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Abstract. This paper deals with the shape generation of structural shells within the field of 

Conceptual Design. A virtual simulation of previous experiments on physical “homeostatic” 

models, carried out by other authors, is herein presented. The physical experiments were 

based on the biological principle of “Homeostasis”: when an external agent attacks the 

structure, the latter defends itself intelligently to recover its bearing capacity.  Heat is the 

external agent used to cause the model material degradation. Thus the model adopts a more 

appropriate structural shape in order to continue resisting loads. The virtual simulation is 

performed using a finite element software with  a thermal elasto-plastic material  model. In 

particular, Polymethyl Methacrylate (PMMA) is considered. Comparisons between the shapes 

found with the physical and virtual experiments are presented. Additionally, the obtained 

geometry is employed as the shape of a concrete shell and a stress analysis is presented. A 

quasi-membranal behavior is shown.    
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1 INTRODUCTION 

The aim of the Homeostatic Model Technique  (HMT) is the conceptual design of surface 

structures. This technique, introduced by Andrés (1989) and based on Gaudi’s funicular 

technique, consists in a simultaneous action of loads and temperature over a plane plate of 

thermoplastic material. As a consequence of the mechanical properties degradation due to the 

heating the material undergoes a deformation adopting a funicular shape that  is under pure 

tensile stress in the case of dead loads. After that the deformed model is cooled. It is then 

placed in an inverted position yielding an “antifunicular” shell that is subjected to 

compressive stresses (a quasi-membranal state) under the action of self weight.  

Several articles have been published by Andrés and co-authors Andrés (1989), Andrés 

(1998), Andrés and Ortega (1991), Andrés and Ortega (1993), Andrés et al. (1994), Andrés et 

al. (1998) describing the basic ideas of HMT and verifying its reliability as a tool for the 

design of structural shapes. Similar results on shapes generation have been reported regarding 

concrete shell shapes also found using finite element method with progressive load increments 

(Fernández et al. (2002) and Moisset de Espanes et al. (2000)).  

The main purpose of the present study is to perform a virtual simulation of the 

experimental work based on the simultaneous action of heat and loads over a thermo-plastic 

shell. The finite element method (FEM) is used with this purpose, and additionally to analyze 

the mechanical behavior of a hypothetical concrete shell based on the homeostatic shape. 

Briefly, the process of the (experimental) model generation may be  described as follows.  

A plate-boundary restrictions-load set is introduced in a oven  that is heated until the 

deformations are stabilized. Then the deformed model is cooled. The resulting shape  is then 

inverted and  used as  the model of a concrete shell roof. 

2 GEOMETRY GENERATION: FINITE ELEMENT MODEL 

The first  part of  this work deals with the simulation of the HMT using MEF. The tool 

Mechanical Event Simulation (MES) of the nonlinear processor of Algor (Algor software, 

2004) is used. The experimental test is reproduced from a  model of  a thermoplastic material 

with the same boundary conditions and loading as the test carried out in the oven. 

2.1 Experimental model, boundary conditions and loading. 

The experimental model is a square plate of Polymethyl Methacrylate (PMMA) supported 

at its four corners. The plate is 0.36m of side and 2.4 mm of thickness. A distributed load is 

applied by means of a load pad (Figure 1) that is equivalent to the structural design load. Such 

pad is constructed by sticking small metal pieces to a polystyrene sheet. In this way the dead 

load is distributed uniformly over the surface without offering resistance to deformation.  
 

 
Figure 1. Photograph of the load pad applied over the experimental plate.  
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The plate is hung from the four corners by a  system of four pulleys with counterweights 

that equilibrate the model weight. In Figure 2 a photograph (Andrés and Ortega, 1993) of a 

typical set up (although a different support case) of the test can be observed. 
 

 
Figure 2. Experimental  plate before deformation (Andrés and Ortega, 1993). 

The geometry of the finite element model is a square  prism of the same dimensions  that 

the physical model. Despite the slenderness, a tridimensional model with brick elements was 

employed since the thermoplastic material model is only available for this type of element. 

The plate external boundaries are modeled with supports at the four corners that allow 

displacements within the plate plane but restrict the transverse motion.  

The load pad is taken into account by assuming a fictitious density of 7900 g/m
3
, that 

includes the dead load and the surface load.  
 

2.2 Material model 

 

In the problem under study, the material characterization is, without doubt, the issue with 

more uncertainties due to the lack of information of some of the properties of the materials 

used in the physical test.  

The tool Accupac/NLM with the material model “Thermal elasto-plastic
”
 requires the 

definition of the coefficient of thermal expansion, the Young´s modulus, the Poisson´s ratio, 

the uniaxial yield stress and the strain hardening as functions of temperature. This model is 

appropriate when stresses can exceed the yield stress and the mechanical behavior is  affected 

by temperature changes. Typical applications of this model are metals and polymeric 

materials.  

The thermoplastic material model is represented by a bi-linear curve. The mechanical 

behavior of thermoplastic in monotonic loading is characterized by an initial linear elastic 

response, followed by distributed yielding, large scale plastic flow, and gradual strain 
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stiffening until failure is initiated. 

It has an elastic modulus, which describes the stress rate from 0 to the yield strain, then 

uses a strain hardening modulus to describe linearly the stress rate from the yield strain to 

infinite strain. The program requires to define indices having temperature data that brackets 

the temperature range that may exist in the model. (see Table 1) 
 

 

Index Temp. 

(ºC) 

Elastic 

Modulus 

(N/m
2
) 

Poisson´s 

Coefficient 

Thermal 

expansion 

Coefficient 

(1/
o
C) 

Uniaxial yield 

stress (N/m
2
) 

Strain 

hardening 

modulus 

(N/m
2
) 

1 0 3.2e9 0.3 6.0e-5 6.4e7 5.0e7 

2 20 3.0e9 0.313 6.5e-5 5.76e7 4.0e7 

3 40 2.6e9 0.325 6.7e-5 4.48e7 3.0e7 

4 60 1.9e9 0.345 8.2e-5 3.62e7 2.0e7 

5 70 1.5e9 0.358 8.4e-5 3.18e7 1.5e7 

6 80 1.3e9 0.37 8.6e-5 1.7e7 1.0e7 

7 100 4.0e8 0.42 1.4e-4 2.0e6 5.0e6 

8 120 4.0e8 0.49 1.95e-4 2.0e6 0 

9 140 4.0e8 0.49 2.0e-4 2.0e6 0 
 

Table 1. Properties of  PMMA as a function of temperature. 

 

Despite research efforts, the physical origin of strain hardening is not fully understood (van 

Melick et al., 2003). Commercial PMMA always contains some copolymer as  ethyl acrylate 

(EA)  for example,  to facilitate processing. Curves (Kierkels et al. 2005) that shows how 

strain hardening decreases with temperature for 4 types of PMMA with  different contents of 

EA are shown in Figure 3. In the present application an average value from this curves was 

adopted. 

 
Figure 3. Strain hardening of PMMA as a function of temperature. 

 

Other characteristic values were obtained from the available literature (Oberbach, 1978, 

Ortega, 1998 and Paloto and Ortega, 1998): variation with temperature of the elastic modulus 

(Figure 4), Poisson’s coefficient (Figure 5), and coefficient of thermal expansion (Figure 6). 
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Figure 4. Elastic modulus of PMMA. 

 

 

 
Figure 5. Poisson’s coefficient of PMMA. 

 

 

 
Figure 6. Coefficient of thermal expansion of PMMA. 
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2.3 Simulation of  the heating and cooling process. 

 

In the physical experiment the plate is introduced in the oven and heated uniformly until 

temperature reaches 140°C approximately. Then it is cooled and at  this stage the original 

stiffness is recovered.  

In the finite element model the heating and cooling process is introduced by means of a 

multiplier curve,  shown in Figure 7, that is applied on an  initial unit temperature uniform 

over the plate. This action is activated once the effect of the gravitational loads is stabilized.  

 
 

 
 

Figure 7. Temperature variation in the heating-cooling process (MES). 
 

 

3 COMPARISON BETWEEN THE  MEF MODEL AND PHYSICAL MODEL 

Figure 8 depicts the deformed plate resulting from the numerical  simulation.  
 

 

 
 

Figure 8. Transverse deformation of the MEF model. 
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The displacements suffered by the plate transversely to its plane are displayed in the legend 

at the upper-right corner of Figure 8. The maximum value attained at the center of the plate 

reaches 32.2mm. 

The plot of Figure 9 shows the variation of the displacements at the central node of the  

plate (green) and at midspan of one boundary (blue) with time. It can be observed that the 

displacements are stabilized beyond 12 seconds.  

 

 
Figure 9.  Displacements at the central node of the plate (green) and central node of a  boundary (blue). 

 

The photograph shown in Figure 10 (from http://bc.uns.edu.ar/andres/teoria.html) was 

taken to a deformed experimental model once the test is finished.  
 

 

     

Figure 10. Physical model after the test. 

Figure 11 depicts the final deformation curves of the numerical model (continuous lines) 

compared with the deformation  obtained in the physical experiment (dashed lines). The  

reference system origin is located at the midpoint of the plate, with ten divisions on each side. 
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 It may be observed that both models behave similarly. The agreement is better in the 

boundaries (red line) with larger discrepancies towards the center (black lines). Such 

differences are due mainly to the different modeling of the supports in the physical and 

numerical models and in the uncertainties of the material model.  
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Figure 11. Transverse displacement across the plate. Physical model (dashed lines) and numerical model 

(continuous lines). 

 

Additionally, the influence of the material mass density in the deformations was studied. 

Figure 12 depicts the relationship density vs. maximum displacement at the center of the 

plate, showing the sensibility of the model to density variations. As mentioned before, in  this 

problem the density was assumed to be 7900 g/m
3
 including the dead and live loads.  
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Figure 12. Maximum displacement variation with the mass density. 
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4 CONCRETE STRUCTURAL SHELL 

The shape obtained from both the physical and the numerical experiment yields, when 

reversed, the “antifunicular” of gravitational loads. A structural shell constructed with this 

shape will behave in a quasi-membranal state  under such loads.  

In order to verify this fact, in what follows the performance of a numerical model of a 

concrete structural shell with the above generated shape is studied. The next properties are 

assumed: mass density=2404.6 g/m
3
, Young’s modulus E=2.0684e10 N/m

2
, Poisson’s 

coefficient ν=0.15. 

As before, brick elements were employed in the tridimensional model. The above 

generated geometry is captured by the program (a capability of Algor software) and then 

uniformly re-scaled in an appropriate manner. In this case, it was assumed that the shell 

should span a square of 20 m side, resulting a thickness of 0.143 m.  

The model is restricted by clamping its four corners  and subjected to self weight load. 

From the static analysis a maximum displacement of 18.8mm is obtained at the center of the 

plate as may be seen in Figure 13. 
 

 

 
Figure 13 Vertical displacements of the concrete shell under self weight load.  

 

 

The maximum and minimum stresses are shown in Figures 14  and 15. The extreme values 

are 2.1 Mpa (tensile stress, maximum principal stress) and -8.78 Mpa (compression, minimum 

principal stress). Both values are below the admissible limits assumed for this material (2.1 

Mpa for tensile stress and 21 Mpa for compression). 

Figure 16 depicts the Von Mises stresses that reach a maximum of  7.4 Mpa (the limit 

stress for concrete is 15 Mpa ) 
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Figure 14. Maximum principal stresses in the concrete structural shell. 

 

 

 

 
Figure 15. Minimum principal stresses in the concrete structural shell. 

 

 

 
Figure 16. Von Mises stresses in the concrete structural shell. 
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It should be noted that this example is only a preliminar model to show the software 

capability to capture the geometry of the previous homeostatic model. The brick element 

herein used is the most simple one (isotropic, without intermediate nodes, with second order 

integration). Obviously higher order element could be used and are available in the software. 

Also more elements along the thickness should be employed. However this study would be 

beyond the primary scope of this work. 

5 CONCLUSIONS 

This paper dealt with the shape generation of structural shells within the field of 

Conceptual Design. A virtual simulation of previous experiments on physical “homeostatic” 

models, carried out by other authors, was herein presented.  

From a numerical model (finite elements) with analogous  conditions to the physical test, 

the homeostatic shape is generated. It may be concluded that the laboratory test results were 

adequately reproduced. 

The main overcoming in the construction of the finite element model arose from the 

difficulty of characterizing the thermoplastic model used in the physical test, in this case 

PMMA (Polymethyl Methacrylate) regarding the constitutive  properties. The employed 

software requires of the use of brick elements for this material model despite dealing with thin 

plate/shell. 

The analysis of the stresses and deformations of a concrete shell with the antifunicular 

shape found with the HMT allows the verification of the quasi-membranal behavior. 
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