined with the standard recommendations, the fluctuating wind pressure is derived.

This method was employed in the dynamic study of a guyed mast and tall buildings (Ballaben

and Rosales, 2012; Castro et al., 2015).

The dynamic behavior of Argentinean Eucalyptus grandis wood poles with uncertain ma-

terial properties under stochastic wind load is analyzed. The uncertain material properties are

given by the variability of the Modulus of Elasticity (MOE) simulated by two probabilistic

material models. In the first one (Unif-model), the value of MOE for the whole pole, is sim-

ulated as a random variable through a gamma Probability Density Function (PDF) obtained

from the application of the Principle of Maximum Entropy (PME). In the second model (KL-

model), the lengthwise variability is simulated with a random field through a Non Gaussian

Karhunen-Loève Expansion (NGKLE) with an exponential correlation function (Mulani, 2006)

and a gamma marginal distribution. A third model with a homogeneous deterministic MOE is

used as a reference.

The fragility curves are obtained from three material models for a given failure mode. Then,

they are compared among them. Results are numerically approximated by the Finite Element

Method (FEM). Statistics of the response are obtained by means of Monte Carlo Simulations

(MCS) with a previous convergence study carried out in order to determine the acceptable num-

ber of realizations. The model is discretized using the Finite Element Method (FEM).

2 MODEL DESCRIPTION

2.1 Stochastic wind load

In order to calculate the dynamic stochastic wind load (in the time domain), it is necessary

to recreate a temporal record. This record is composed of two contributions: the first one

is a fluctuating random variable with the position and time and the second component is a
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deterministic mean value with position variation. The fluctuating wind velocity is obtained by

the application of Spectral Representation Method (SRM) proposed by Shinozuka and Deodatis

(1991). The method starts from a Power Spectral Density Function (PSDF) and a coherence

function, to be chosen in accordance with the type of problem to be simulated. Then, the random

signals are created as a superposition of harmonic functions with a random phase angle, weighed

by coefficients that represent the importance of the value of frequency within the spectrum and

the spatial correlation. Following the methodology developed in the reference work, a set of m

gaussian stationary random processes f 0
j (t), j = 1, 2, ...m, with zero mean, E[f 0

j (t)] = 0, with

a given cross spectral density matrix S0(ω) where S0
jk(ω) = F [Rjk(τ)0 ] are considered. F [ ]

represents the Fourier Transform operator and R0
jk(τ) is the cross-correlation function (j 6= k)

or the autocorrelation function (j = k). This matrix verifiesR0
jk(τ) = R0

jk(−τ) and then, S0(ω)
is a Hermitian and definite positive matrix. If the lower triangular matrix H(ω) is defined as a

matrix whose Fourier transform exists, the relationship is

S0(ω) = H(ω)H̄T (ω) (1)

where the bar stands for complex conjugate and the superscript T its transpose. The F 0
j (t)

process can be simulated by the following Shinozuka & Jan series:

fj(t) =
3

∑

k=1

N
∑

n=1

|Hjk(ωn) |
√
2∆ω cos[ω̂nt+ θkj(ωn) + Φkn] (2)

where ∆ω is the frequency interval with which the PSDF is discretized, ωn = ∆ω(n−1), ω̂n =
ωn + ψkn∆ω, ψkn is a random value uniformly distributed between 0 and 1, N is the amount

of frequency ranges and, Φkn are the random independent phase angles uniformly distributed

between 0 and 2π. If the values Sjk are all real, then the Θjk(ωn) are equal to zero. The

decomposition represented by Eq.1 will be found by means of the Cholesky Decomposition of

the spectral density matrix. The SRM requires of the implementation of different steps. The

first one is the adoption of a Power Spectral Density Function (PSDF) and a coherence function.

In this case, the PSDF suggested by Davenport is used (Dyrbye and Hansen (1996)):

RN(z, ω) =
ωS(z, ω)

σ2(z)]
=

2

3

f 2
L

(1 + f 2
L)

4/3
(3)

where ω is the frequency in Hz, σ is the standard deviation and fL is the non-dimensional

frequency:

fL = ω
Lu

U(z)
(4)

Lu is the length scale of turbulence (1200 m in Davenport’s PSDF) and U(z) is the wind mean

velocity at height z. The expression for U(z) correspond to the potential law adopted by the

Argentinian stardard CIRSOC 102 (2005)

U(z) = 2.01V (z/zg)
2/α (5)

where V is the nominal wind velocity which, together with zg and α, are values given by the

standard code depending on the characteristics of the structure location.

Then, the assumed coherence function is

Coh(zi, zj, ω) = exp

{

−2ω
Cz | zi − zj |
U(zi) + u(zj)

}

(6)
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Figure 1: Temporal record of the fluctuating wind velocity component at the middle of the pole height generated

through the SRM.

where zi and zj are the heights of two given points of the pole. Then, each Sij of the S(ω)
matrix, for a given value of frequency can be calculated as

Sij(zi, zj, ω) =
√

S(zi, ω)S(zj, ω) Coh(zi, zj, ω) (7)

Following this procedure, each value Sij(zi, zj, ω) will be calculated, and then, for each fre-

quency ω H(ω) matrices will be found. Finally, it is possible to construct the temporal series

given by

u(zj, t) =
m
∑

k=1

N
∑

n=1

Hjk(ωn)
√
2∆ω cos[2πω̂nt+ Φkn]. (8)

The data for the model construction is reported in Table 1. Figure 2.1 shows one of the records

generated by this method.

In order to verify the simulated wind register obtained from the model, the PSDF of a register

calculated for a given point in the height of the pole is compared with the Davenport’spectrum

obtained for the same point. The comparison is depicted in Figure 2.

Table 1: Adopted values employed in the calculation of the time dependent velocity field.

Coefficients σ2 Lu Cz ωc ∆ω t ∆t N m

Value 38.77 1200 m 11.5 2.5Hz 0.004 Hz 300 s 0.2 s 625 12

When the fluctuating component of the wind speed has been determined, the Argentinean

Standard CIRSOC 102 (2005), with some modifications carried out in order to take into account

the dynamics of the wind, is employed in the calculation of the wind load. This standard defines

the transversal wind force F as:

F = qz GCfAf (9)

where G is the gust-effect factor, Cf is the force coefficient which includes the effect of the

shape of the structure, Af is the projected area normal to the wind. qz is the dynamic velocity

pressure evaluated at height z of the structure:

qz = 0.613 kz kzt kd V
2I (10)
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Figure 2: Comparison between theoretical spectrum wind speed (Davenport’spectrum) and the signals generated

through the SRM.

where kz is the dynamic pressure exposure coefficient, kzt is the topographic factor, kd is the

wind directionality factor, V is the basic wind speed and I is the importance factor. kz is a

function of the elevation z and the exposure category that described the ground surface rough-

ness using information about the natural topography, vegetation and constructed facilities in the

vicinity of the structure of interest. This parameter can be obtained from the following equation:

kz = 2.01

(

max(5m, z)

zg

)
2

α

, z ≤ zg (11)

zg and α are coefficients obtained according to the exposure category and they are tabulated in

the standard.

For the determination of the fluctuating component of the wind velocity, the expression

V kz = U(z) was used. Then, the Equation 10 becomes

q̄z = 0.613 kzt kd(U(z) + u(z))V I (12)

ant the Equation 9 results:

F = q̄z GCfAf (13)

Table 2 shows the adopted values for the mentioned coefficients.

Table 2: Coefficients employed in the determination of the wind load according to CIRSOC 102 (2005).

Coefficients G Cf I kd kzt α zg
Value 0.85 2.0 1 0.85 1 9.5 274 m

2.2 Structural model

The structure under study is a Eucalyptus grandis pole which is a vertical column with vari-

able cross-section (the diameter varies linearly) embedded in the soil (Figure 3). The struc-

tural model is a beam clamped at the ground line subjected to wind load. The wind action is
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found using the method explained before, and the wood properties parameters and the geomet-

ric quantities (height and ground and top diameters) were obtained from Torrán et al. (2009).

The geometric quantities are depicted in Table 3.

The MOE will be represented through its mean value in a deterministic case, as a random

variable or as a random field, depending on the studied case. The MOE is constant along the

pole length in the first two cases (deterministic and random variable).

Table 3: Geometric Data Torrán et al. (2009)

Height ground line diameter top diameter

11.975 m 0.262 m 0.191 m

Damping in timber material is considered random with a uniform distribution, assuming

values between 1% to 3% of the critical damping cc. The mass is considered as a deterministic

value equal to 707 kg/m3, corresponding to the mean value presented in Torrán et al. (2009) for

a mean moisture content of 45%.

Figure 3: Structural scheme of pole and wind load.

2.2.1 MOE as a random variable

The PDF of the MOE is obtained from the application of the PME. A statistical concept of

entropy was introduced by Shannon (1948). PME states that, subjected to known constrains,

the PDF which best represents the current state of knowledge is the one with largest entropy.

The measure of uncertainties of a continuous random variable X is defined by the following

expression

S(fX) = −
∫

D

fX(x)ln(fX(x))dx, (14)
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in which fX stands for the PDF of the random variable X and D is its domain. The domain

of the MOE is real and positive and its second moment is bounded. Thus, the stochastic vari-

able MOE will be represented by a gamma PDF with a and b, shape and scale parameters,

respectively. Also, µMOE = ab and σ2
MOE = ab2, where µMOE is the mean value and σ2

MOE

is the variance, given values in this study. The MOE parameters used to make the model are

10.935×109 N/m2 for the mean and 14 % for the Coefficient of Variation (COV) (Torrán et al.,

2009).

f(H | a, b) = 1

baΓ(a)
Ha−1e−

H

b . (15)

2.2.2 Non-Gaussian Karhunen-Loève Expansion

The non-Gaussian Karhunen-Loève Expansion (KLE) is applied to simulate the MOE ran-

dom field. The KLE of the random field of the MOE writes

E (x, θ) = E(x) +
∞
∑

i=1

√

λiξi(θ)fi(x), (16)

in which λi and fi(x) are the eigenvalues and eigenfunctions of the covariance functionC(x1, x2),
respectively. The parameter ξi is a set of uncorrelated random variables. Following the work

of Mulani (2006), the non-linear transformation method is applied to obtain KLE basis ran-

dom variables ξi(θ) of a non-Gaussian process. For the practical implementation, the series are

approximated by a finite number of terms M .

3 STUDY CASES

In order to perform the uncertainty quantification, due to the stochastic modeling of the wind

load and the MOE, three cases are studied, all of them with stochastic wind load:

• Case 1 (C1): the value of the MOE for the whole pole is considered deterministic and

equal to the mean value presented in Torrán et al. (2009).

• Case 2 (C2): the value of the MOE for the whole pole is simulated as a random variable

through a gamma PDF.

• Case 3 (C3): the lengthwise variability of the MOE is represented with a random field

through a Non Gaussian Karhunen-Loève Expansion with an exponential correlation

function and a gamma marginal PDF. After a convergence analysis it is concluded that 30

KL terms are sufficient.

In all cases, the failure of pole is assumed when the demand (displacement on the pole top)

S is larger or equal to a given limit (maximum displacement allowed for this structural type) R,

i.e. the probability of failure can be written as

pf = P (R ≤ S) (17)

or, in general

pf = P [G(R, S) ≤ 0] (18)

where G(·) is known as the ’limit state function’ and the probability of failure is identical with

the limit state violation. In the present study, this limit is set when the displacement in top of

the pole (demand S) is equal or larger to a maximum displacement allowed for this structural

type of R = H/100 (CIRSOC 601, 2011).
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4 RESULTS

The structural deterministic problem governed by the Bernoulli-Euler beam equation is solved

with a finite element discretization through FlexPDE, PDE (2014) software. After a conver-

gence analysis, a number of 30 quadratic elements with three nodes were used in the FEM

model. A Monte Carlo method is used to perform the realizations within the Matlab environ-

ment with a number of 600 simulations for each case. Figure 4 shows the results of the analysis

made for each study case (C1-C3). In Figure 4(a), the fragility curves (FCs) obtained for each

case are presented. All FCs show their failure velocity range around a mean value where the

curves intersected. The FC derived for C2 case is the most widespread. For wind velocity lower

than the intersection zone, the C2 model leads to higher failure probability.
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Figure 4: Top displacement of the pole. Three study cases. a) Fragility Curves; b) PDF for a wind velocity V = 29

m/s; c) PDF for a wind velocity V = 31 m/s; d) PDF for a wind velocity V = 33 m/s.

Between the probabilistic material models (C2-C3), the FC derived from C3 exhibits the

highest slope than the FC obtained from C2 (probabilistic material models) and a smaller range

of failure. It is observed that this curve is closer to the C1 FC (deterministic). Figure 4(b-d)

depicts the PDF of the displacements at the pole top for the following wind velocities: 29 m/s

(at the left of the intersection zone), 31 m/s (within the intersection zone) and 33 m/s (at the

right of the intersection zone). The displacement value adopted as "limit state" is indicated with
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Figure 5: Top displacement of the pole and maximum bending stress at ground line. a) Mean displacements; b)

SD displacements; c) mean values of normal bending stress; d) SD of normal bending stress.

a dashed line. The mode for all models is around the same value, with the largest dispersion for

C2 and the smallest for C1 (as expected).

Figures 5 (a) and (b) depict the mean values and standard deviations (SD) of the top displace-

ments as functions of the wind velocity. While the mean value for all model almost the same,

the SD is larger in the C2 (Unif-model) case than in the other cases (cf. Figure 4(b-c)).The

behavior observed in the C2-case can be explained as follow: the random variable MOE is as-

sumed homogeneous along the pole and thus, the lowest (or highest) value of the MOE can be

applied. In this way, the model can yield the weakest (or the strongest) pole. On the other hand,

the C3 model considers zones with different values of the MOE and the probability of having

the weakest (or the strongest) pole is lower than in the C2 case.

Figures 5 (c) and (d) depict the mean values and standard deviations (SD) of the bending

stresses at the ground line level. In contrast to the displacement analysis, a higher SD for the

KL-model is observed. The values of SD for C1 and C2 cases are almost the same. Accord-

ing to Euler-beam Theory, when the cross-section remains constant, the bending moment (and

consequently, the normal stresses) varies with the second derivative of the product of the dis-

placement times the MOE at each point. In cases C1 and C2, the MOE assumes a single value

along the whole length, i.e. it is a constant. However, in C3 the MOE changes with the position
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point to point. In cases C1 and C2 stochasticity in the stress values is due to the random nature

of wind load, while in C3, the stresses are influenced by statistical origin of both the load and

the material properties (MOE).

For the failure definition adopted in this work, the C2 model provides the results with more

uncertainty, while C3 model offers results more closer to the deterministic MOE.

In the authors opinion, the KL-model is closer to the real case. Also, it does not differ much

from the usual deterministic approach.

5 CONCLUSIONS

The structural behavior of wood utility poles under stochastic wind load and uncertain ma-

terial properties was studied. Three cases were proposed for the same wind load with different

MOE-models: one with deterministic mean value (C1), a second model as a random variable

(C2), and a third one as a random field (C3).

Between the probabilistic material models (C2-C3), the FC derived from the C2 model is the

most widespread and exhibits a wider range of failure. This FC contains more uncertainty. The

FC found with the C3 model has a higher slope and exhibits failure under a smaller range of

wind velocity, similar to C1 (the deterministic MOE model).

In the C2 case, the random variable MOE is assumed homogeneous along the pole and thus,

the lowest (or highest) value of the MOE can be applied. In this way, the model can yield the

weakest (or the strongest) pole. On the other hand, the C3 model considers zones with different

values of the MOE and the probability of having the weakest (or the strongest) pole is lower

than in the C2 case.

When the stress distribution at the ground line of pole is analyzed, the values of SD for C1

and C2 cases are almost the same. The MOE-model has no influence on the results, while in C3

the KL-model adds more uncertainty.

In the authors opinion, the KL-model is closer to the real case. Also, it does not differ much

from the usual deterministic material approach.
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