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Abstract. This paper presents a computational approach for the calculation of the mechanical 

properties of large wind turbine blades. The relation between the geometric discretization of 

anisotropic cross sections via line elements and the calculation of its mechanical properties is 

analyzed. The composite material theoretical background is based on a vector variant of the classical 

lamination theory embedded into a geometrically exact large deformation-small strain thin-walled 

beam formulation; transverse shear and out of plane warping are considered. The impact of the 

geometric reconstruction on the accuracy of the mechanical properties is studied using both 

rectangular and trapezoidal elements. It is shown that line based algorithms can give very accurate 

results provided the cross section geometry is well represented.  
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1 INTRODUCTION 

Computational modeling of composite wind turbine blades is a hot research subject 

(UpWind, 2011, Spera, 2009, Jonkman et al., 2009, Hansen, 2008, Hansen et al., 2006, Hau, 

2006); both 3D, 2D and 1D modeling techniques have been investigated in the last years. 

Most modern approaches make use of finite elements, so the response of the blade is typically 

computed after some kind of discretization. In the most general case, the full blade can be 

discretized into solid finite elements; however, this three dimensional modeling technique is 

rarely used since the time required to generate such a complex geometry is prohibitive. 

Besides, the aeroelastic nature of the wind turbine blade dynamics makes a full fluid-structure 

3D simulation using solid elements almost impossible to execute. This opens the possibility 

for a wide variety of the so-called “reduced theories”, which make use of various hypotheses 

to model the structural behavior of the blade; these hypothesis permits the simplification of its 

geometrical representation and mechanical behavior.  

Three approaches are used to simulate the mechanics of composite wind turbine blades: i) 

3D shell approaches, where the outer surface of the blade is discretized into tridimensional 

surface elements of composite material that deform arbitrarily in space (Laird, 2001). The 

geometrical errors arising from the definition of the cross section as a set of shell elements 

cannot be avoided; although, the accuracy of the method is generally good (Saravia et al., 

2015a), ii) coupled surface-line algorithms (SLAs), where the blade is conceived as a set of 

cross sections modeled as 2D surface elements; the group of cross sections move solidary to a 

reference 1D curve that deforms in space following the laws of a certain beam theory (Cesnik 

and Hodges, 1997, Chen et al., 2010, Hodges and Yu, 2007). This is probably the most 

accurate approach to describe the mechanic behavior of the blade since the cross sectional 

modeling with 2D elements permits a fine description of the blade geometric constructive 

details; also, the cross sectional algorithm can be coupled with almost any beam theory and 

iii) coupled line-line algorithms (LLAs), where the blade is conceived as a set of cross 

sections modeled as line elements; the group of cross sections move solidary to a reference 1D 

curve that deforms in space following the laws of a certain beam theory (Cesnik and Hodges, 

1997, Chen et al., 2010, Hodges and Yu, 2007). The accuracy of the LLAs is dependent on the 

geometrical reconstruction algorithm and the composite material mechanical description. The 

accuracy of modern LLAs is very good; for certain cross sections LLA can give more accurate 

results than 3D shell approaches (Saravia et al., 2015a). 

SLAs are more accurate than LLAs; however, LLAs still have a number of advantages 

over SLAs: i) low time consumption and fast execution, ii) capacity of handling very small 

thickness layers of paint and coating and iii) flexibility to be coupled easily with general 

heuristic optimization software without implying a generation of a new mesh.  

LLAs are widely used in rotor design to determine the cross sectional stiffness of blade. 

Chen et. al (Chen et al., 2010) presented a detailed assessment of the most used computational 

tools for calculating wind turbine blade cross sectional stiffness. This study includes 

numerical comparisons between: analytic results, the SLA VABS (Variational Asymptotic 

Beam Section Analysis, the most renowned algorithm for the determination of cross sectional 

properties, developed by Prof. Hodges and coworkers (Hodges and Yu, 2007, Cesnik and 

Hodges, 1997, Yu et al., 2002)) and the LLAs: FAROB (Philippidis et al., 1996) (developed 

at the Dutch Knowledge Center of Wind Energy Materials and Construction), PreComp (Bir, 

2005) (developed at National Renewable Energy Laboratory in USA) and CROSTAB 

(Lindenburg, 2008) (developed at the Energy Research Center of the Netherlands). The study 

concludes that the LLAs are inconsistent and therefore its applicability to modeling realistic 

blades is questionable; the present paper aims to show that this conclusion is misleading.  
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Resor et. al (Resor et al., 2010) compared results obtained with PreComp and BPE (a 3D 

shell approach developed by Global Energy Concepts and Sandia National Laboratories 

(Malcolm and Laird, 2007)), to those obtained in experimental testing of the BSDS blade; 

according to this paper the overall difference between PreComp and BPE is in the range of 

15-25% and the difference between the experimental results and BPE are in the range of 5-

20%. In a later study, Resor and Paquette also included VABS in the assessment of the cross 

sectional stiffness calculation (Resor and Paquette, 2011). The paper reproduced the same 

results of (Chen et al., 2010) for a particular wind turbine cross section, only the diagonal 

terms of the stiffness matrix were presented. For the CX-100 blade, discrepancies were found 

between VABS and BPE, especially in sections near the blade’s root. These discrepancies 

were attributed to local straining.  

This work presents a computational approach based on a LL formulation to obtain the 

cross sectional properties of wind turbine blades. A similar version of a previously presented 

LLA (Saravia et al., 2015a) is used to analyze the impact of the discretization aspects on the 

accuracy of the results. The geometric reconstruction of the cross sections is done with two 

types of segments, classical thin-walled beam theory rectangular segments and a variable 

layer length trapezoidal segment. It will be shown that the choice of the reconstruction 

element greatly affects the prediction of the cross sectional parameters.  

2 THEORETICAL ASPECTS 

2.1 Beam Formulation 

A particular cross sectional stiffness measure is consistent only with the kinematic 

formulation from which it was derived. The full derivation of the composite beam formulation 

used in this paper can be found in (Saravia et al., 2015a, Saravia, 2014); only the relevant 

details are reproduced hereafter. It is assumed that the mechanic behavior of the blade can be 

approximated by beam theory. 

The position vector of a point in the blade in the undeformed and deformed configuration 

can respectively be expressed as  

 

𝑿(𝑥, 𝜉2, 𝜉3) = 𝑿0(𝑥) + ∑𝜉𝑖

3

𝑖=2

𝑬𝑖,         

 𝒙(𝑥, 𝜉2, 𝜉3, 𝑡) = 𝒙0(𝑥, 𝑡) + ∑𝜉𝑖

3

𝑖=2

𝒆𝑖 + 𝜔 𝒆1.  

(1) 

where 𝑿0 and 𝒙0 stand for the position of the pole in the undeformed and deformed 

configurations respectively and the second term stands for the position of a point within the 

cross section relative to the pole; the coordinates 𝜉2 and 𝜉3 are the components of the position 

vector of a point in the cross section in 𝑬𝑖. The variable 𝜔 accounts for the displacements in 

the cross section due to torsional warping.  

Three frames of reference attached to the cross section are introduced: a) a reference 

material frame {𝑬1, 𝑬2, 𝑬3}, b) a sectional frame {𝑬1, �̂�, �̂�} and c) a layer individual frame 

{�̂�, �̂�, �̂�}, see (Saravia, 2014). 

The Small Green Strain Tensor (SGS) tensor can be written in vector form as (Saravia et 

al., 2015b) 
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 𝒆 = [

𝒙0
′ ⋅ 𝒆1 − 1 + 𝜉𝛼𝒆𝛼

′ ⋅ 𝒆1

𝒙0
′ ⋅ 𝒆2 + 𝜉3𝒆3

′ ⋅ 𝒆2

𝒙0
′ ⋅ 𝒆3 + 𝜉2𝒆2

′ ⋅ 𝒆3

]. (2) 

In vector form 

 𝒆 = 𝑫𝜺, (3) 

being 𝑫 a cross sectional matrix such that 

 𝑫 = [
𝑬1 𝒓
𝑬2 𝒓 × 𝑬2

𝑬3 𝒓 × 𝑬3

],    (4) 

and 𝜺 the generalized strain vector. 

   𝜺 =

[
 
 
 
 
 
 
𝒙0

′ ⋅ 𝒆1 − 1

𝒙0
′ ⋅ 𝒆2

𝒙0
′ ⋅ 𝒆3

𝒆2
′ ⋅ 𝒆3

𝒆2
′ ⋅ 𝒆1

𝒆3
′ ⋅ 𝒆1 ]

 
 
 
 
 
 

. (5) 

Lastly, the curvature and axial-shear strain vectors are defined for future use as 

 
𝛄 = [𝜖 γ2 γ3]𝑇 = [𝒙0

′ ⋅ 𝒆1 − 1 𝒙0
′ ⋅ 𝒆2 𝒙0

′ ⋅ 𝒆3]
𝑇 , 

𝜿 = [κ1 κ2 κ3]𝑇 = [𝒆2
′ ⋅ 𝒆3 𝒆2

′ ⋅ 𝒆1 𝒆3
′ ⋅ 𝒆1]

𝑇 . 

(6) 

Then the generalized strain vector can be written in the form 

 𝜺 = [𝛄𝑇 𝜿𝑇]𝑇 . (7) 

2.2 The sectional strain measures 

In order to write the constitutive equations it is necessary to express the SGS in the cross 

sectional frame {𝑬1, �̂�, �̂�}. Recall that the origin of the cross sectional system moves along the 

cross section contour (placed half a thickness inward from the outer contour) in anticlockwise 

direction; then the tangent unit vector can be found as the derivative of the mid-contour 

position vector �̅� = 𝜉2̅
 𝑬2 + 𝜉3̅

 𝑬3. This is 

 �̂� =
𝑑�̅�

𝑑𝑠
= 𝜉2̅

′𝑬2 + 𝜉3̅
′𝑬3, (8) 

where 𝜉�̅�
′ represents derivatives of mid-contour cross sectional coordinates with respect to 𝑠. 

The normal unit vector can be obtained invoking the orthogonality condition of the coordinate 

system, then 

 �̂� = �̂� × 𝑬1 = 𝜉3̅
′𝑬2 − 𝜉2̅

′𝑬3. (9) 

The position vector of a point in the cross section expressed in the sectional coordinate 

system is  
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𝒓𝑠 = (�̅�𝑛 + 𝑛)�̂� + �̅�𝑠�̂�, 

�̅�𝑠 = �̅�𝑛�̂� + �̅�𝑠�̂�, 
(10) 

where the mid-contour components are obtained as 

 

�̅�𝑛 = �̅�𝑠 ⋅ �̂� = 𝜉2𝜉3̅
′ − 𝜉3𝜉2̅

′ , 

�̅�𝑠 = �̅�𝑠 ⋅ �̂� = 𝜉2𝜉2̅
′ + 𝜉3𝜉3̅

′ . 
(11) 

Another needed relation is the position of a point in the cross section as a function of the 

mid-contour coordinates, this is 

 𝒓 = �̅� + 𝑛�̂� = (𝜉2̅ + 𝑛𝜉3̅
′)𝑬2 + (𝜉3̅ − 𝑛𝜉2̅

′)𝑬3. (12) 

Now, a sectional frame transformation tensor 𝑸𝑠
  is introduced (see (Saravia et al., 

2015b)), it operates over the SGS tensor to give the strains in the sectional system as 

 𝒆 = 𝑸𝑠
𝑇𝑬𝑸𝑠; (13) 

The SGS expressed in the sectional frame is  

 𝒆𝑠 = [

𝜖𝑥

𝛾𝑥𝑠

𝛾𝑥𝑛

] = [

𝜖 + (𝜅3𝜉2̅ + 𝜅2𝜉3̅) + 𝑛(𝜅3𝜉3̅
′ − 𝜅2𝜉2̅

′)

(𝜉2̅
′𝛾2 + 𝜉3̅

′𝛾3) + 𝜅1𝑟𝑛

(𝜉3̅
′𝛾2 − 𝜉2̅

′𝛾3) − 𝜅1�̅�𝑠

], (14) 

The last equation can be written as a function of the generalized strains as 

 𝒆𝑠 = 𝑫𝑠𝜺 = [

𝟏 𝒓
�̂� 𝑟𝑛𝟏
�̂� −�̅�𝑠𝟏

] [
𝛄
𝜿
] (15) 

where 𝑟𝑛 = �̅�𝑛 + 𝑛.  

3 BLADE MODELING 

A wind turbine blade is built by two types of materials: the ones which contribute with 

mass, the ones which contribute with mass and stiffness. The former includes coating, 

painting and filling materials; filling materials have very low stiffness and are used mainly to 

increase the local buckling stiffness at some specific locations. The latter includes all 

composites, fabrics, etc. From the computational point of view, the materials not contributing 

to stiffness do not pass through the stiffness algorithms. This is convenient not only because 

the stiffness matrix computation is faster but also because problems arising from poor local 

vector conditioning due to the extremely small thicknesses of paint and coatings are avoided.  

The use of filling materials such as foam or balsa is used in a sandwich-like configuration. 

This scheme improves the local stiffness at the expense of a minor decrease in global stiffness 

and a major increase in the local thickness of the laminate. The latter renders the cross section 

thick-walled, what may have two consequences: i) the normal stresses in the thick-walled 

segment are not necessarily small and ii) the length of the inner layers of the laminate is less 

than the length of the outer layers. Since the stiffness of the core material is low, it is very 
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likely that the normal forces transferred through its thickness are small, then i) can be 

disregarded. On the other hand, the consequences of ii) are still not very clear and they will be 

addressed in the following. 

3.1 Composite material 

It was shown in (Saravia et al., 2015b) that using a uniaxial stress constitutive formulation 

it is possible to obtain very accurate results. For brevity reasons, the development of the 

constitutive formulation will not be presented here but the reader can refer to for a detailed 

development of the mechanical relation of the composite material.   

The constitutive relations at the layer level can be written as 

 [
𝜎𝑥

𝜏𝑥𝑠
] = [

𝐴11 𝐴13

𝐴13 𝐴33
] [

𝜖𝑥

𝛾𝑥𝑠
], (16) 

being 𝐴𝑖𝑗 certain elastic constants.  

Recalling Eq. (15) the constitutive equations can be expressed in matrix form as 

 𝝈𝑠 = 𝑪 𝑫𝑠𝜺 (17) 

where 

 𝝈 = [
𝜎𝑥

𝜏𝑥𝑠
] , 𝑪 = [

𝐴11 𝐴13

𝐴13 𝐴33
],      𝑫𝑠 = [

𝟏 𝒓
�̂� 𝑟𝑛𝟏

] (18) 

The expression (17) is the constitutive equation that will be used for the calculation of the 

cross sectional properties of the composite blade. It must be noted that this expression could 

be considered equivalent to the uniaxial stress equation. 

The cross sectional properties of the blade are derived with the help of the virtual work of 

the elastic forces; its 3D version is given by 

 𝛿𝑊𝑖 = ∫𝛿𝒆 
𝑇𝝈 𝑑𝑉

 

𝑉

. (19) 

Recalling Eqs. (17) the internal virtual work of the composite blade is written as 

 

𝛿𝑊𝑖 = ∫𝛿(𝑫𝑠 𝜺) 
𝑇𝑪 𝑫𝑠 𝜺 𝑑𝑉

 

𝑉

 

= ∫𝛿𝜺 
𝑇𝑫𝑠

𝑇𝑪 𝑫𝑠 𝜺 𝑑𝑉
 

𝑉

 
(20) 

The generalized strain vector is only a function of the running length coordinate of the 

blade, i.e. 𝑥, so the above equation can be recast in the following form 

 𝛿𝑊𝑖 = ∫ 𝛿𝜺 
𝑇 (∫𝑫𝑠

𝑇𝑪 𝑫𝑠 𝑑𝐴
 

𝐴

)  𝜺 𝑑𝑥
 

𝐿

, (21) 

being the term in parentheses is the cross sectional stiffness of the blade 

 𝔻 = ∫𝑫𝑠
𝑇𝑪 𝑫𝑠 𝑑𝐴

 

𝐴

. (22) 

Its explicit form is 
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 𝔻 = ∫  [
𝟏𝑇 �̂�𝑇

𝒓𝑇 𝑟𝑛
𝜔𝟏𝑇]

 

[
𝐴11 𝐴13

𝐴13 𝐴33
] [

𝟏 𝒓
�̂� 𝑟𝑛

𝜔𝟏
]𝑑𝐴

 

𝐴

. (23) 

where 𝑟𝑛
𝜔 = 𝑟𝑛 + 𝜔𝑠

′ . 

3.2 Discretization and segment reconstruction 

The outer contour of a wind turbine blade is fixed by aerodynamic requirements; it is given 

as a set of points in the two dimensional space. The aerodynamic table can be easily converted 

to lines and then imported into a meshing software to generate the set of two dimensional line 

segments. A LLA takes the line-discretized aerodynamic profile of the blade and the shear 

web locations from an input file. The file also contains the material mapping table; this 

implies the definition of the material constants, lamination sequence and thickness 

distribution.  

After the discretization process, each segment must be projected inwards in the direction of 

the surface normal in order to reconstruct the actual blade geometry. To perform this 

operation several possibilities can be devised; in this paper, reconstruction with rectangles and 

trapezoids will be studied. Surprisingly, the impact of the geometric description of the cross 

section in the accuracy of the thin-walled theory has not been addressed before; this will be 

shown to be of key importance for obtaining accurate results.  

As already said, the outer contour of the cross section is given a priori by the aerodynamic 

design of the blade. From the geometric point of view, it is relevant the fact that the inner 

layers of a segment of laminate have not the same length than the outer layers. This may result 

trivial, but this point is rarely considered in thin-walled beam theory. Of course, the effect of 

the curvature variation disappears as the thickness of the laminate tends to zero; but as stated, 

at some locations of the cross section the wall is very thick due to the necessity of increasing 

the local buckling strength. 

The reconstruction of the blade geometry must done via projection of the inward normal of 

the outer contour according to the information given in the lamination table. This opens the 

possibility for a reconstruction with three segment types: i) unmatching rectangles, ii) 

matching trapezoids and iii) unmatching trapezoids; see Figure 1. Unmatching rectangles are 

constructed through normal projection in the direction of the segment normal; matching 

trapezoids are constructed using the intersection point of the inner layers, thus avoiding 

thickness discontinuity; finally, unmatching trapezoids are obtained through projection in the 

direction of the average nodal normal. 

 

Figure 1 – LLA Segments 

At first sight there are two observations that could be made from Figure 1. Firstly, option i) 

should overestimate the cross section properties; this is a fact since the reconstruction clearly 

duplicate the intersection area. Secondly, option ii) should give the most accurate 

representation of an actual thickness transition; but this depends on the actual nature of the 

joint between the segments, which cannot be universally defined. There exist some drawbacks 

that makes the matching trapezoid not suitable for the geometric reconstruction of unmatching 

thickness joints; the next paragraphs clarify this. 
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Firstly, the geometrical aspects of a joint constructed with matching trapezoids are 

analyzed. Although it may seem trivial to construct a matching trapezoidal joint from the one 

dimensional mesh of segments, it takes some effort to derive the location of the intersection 

point of the inner contours of two contiguous segments. Figure 2 shows the typical case where 

element number 1 and element number 2 inner mid-contours meet at an undetermined point p.  

 

Figure 2 – Matching trapezoid joint 

Here the unknown is the mid-point vector 𝒕, which permits to locate the mid-contours 

intersection point. Surprisingly, it seems like there is no easy vectorial shortcut to 𝒕; and 

posing the problem in non-orthogonal coordinates cannot be avoided. The relative location of 

the intersection of the mid-contours can be found as 

 𝒕 = 𝑡1𝒈
1 + 𝑡2𝒈

2, (24) 

where 𝒈𝑖 is a non-orthogonal basis with unit vectors that are defined from the segment 

perpendicular vectors. Then, 𝑡𝑖 are the covariant components of 𝒕 in the base 𝒈𝑖. The 

definition of a reciprocal basis such that 𝒈𝑖 ⋅ 𝒈𝑗 = 𝛿𝑖
𝑗
 allows to write the covariant 

components as (Crisfield)  

 𝑡𝑖 = �̅� ⋅ 𝒈𝑖. (25) 

where �̅�  is the Cartesian expression of 𝒕, i.e.  �̅� = (𝑐1𝒋̆ + 𝑐2�̆�). Then it is possible to obtain 

 𝑡𝑖 = (𝑐1𝒋̆ + 𝑐2�̆�) ⋅ 𝒈𝑖 , (26) 

which gives the following algebraic equation 

 [
𝑡1
𝑡2

] = [
𝒋̆ ⋅ 𝒈1 �̆� ⋅ 𝒈1

𝒋̆ ⋅ 𝒈2 �̆� ⋅ 𝒈2

] [
𝑐1

𝑐2
]. (27) 

This can be written as 

 𝑡𝑖 = 𝓜𝑖𝑗𝑐𝑗, (28) 

and finally find the Cartesian components of 𝒕 as 

 𝑐𝑖 = 𝓜𝑗𝑖𝑡𝑗 . (29) 
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Once the coefficients are determined, both the inner and mid-contour intersections are 

easily calculated.  

But 𝓜𝑖𝑗 is singular when 𝒈1 and 𝒈2 are linear combination of each other. Geometrically, 

this is equivalent to both segments being collinear (or almost collinear); a very common 

situation for most aerodynamic discrete profiles. This would imply that there is no answer to 

𝑐𝑖, and thus the algorithmic version of the above formulation crashes.  

If the two segments have the same thickness, the situation can be saved; the calculation of 

the vector can be bypassed through the simple formula   

 �̅� = −
1

2
 𝑒 ⋅ �̌�, (30) 

where 𝑒 is the thickness of the laminate and �̌� is the outward normal. But if the thicknesses of 

the elements are not equal, then there is no way to find 𝑐𝑖 without exploiting Eq. (29). This 

situation is depicted in Figure 3, where clearly at locations A and B the matching trapezoid 

squeme would fail to give a joint intersection point.  

 

 
 

Figure 3 – Joint Geometry 

So, although a joint without a thickness discontinuity may seem attractive at first sight, it is 

not always a good alternative to represent the laminate transitions in typical wind turbine 

cross sections. This is not only because the intersection point between the neighbor segments 

cannot exist, but also, because although it is guaranteed that it exists, the represented joint 

may not be similar to real.  

In virtue of the above comments, it is concluded that the matching trapezoid is not a good 

choice to reconstruct blade cross sections with large thickness changes.  

4 NUMERICAL TESTS 

This section presents the performance of the formulation in several practical tests, which 

were carefully designed to compare the modeling capabilities of existing cross sectional 

stiffness calculation codes (Chen et al., 2010). The presented formulation was implemented 

computationally in a Python code called CXS.  

All comparisons are made assuming that VABS (Cesnik and Hodges, 1997) results are the 

baseline; this is justified by the fact that both its formulation and implementation are based on 

a SLA. For the sake of brevity, only relevant geometric and material data of each example are 

presented here, the reader can refer to (Chen et al., 2010) for further details. In some 

examples, results obtained the LLA PreComp are presented; PreComp was chosen to 

benchmark the present formulation mainly because it is the most used LLA (Saravia et al., 

2015a, Chen et al., 2010).  
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4.1 Thick-walled isotropic tube 

The first example is set to test the performance of the algorithm in an extreme thick-

walled cross section; an isotropic circular aluminum tube with a thickness to diameter ratio of 

1/3 is the chosen geometry. VABS and PreComp results are used to benchmark the present 

algorithm. 

The results are presented in Table 1; they show an excellent agreement between VABS 

and CXS trapezoidal element; both the stiffness and mass coefficients agree with an error less 

than 1%. 

 

VABS 

PreComp 

(Chen et al., 

2010) 

CXS 

Trapezoids 

10 layers 

CXS 

Trapezoids 5 

layers 

CXS 

Rectangles 

10 layers 

Axial 1.834×10
10

 2.750×10
10

 1.834×10
10

 1.834×10
10

 2.751×10
10

 

Bending 4.587×10
8
 5.936×10

8
 4.575×10

8
 4.556×10

8
 5.958×10

8
 

Torsion 3.449×10
8
 4.115×10

8
 3.439×10

8
 3.424×10

8
 4.476×10

8
 

Mass 7.037×10
2
 1.055×10

3
 7.034×10

2
 7.034×10

2
 1.055×10

3
 

I1 3.519×10
1
 - 3.509×10

1
 3.495×10

1
 4.570×10

1
 

I2 – I3 1.759×10
1
 2.280×10

1
 1.755×10

1
 1.747×10

1
 2.285×10

1
 

Table 1– Thick-walled tube cross sectional properties. 

There are some important conclusions that can be drawn from the experiment; i) the 

trapezoidal segment can reconstruct exactly the geometry, ii) layering do not improve 

significatively the predictions, iii) the rectangular element do not predict well any of the cross 

sectional parameters, iv) the PreComp results agree exactly with those of the CXS rectangles. 

The latter strongly suggests that PreComp errors are very likely due to insufficient geometric 

detailing.  

In virtue of the above, it must be strongly remarked that for the problem at hand the source 

of error of the LLAs is purely geometric; when the geometry is modeled correctly, as done by 

CXS trapezoids, the errors dissapear. The CXS trapezoidal element geometric reconstruction 

of the thck-walled tube can be seen in Figure 4. 
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Figure 4 – Thick-walled tube (bending stiffness colormap). 

4.2 Isotropic blade-like section 

In the previous example, the performance of the algorithm in a thick-walled cross section was 

tested; since the material was isotropic and the cross section was bisymmetric, there were no 

stiffness or mass coupling terms in the stiffness matrix. In order to test the influence of the 

geometrical terms in the stiffness coupling a monosymmetric isotropic section is used; then 

the analytical blade-like section proposed by Chen et al. (Chen et al., 2010) is tested. 

 

 VABS 

PreComp 

(Chen et al., 

2010) 

CXS 

Trapezoids 

CXS 

Rectangles 
CXS Error 

Axial 3.551×10
7
 3.794×10

7
 3.551×10

7
 3.778×10

7
 0.0% 

Flap Bending  2.088×10
9
 2.178×10

9
 2.088×10

9
 2.161×10

9
 0.0% 

Lag Bending 1.108×10
10

 9.100×10
9
 1.108×10

10
 1.292×10

10
 0.0% 

Torsion 2.006×10
9
 1.696×10

9
 1.951×10

9
 2.070×10

9
 2.7% 

Ext-Bend -3.381×10
8
 -3.238×10

8
 -3.381×10

8
 -3.821×10

8
 0.0% 

Mass 1.841×10
-7

 1.960×10
-7

 1.843×10
-7

 1.960×10
-7

 0.1% 

I1 6.826×10
-5

 - 6.831×10
-5

 7.828×10
-5

 0.1% 

I2 1.082×10
-5

 1.125×10
-5

 1.083×10
-5

 1.121×10
-5

 0.1% 

I3 5.743×10
-5

 4.702×10
-5

 5.747×10
-5

 6.707×10
-5

 0.0% 

Tension 

Center  

9.521 10.000 9.521 10.114 0.0% 

Table 2 –Isotropic blade-like section cross sectional properties. 

Inspecting Table 2 the same behavior as the previous example is observed. The following 

comments can be made: i) the accuracy of CXS trapezoids is excellent, ii) the CXS rectangles 

overestimate the parameters due to duplication of the segment intersection, iii) the CXS 

rectangles and PreComp give very similar results, iv) the lag stiffness and inertia results for 
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PreComp do not show the classical overestimation; it is suspected that a modeling error is 

present in the results presented in (Chen et al., 2010), v) PreComp is not very consistent, some 

variables are over-predicted and others are under-predicted, vi) again, the CXS trapezoids are 

more flexible than VABS only in torsion. The latter is expected since the present formulation 

neglects hoop moments (Hodges, 2006). The CXS trapezoidal element geometric 

reconstruction of the blade-like section can be seen in Figure 5. 

 

 

 

Figure 5 – Blade-like section (bending stiffness colormap). 

4.3 Anisotropic oval pipe 

This example consist on a multi-layer composite pipe with oval shape (Saravia et al., 

2015a), see Figure 4. The pipe is thick-walled and anisotropic; the lamination stacking 

sequence is unsymmetrical and unbalanced.  

Besides VABS results, PreComp data presented in (Chen et al., 2010) will be used to 

benchmark the present formulation. It must be noted that in (Chen et al., 2010), dimensioning 

of the inner and middle radiuses of the oval is incorrect; the total thickness of the cross section 

is 5.08 mm instead of 2.54 mm. Also the material properties were wrongly informed, the 

constants used in the calculations are: E11=141.963 GPa, E22= E33=9.79056 GPa, G12= G12= 

G23=5.9984 GPa. 

 

 

Figure 6 – Anisotropic oval pipe (bending stiffness colormap). 
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This is a very unfavorable section for the present formulation because the lamination 

sequence is not balanced and circumferentially asymmetric, then the errors that arise from the 

neglecting of the circumferential curvature are maximized. 

 

 VABS PreComp CXS Trap. CXS Rect. 

Error 

CXS 

Trap. 

Error 

CXS 

Rect. 

Axial 4.606×10
7
 7.833×10

7
 4.580×10

7
 4.760×10

7
 0.5% 3.3% 

Bending 1 5.378×10
3
 7.074×10

7
 5.355×10

3
 5.444×10

3
 0.4% 1.2% 

Bending 2 1.532×10
4
 4.857×10

4
 1.530×10

4
 1.704×10

4
 0.1% 11% 

Torsion 1.959×10
3
 8.628×10

3
 1.722×10

3
 2.132×10

3
 12% 8.8% 

Ext-Bend 2 2.088 - 1.856 -3.028×10
-1

 11% 12% 

Ext-Bend 1 -4.117 - -3.856 -1.314 6% 6% 

Ext-Tors 1.079×10
4
 -1.205×10

-2
 1.258×10

4
 4.420×10

3
 16% 16.5% 

Mass 8.957×10
1
 - 8.957×10

1
 8.830×10

1
 0.0% 0.0% 

I1 5.499×10
-4

 - 5.498×10
-4

 5.599×10
-4

 0.0% 0.0% 

I2 7.661×10
-5

 - 7.660×10
-5

 8.046×10
-5

 0.0% 0.0% 

I3 4.733×10
-4

 - 4.732×10
-4

  0.0%  

Table 3 – Anisotropic oval pipe cross sectional properties. 

Despite the above comments, the Table 3 shows that the trapezoidal element still has a very 

good performance; for the most critical terms, the extensional-bending and the extensional-

torsional couplings, the results are acceptable.  

The maximum error is that of the extensional-torsional coupling; this error is 16%, far 

below the error reported in (Chen et al., 2010) for other one dimensional codes; best is Pre-

Comp, predicting an extensional torsional coupling of -1.2×10
-2

. This represents an error of 

six orders of magnitude. Again, the CXS rectangle element is not as accurate as the trapezoid; 

although the results are consistent; both CXS elements give better results than PreComp. 

From the observation of the torsional values, an important remark can be made. Compared 

to VABS, the trapezoidal element predicts a lower torsional stiffness (12% error) while the 

rectangular element predicts a higher stiffness (8.8% error). Although at first glance it could 

be said that the rectangular element has a better performance, this is not so. The prediction of 

the torsional stiffness of a CAS laminated cross section done by an algorithm without 

significant geometrical errors should be below the real value; this is because the zero hoop 

moment assumption flexibilizes the cross section (Hodges, 2006). This flexibilization is also 

present in the rectangular element, but since the rectangular element overestimates areas, this 

overcompensates the flexibilization caused by the zero hoop moment assumption. Thus, it is 

very important to note that although the torsional stiffness error is lower in the rectangular 

element, the prediction is clearly worse. 

4.4 The MH104 wind turbine blade (Chen et al., 2010) 

In this example a real wind turbine cross section is analyzed; the cross section is presented 

in (Chen et al., 2010). Geometrical and material data details can be found in the mentioned 

reference. In order to facilitate the VABS modeling, both the Gelcoat and the Nexus layers 

were removed from the model. This affects slightly the mass and inertia constants, but 

otherwise the VABS model would be very difficult to generate. The Figure 7 shows the 

geometry of the MH104 blade. 
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Figure 7 – MH104 blade (bending stiffness colormap). 

The stiffness and mass results are presented in Table 4. It can be seen that the trapezoidal 

elements give a better prediction than the rectangles. The following comments can be made: i) 

the axial, flap and lag stiffness is overpredicted by both elements, ii) the torsional stiffness is 

underpredicted by both elements; this is due to disregarding hoop moments iii) the torsional 

stiffness error of the rectangular element is smaller than that the trapezoidal element; this is 

caused by the stiffening caused by the duplication of areas of the rectangle element, iv) all 

coupling terms are very well predicted, v) the mass and inertia terms are prediction with 

trapezoidal elements gives the same results as VABS. 

 

 VABS 
CXS 

Trapezoids 

CXS 

Rectangles 

Error 

Trapezoids 

Error 

Rectangles 

Axial 2.443×10
9
 2.547×10

9
 2.616×10

9
 4.2% 7.1% 

Flap 2.164×10
7
 2.301×10

7
 2.330×10

7
 6.3% 7.6% 

Lag 4.683×10
8
 4.887×10

8
 5.338×10

8
 4.3% 13.9% 

Torsion 2.693×10
7
 2.24×10

7
 2.344×10

7
 -16.8% -12.9% 

Ext-Flap 7.006×10
7
 7.263×10

7
 7.411×10

7
 3.6% 5.7% 

Ext-Lag -4.695×10
8
 -4.900×10

8
 -4.631×10

8
 4.3% -1.3% 

Ext-Tors -3.293×10
7
 -2.986×10

7
 -2.937×10

7
 -9.3% -10.8% 

Mass 2.601×10
2
 2.603×10

2
 2.693×10

2
 0.0% 3.5% 

I1 5.620×10
1
 5.619×10

1
 6.255×10

1
 -0.0% 11.2% 

I2 5.381×10
1
 5.380×10

1
 6.013×10

1
 -0.0% 11.7% 

I3 2.381 2.385 2.415 0.1% 1.4% 

Table 4 – MH104 blade cross sectional properties. 

Observing the results presented in (Chen et al., 2010) and (Saravia et al., 2015a) and 

comparing with the present results it can be seen that the results are very sensitive to modeling 

details. In order to alleviate this issue the above calculations were generated with exactly the 

same geometrical data.  

4.5 Sandia SNL100-3 Blade 

Sandia National Laboratories have been working intensively in the design of a 100 meter 

wind turbine blade concept (Griffith and Ashwill, 2011, Griffith and Richards, 2014); up to 

date, this is the largest blade in the world. The last design, named SNL100-3, incorporates 

carbon fiber and flat-back airfoils. In this example the results of the blade stiffness and mass 

parameters at the maximum chord station of the Sandia SNL100-3 blade are presented. The 

blade geometry is shown in Figure 8. 
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Figure 8 – SNL100-8 blade (station 18). 

As usual, the benchmark is done taking VABS as baseline. Both the VABS and the CXS 

models were generated using the geometric and material data published by Sandia, while the 

Pre-Comp results are taken from the Sandia report (Griffith and Richards, 2014).  

 
 

VABS 

Pre-Comp 

(Griffith and 

Richards, 

2014) 

CXS 

Rectangles 

CXS 

Trapezoids 

Error (%) 

PreComp 
CXS 

Rect. 

CXS 

Trap. 

Axial 2.349×10
10

 2.425×10
10

 2.427×10
10

 2.375×10
10

 3.2 3.3 1.1 

Flap 2.109×10
10

 2.193×10
10

 2.160×10
10

 2.128×10
10

 4.0 2.4 0.9 

Lag 3.685×10
10

 3.390×10
10

 3.951×10
10

 3.700×10
10

 -8.0 7.2 0.4 

Torsion 1.526×10
10

 1.342×10
9
 1.551×10

9
 1.507×10

9
 -12.1 1.6 -1.2 

Mass 6.534×10
2
 6.803×10

2
 6.793×10

2
 6.627×10

2
 4.1 4.0 1.4 

Flap Inertia 3.708×10
2
 3.908×10

2
 3.823×10

2
 3.789×10

2
 5.4 3.1 2.2 

Lag Inertia 2.118×10
3
 1.617×10

3
 2.269×10

3
 2.127×10

3
 -23.7 7.1 0.4 

xtc 0.473 0.485 0.488 0.468 2.5 3.2 -1.1 

Table 5 –Sandia SNL100-3 blade cross sectional properties. 

From the results are presented in Table 5 the following comments can be made: i) CXS 

trapezoids give better results than CXS rectangles and PreComp, ii) CXS is consistent in the 

sense that it overpredicts the stiffness and mass parameters; except for the torsional stiffness, 

which is, as usual, underpredicted; this is because the formulation neglects the hoop moments, 

iii) PreComp is not consistent, some parameters are overpredicted while others are 

underpredicted.  

As a closing remark, it is mentioned that VABS computing time was 309 seconds while 

CXS computing time was 0.1 second. Besides, generation of the VABS model took 

approximately 6 hours, while the CXS model took 20 minutes.   

5 CONCLUSIONS 

Computing the cross sectional stiffness and inertia properties of realistic composite blades 

via a line-line algorithm (LLA) has been proven to be very effective. Different benchmark 

tests were performed and a detailed comparison of the most important inertia and stiffness 

terms was done. It was shown that the simplest version of the classical lamination theory can 

yield accurate results if the cross section is well represented geometrically.  

The blade reconstruction via two segments has been studied, unmatching rectangles and 

unmatching trapezoids. The unmatching trapezoid segment has shown an excellent 
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performance, being very accurate and algorithmically stable. This element can reconstruct 

effectively extremely thick-walled sections as well as sections with discontinuous thickness 

distributions. It was shown that the stiffness and mass matrices have shown an excellent 

agreement with VABS. Also the coupling stiffness terms and the tension centers have been 

predicted with small errors. The torsional stiffness terms are the most prone to errors, the 

maximum error found for the torsional stiffness is around 12%.  
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