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Abstract. This work deals with the problem of free vibratoof uniform beams with elastically
restrained ends and with two internal translati@astic restraints. The main objective of this kvsr

to obtain the minimum stiffness of the internalsélarestraints that raises a natural frequenaysto
upper limit. The minimum stiffness is determinedusyng the derivative of the function which gives
the natural frequencies, with respect to the supposition. The problem is solved with the close
form solution. The effect of mode shape shift cdubg changes in the rigidity parameter of the
internal translational elastic restraints is anedl/zZAdditionally, results of the frequency paramete
and modal shape of beams with different end cambtare presented.
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1 INTRODUCTION

The vibration of Euler-Bernoulli beams with elast&strictions have been extensively
studied. It is not possible to give a detailed actoby reason of the great amount of
information; nevertheless, some relevant referenméds be cited. Particularly, several
investigators have studied the influence of elastgtraints at the ends of vibrating beams
(Mabie and Rogers, 19681abie and Rogers, 1972ee, 1973 Mabie and Rogers, 1974
Grant, 1975 Hibbeler, 1975 Maurizi et al., 1976Goel, 1976ab; Grossi and Laura, 1982
Laura and Grossi, 198Zortinez and Laura, 198%aura and Gutierrez, 198€rossi and
Bhat, 1991 Grossi et al., 1993allim and Grossi, 1999 Exact frequency and normal mode
shape expressions have been derived for unifornrm$eaith ends elastically restrained
against rotation and translatioRgo and Mirza, 1999 Excellent handbooks have appeared in
the literature giving frequencies, tables and mal@pe expressionsBlevins, 1979
Karnovsky and Lebed, 20p4

The problem of vibrations of beams elastically nased at intermediate points has also
been extensively treate@rossi and Albarracin (2008etermined the exact eigenfrequencies
of a uniform beam with intermediate elastic resiits.

The minimum stiffness of a point support that raisenatural frequency of a beam to its
upper limit has been investigated by several rebeas. Courant and Hilbert (1953has
demonstrated that the optimum location of a rigigport should be at the nodal points of a
higher vibration modeAkesson and Olhoff (198&howed that in the case of elastic supports
the optimum locations are the same as that of ggjgports and that there exists a minimum
stiffness of an additional elastic support whenaher fundamental frequency of a uniform
cantilever beam is increased to its maximiiang (2003)determined the minimum stiffness
of an internal elastic support to maximize the fameéntal frequency of a vibrating beam.
Wang et al. (2006yerived the closed-form solution for the minimutiifsess of a simple
point support that raises a natural frequency beam to its upper limitRaffo and Grossi
(2011, 2012)studied the effects on natural frequencies and nsbdpes of beams with an
intermediate elastic support obtaining the exalitevaf its rigidity when a modal shift occurs.
Finally Raffo and Grossi (2014)udied the effect of an internal elastic transtadl restriction
on mode shape of beams with internal hinges.

The above review of the literature reveals that ynafiorts had been devoted to the
analysis of the influence of elastic restraints apagters, located at the ends and at
intermediate points, on the vibrating charactersstof beams. However, the influence on
frequencies and mode shapes of varying two intelatedupports located at nodal points of
higher modes has not been studied. There is na plagtepresents a complete analysis of the
mentioned effects of two intermediate elastic sufspim a beam generally restrained at both
ends.

The aim of the present paper is to investigatenttaral frequencies and mode shapes of a
beam with two arbitrarily located internal tranglatl elastic restrictions and ends elastically
restrained against rotation and translation. Aagpthe adequate values of the rotational and
translational restraints parameters at the entshealpossible combinations of classical end
conditions, (i.e.: clamped, simply supported, slifdand free) can be generated. The existence
of a critical value of the dimensionless restrgaatameters of the two internal translational
restraints which determines the interchange okrofehe corresponding modal shapes of two
consecutive non-dimensional frequency parametatsrsonstrated. The later allows to obtain
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the minimum value of the restraint parameters efttho internal translational restraints that
maximizes a natural frequency.

The classical method of separation of variableshiegs used for the determination of the
exact frequencies and mode shapes. The algoritivelafeed can be applied to a wide range
of elastic restraint conditions.

Tables and figures are given for frequencies, ama@dimensional plots for mode shapes
are included. A great number of problems were sblaed, since the number of cases is
prohibitively large, results are presented for anfgw cases.

2 THE BOUNDARY VALUE PROBLEM

Let us consider a beam of length which has elastically restrained ends and has two
intermediate translational elastic restrictionsslaswn inFigure 1 The beam system is made

up of three different spans, which correspond to ititervals [O,cl],[cl,%] and [cQ,l]

respectively. The rotational restraints locatethatends of the beam are characterized by the
parameters,,r,, and the translational restraints by¢,,t ,i = 1,2. Adopting the adequate

values of the parameters,r, and ¢,,¢, all the possible combinations of classical end

LR
conditions can be generated. By usingi = 1,2, the effects of the internal hinges and

intermediate restraints are taken into account.
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Figure 1: Mechanical system under study.

In order to analyze the transverse planar displacésnof the system under study, we
suppose that the vertical position of the beamngt tane ¢ is described by the function

u = u(m,t), T € [O,Z]. It is well known that at time¢ the kinetic energy of the beam can be

expressed as

%(m,t)] dz (1)

B =33 [ (04) (2)

where(pA) = p A denotes the mass per unit length of theth span and;, = 0,c, = L.

i 3
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The total potential energy due to the elastic deédion of the beam, the elastic restraints
at the ends and the intermediate elastic restragggven by:

I NCIICIEET
21

where(EI) = F I denotes the flexural rigidity of the—th span,t =1

i

dr + 1,

2o
. (2)
+ thuz (cz,t)],

i=0

+ 7,

t =t, and the

L’
notations0™ and/~ imply the use of lateral limits and lateral detivas.
Hamilton’s principle requires that between timesand ¢, at which the positions are

f/b
known, the motion will make stationary the actiotegral F(u) = f Ldt on the space of
t

admissible functions, where the Lagrangians given by =T —U. In consequence, the
energy functional to be considered is given by

r)-1 " Z J o) %(x,t)]z ~(m) (@[Z:; (x,t)]z]dx -

1Y (Buy, ) our e, 3
—EL " %(0 t)} 7 %(l t) +Zotu (cl,tﬂdt.
The stationary condition for the functional giventx. @) requires that
OF (u;v) =0,Yve D, (4)

where 6F(u,v) is the first variation ofF" at u in the directionv and D, is the space of

admissible directions at. for the spaceD of admissible functions. In order to make the
mathematical developments required by the apptinadif the techniques of the calculus of

variations, we assume th@ctA)i € C([%p%])a (EI) e C? ([%u‘%])a i=12,3.
The space D is the set of functions u(:z:,) cC? [ta,tb], u(-,t) € Cl([O,l]),

)

In view of all these observations and since Hamikoprinciple requires that at times

GG

¢ ec ([cifl’ci])7 1 =1,2,3.

and ¢, the positions are known, the spaieis given by

D= {u;u(x,.> e[t )ufut) € € (0] ulo)

ore] © ¢ ([CH’ Ci])’

(5)
i =12, 3,u(x, ta),u<x, tb) prescribedyz € [0, l]}

The only admissible directions at v € D are those for whichu +cve D for
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sufficiently small ¢ and 6F(u;v) exists. In consequence, and in view of Eg), ¢ is an

admissible direction at for D if, and only if, v € D where

D = {v;v(m,-) € [t ] () € € ([0.1]), [~ t)
i =1,230(x,t )= v(z1) =0z [o,]}.

e e e ([Cv:flvc,;]),

(6)

The development of the techniques of Calculus ofidfians Grossi, 201D allows
obtaining that the functiom must satisfy the differential equations:

g i B
O ) () 25 0) () 22 ) =0 o
Vo € (c e )i =123t >0,
with the following boundary and transitions conalits:
0 5
r a—Z(o*,t) = (E1), a:; (0%2), (8)
0 g
tLu(oﬂt) = (1), a:; (0+,t)], (9)
w(cf,t) = w(cj,t),i =12, (10)
%( f,t)z%(ci,t),izl,l (11)
Ou | _ 0 .
(B1) a;’j (ci ,t) — (EI)M a;’j (cj,t),z —1,2, (12)
0 u 0 & .
ulent)= 2 (er) 22 e ,t)] . a[(EI)M 7 (c;,t)],z _10 ()
Ou /. O,
rRa—Z(z ,t):—(EI)SaZ(z 1), (14)
. 0 Ou
tRu(l ,t) . (B1), a:;; (z t)] (15)

wheret > 0.
Egs. @), (9), (14) and (5 correspond to the boundary conditions and E@). to (13)
correspond to the transition conditions.
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3 NATURAL FREQUENCIESAND MODE SHAPES

Using the well-known method of separation of vagablwhen the mass per unit length and
the flexural rigidity at the spans are the sameassime as solutions of Eqg) the functions
given by the series

o0

u |z, t)= > u |(x|coswt, 1 =123, (16)
(o) =2, ()

n=1
where u,  are the correspondingth modes of natural vibration. If we consider the

change of variabler =z /[ into Egs. ) and B)-(15), the close form solution of the
mechanical system under study” Is given by

U, (f) = A cosh AT + A, sinh AT + A, cos \T + A, sin\z, V7 € [0,51], (17)
U, , (f) = A cosh AT + A sinh AT + A_cos AT + A sinA\7, VI € [51,52], (18)

(0% (f) = A cosh A7 + A sinh AT + A cos AT + A, sinA\z, VI e [52,1], (19)
wherec, = ¢ /1 and

ﬁuﬂﬁ (20)
EI
Substituting Eqs.1(7)-(19) into Eqg. (6) and then in the boundary conditions given by Eqgs.

(8), (9), (14), (15 and transition conditions defined by EgBJ)(to (13), expressed in the new
variable z, we obtain a set of twelve homogeneous equationBerconstantd.. Since the

system is homogeneous in order to obtain a noratisolution the determinant of coefficients
must be equal to zero. This procedure yields thguiency equation:

A=

G(T R,T.R,T )\c) 0,i=12, (21)

L>"7L) R TR?
where

t P rl t 1’ rl t I’
T =Lt- R =L T =L_ R =L T =2 _ ;=12 22
L pr’* EI’'% EIT" EI’%  EI’ (22)
/4 . ,
The values of the frequency paramefer= ((pA/EI)w2)1 I, were obtained with the

classical bisection method.

4 NUMERICAL RESULTS

In order to describe the corresponding boundary itiond the symbolism SS identifies a
simply supported end, C a clamped end, F a free @ ER identifies an elastically

restrained end. The ER-ER beam analyzed corresgondsbeam with7, = R, =10 and
T, = R, = 1. Since the number of cases which can be analyzetebgieveloped algorithm
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is prohibitively large, results are presented datya few cases.
Table 1presents the values of and )\, with their corresponding modal shapes and the

nodal positions of mode 2 that is used to defigevitlues ofc, whenT =0, for SS-SS, C-
F and ER-ER beams with different valuesiof with ¢, = 1/3 for the SS-SS and C-F beams
andc, = 0.3 for the ER-ER beam.

B.C. T, A A, C, Modal shape 1 Modal shape 2

SSSS 0 3.141503 6.283185 0.50000 /\/
01  3.142801 6.283336 0.50001 /\/
1 3.153604 6.284698 0.500165/\

10 3.254898 6.298387 0.50168:

100 3.898462 6.441740 051672 TN
CF 0 1875104 4694001 078344

0.1 1.875519 4.694427 0.78346:

1 1879232 4607447 078363

10 1.914009 4.727195 0.78527¢

100 2.125682 4.984839 0.79802¢ /\

ER-ER O 1.684567 2.827619 0.58937i/
0.1 1.688026 2.828749 058975/

1 1717695 2838966 0.59315¢ /
10 1918884 2.944736 0.62514C

100 2.255251 3.790038 0.76077:

Table 1: Values ofA\ and ), with their corresponding modal shapes and the Inuakitions of mode 2 that
define the values of, for SS-SS, C-F and ER-ER( = R, =10, T, = R, = 1) beams with different values
of TCL, with ¢ = 1/3 for the SS-SS and C-F beams ape- 0.3 for the ER-ER beam.
Based on the concepts presented, a numerical pnecdédis been developed with the
purpose of determining the critical val@@-? of Tnz, such that over it the values af cannot
be raised further whereas the values of the coefiic\, increasesRaffo and Grossi, 20)4

Based on the cases presented afle 1 Tables 2to 14 show the results obtained when
0 <T < oo, analyzing the minimum stiffness of each case d=hatith 7 = 7"* and the

modal shape effect wheR = (1 + 0.05)T“’2>.
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T, A A
0.95 7" 6.230371 6.283185
T®2 =995,913544
1.05 T 6.283185 6.332961

TN

Table 2: Values\ and ), and their corresponding mode shapes of a SS-S8 wiéh ¢, = 1/3, ¢, =0.5,

T =0 and different values df .

T, A A

0.95 7" 6.230526 6.283336

T®2 =995,912695
1.05 7" 6.283336 6.333108

Table 3: Values\ and ), and their corresponding mode shapes of a SS-38 with ¢, = 1/3, ¢, =0.500017,
T, =0.1 and different values df .

T, A A
0.95 7" 6.231926 6.284698
T®2 =995,905986
1.05 T 6.284698 6.334434

SN

Table 4: Values\ and )\, and their corresponding mode shapes of a SS-S8 with ¢, = 1/3, ¢, =0.500168,

T =1 and different values df .
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T, A A
0.95 7" 6.245986 6.298387

T2 =995,930720
1.05 T 6.298387 6.347783

TN

Table 5: Values\ and )\, and their corresponding mode shapes of a SS-S8 with ¢, = 1/3, ¢, =0.501683,
T =10 and different values df .

T, A %

0.95 T 6.392114 6.441740

SN T N

T2 =1005.167312
1.05 702 6.441740 6.488572

Table 6: Values\ and ), and their corresponding mode shapes of a SS-S8 with ¢, = 1/3, ¢, =0.516723,
T =100 and different values df .

T A A

Cy 1

0.95 7% 4.642480 4.694427

T2 =266.918888
1.05 7% 4.694427 4.744104

/

Table 7: Values\ and ), and their corresponding mode shapes of a SS-S8 with ¢, = 1/3, ¢, =0.783463,
T =0.1 and different values df .

Copyright © 2016 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



708 J.L. RAFFO, F. OVEJERO

T A A

0.95 T"? 4.645474 4.697447

T12 =267.353932
1.05 712 4.697447 4.747150

/

Table 8: Values\ and )\, and their corresponding mode shapes of a SS-S8 with ¢, = 1/3, ¢, =0.783633,

T =1 and different values df .

T, A A

0.95 7" 4.674955 4.727195

T@2 =271.691003
1.05 7" 4.727195 4.777155

Table 9: Values\ and ), and their corresponding mode shapes of a SS-38 with ¢, = 1/3, ¢, =0.785278,
T, =10 and different values df .

T, A A,
0.95 7" 4.930073 4.984839

T®2 =313.240970
1.05 712 4.984839 5.037222

Table 10: Values\, and ), and their corresponding mode shapes of a SS-98 Wwéh ¢, = 1/3,
¢, =0.798026,7 =100 and different values df
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T, A A,
0.95 7" 2.800542 2.828749
-
T®2 =56,730087
1.05 712 2.828749 2.855839
-~

Table 11: Values\ and ), and their corresponding mode shapes of a ER-ER béth ¢, = 0.3,

¢, =0.589753,7 =0.1 and different values df .

T, A A

0.95 712 2.810874 2.838966

T12 =56,735622
1.05 712 2.838966 2.865954

Table 12: Values\ and )\, and their corresponding mode shapes of a ER-ER béth ¢, = 0.3,

¢, =0.593159,T =1 and different values df( .

T A A

Cy 1

0.95 7" 2.916960 2.944736

J,// o y B

T2 =57.757581
1.05 7" 2.944736 2.971475

Table 13: Values\ and ), and their corresponding mode shapes of a ER-ER béth ¢, = 0.3,

¢, =0.625149,T7 =10 and different values df .
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T, A A,
0.95 7" 3.749950 3.790038

T%2 =100.549000
1.05 712 3.790038 3.828685

e

Table 14: Values\ and )\, and their corresponding mode shapes of a ER-ER béth ¢, = 0.3,
¢, =0.760771,7 =100 and different values df .

Table 2to 6 depicts the first two exact values of the freqyencefficient A and the
corresponding mode shapes of a SS-SS beam wital/3, 7' =0, 0.1, 1, 10, 100

respectively, for different values @f and T = (1 + 0.05)T“’2>.

Table 7to 10 depicts the first two exact values of the freqyeocefficient A\ and the
corresponding mode shapes of a C-F beam wita 1/3, T =0.1, 1, 10, 100 respectively,

for different values of, andT = (1 + O.OS)T“‘Q).

Table 11to 14 depicts the first two exact values of the freqyeoeefficient A and the
corresponding mode shapes of a ER-ER beam Wite- R, =10, T, = R, =1, ¢, =1/3,

T =0.1,1, 10, 100 respectively, for different vale¢s:;, andT = (1 + 0.05)T<1'2>.

G
3500
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1000
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0 T T T T T T
0 500 1000 1500 2000 2500 3000 3500
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Figure 2: Values off"? as a function off’ for a SS-SS beam witfj = 1/3.
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Figure 2shows the values af"* obtained from different values df and¢, of a SS-SS

beam withe, = 1/3.

5 CONCLUSIONS

The minimum exact value of the stiffness of antedasanslational restraint that raises the
first natural frequency of a beam with the presesfca second elastic translational restraint to
its upper limit was obtained.

The analyzed cases of a SS-SS, C-F, and ER-ER lsrawsthat the behavior of the exact
value of the intermediate elastic translationatriet®on and the behavior of the first natural
frequency parameter agree with the presentdgldifo and Grossi (2011, 2012, 2014)
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